Ponceau 4r lake

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal with, with metabolic activation; without, without metabolic activation]

In vivo

Species	Test conditions	Endpoint	Results	Reference
Mouse, 6	Mice were given a	Chromosome	-ve	Hayashi et
males/dose	single intraperitoneal	damage		al., 1988
group	injection at 0, 300, 600,		(At the top dose,	
	1200 or 2400 mg		five of the six	
	Ponceau 4R/kg bw.		tested animals	
	After 24 hours, bone		died.)	
	marrow cells were			
	examined for			
	micronuclei.			
Mouse, 6	Mice were given	Chromosome	-ve	Hayashi et
males/dose	intraperitoneal	damage		al., 1988
group	injections of 300 mg			
	Ponceau 4R/kg bw			
	daily for 4 days. 24			
	hours after the final			
	dose, bone marrow			
	cells were examined for			
	micronuclei.			
Mouse,	Mice were given 0,	Chromosome	-ve	Honovar &
5/sex/dose	500, 1000 or 2000 mg	damage		Völkner,
group	Ponceau 4R/kg bw by			2002
	gavage. Bone marrow			
	cells were assessed for			
	micronuclei after 24			
	hours (all doses) and 48			
	hours (top dose).			
Mouse	The bone marrow cells	Chromosome	-ve	Tarján &
[number, and	of treated mice were	damage		Kürti, 1982
sex not given	examined for			
in abstract]	micronuclei [no further			
	details given in brief			
	report].			

Mouse	Ponceau 4R was administered to mice at "0.63 or 6.3 mg/kg" Brain cells were examined for chromosome aberration. [This Russian study is very limited. The brain is an unusual organ to examine, and the route of exposure, duration, and presence of any controls cannot be clearly determined.]	Chromosome damage	-ve	Durnev et al., 1995
Mouse, 4 males/dose group	Mice were given a single intraperitoneal injection of 0, 4, 10 or 20 mg/kg bw. After 24 hours, bone marrow cells were examined for micronuclei. [Poorly reported study, using unusually low doses.]	Chromosome damage	+ve (at all dose levels)	Agarwal et al., 1993
Mouse [apparently 1 male/dose group]	Mice were given Ponceau 4R in intraperitoneal doses of 0, 200, 400 or 600 mg/kg bw/day for two days. Bone marrow cells were then assessed for micronuclei. [Poorly reported study and very limited, using an inadequate number of animals. Concern for the validity of these findings is raised by results for other chemicals tested in this study.]	Chromosome damage	+ve	Vaidya & Godbole, 1978

Mouse, 4	Mice were given a	DNA damage	+ve	Tsuda et al.,
males/dose	single dose of Ponceau	DNA damage	+ve	2001
group	4R by gavage at 0, 1,		(10 mg/kg bw:	2001
group	20, 100 or 2000 mg/kg		colon; 100	
	bw. Comet assay at 3, 6		mg/kg bw:	
	or 24 hours in brain,		stomach,	
	,		1	
	lung, liver, kidney,		bladder; 2000	
	stomach, colon, bladder		mg/kg bw: liver,	
M 4	and bone marrow.	DNIA danasa	kidney, lung.)	W
Mouse, 4	Mice were given a	DNA damage	+ve	Kawaguchi et
males/dose	single oral dose of up to		(Ttl 1 4	al., 2001;
group	2000 mg/kg bw. Comet		(The lowest	Sasaki <i>et al.</i> ,
	assay at 3 and 24 hours		effective dose	2002a, 2002b
	in stomach, colon, liver,		was 10 mg/kg	
	kidney, bladder, lung,		bw in the colon,	
	brain and bone marrow.		three hours after	
			treatment.)	
ICR (CD-1)	Mice were given 1 or	DNA damage	+ve	Shimada et
Mouse, male,	10 mg Ponceau 4R/kg			al., 2010
4/dose group,	bw by gavage, and		(colon in 10	
6 untreated	sacrificed after three		mg/kg bw	
controls	hours. Comet assay in		group)	
	brain, lung, liver,			
	kidney, glandular			
	stomach, colon, urinary			
	bladder and bone			
	marrow.			
Fischer F344	Rats were given	DNA damage	-ve	Shimada et
rat, male,	Ponceau 4R at 10, 100			al., 2010
4/dose group,	or 1000 mg/kg bw by			
5 untreated	gavage. Comet assay at			
controls	3, 6, 12 or 24 hours in			
	brain, lung, liver,			
	kidney, glandular			
	stomach, colon, urinary			
	bladder and bone			
	marrow.			
Rat, 2	Rats were given a	DNA damage	-ve	Kornbrust &
males/dose	single dose of 0 or 300			Barfknecht,
group	mg/kg bw by gavage.			1985
J - T	After 2 and 15 hours,			
	the liver was examined			
	for evidence of DNA			
	repair.			
	- r			
	[Very limited study]			

In vitro

Test system	Test conditions	Endpoint	Activation status	Results	Reference
Mouse lymphoma L5178Y cells	Mutagenicity assay in which cells were treated with up to 1.5 mg Ponceau 4R/ml (with S9) or 10 mg/ml (without S9) for four hours.	Mutation	With and without S9	-ve	Cameron et al., 1987
Chinese hamster lung fibroblasts	Following incubation [at unspecified concentrations, possibly up to 2 mg/ml] for 24 or 48 hours, cells were examined for polyploidy and chromosomal aberrations.	Chromosome aberration	Without [limited study]	+ve (Weak +ve, chromosome aberrations at 1 mg/ml. no effects on ploidy.)	Ishidate et al., 1984
Chinese hamster lung fibroblasts	Following incubation with Ponceau 4R at up to 2 mg/ml for 24 or 48 hours, cells were examined for polyploidy and chromosomal aberrations.	Chromosome aberration	Without [limited study]	-ve	Ishidate <i>et al.</i> , 1978, 1988
Mammalian cells [not specified in citing source]	DNA repair assay [concentration tested not stated in citing source].	DNA damage	Without [limited study]	-ve	Kornbrust & Barfknecht, 1985

Salmonella typhimurium, strains TA92, TA94, TA98, TA100, TA1535, TA1537 [and possibly TA2637]	Ames tests with Ponceau 4R at up to 5 mg/plate.	Mutation	With and without	-ve	Ishidate <i>et al.</i> , 1984
Salmonella typhimurium, strains TA98, TA100, TA1535, TA1537 and TA1538	Ames test with Ponceau 4R at up to 10 mg/plate. Also present was flavin mononucleotide, thought to increase liver enzyme capacity for breaking azo bonds.	Mutation	With	-ve	Cameron et al., 1987
Salmonella typhimurium, various strains	Various studies: Ames tests with Ponceau 4R, at up to 5 mg/plate.	Mutation	With and without	-ve	Fujita & Sasaki, 1993; Izbirak <i>et al.</i> , 1990 and several other earlier references cited in bibra, 1993
Salmonella typhimurium, strains TA98, TA100, TA1535, TA1537, TA1538	Ames test with Ponceau 4R [unspecified concentration].	Mutation	With and without	-ve	Tarján & Kürti, 1982

References

Agarwal K *et al.* (1993). *In vivo* cytogenetic studies on male mice exposed to Ponceau 4R and β -carotene. Cytobios 74, 23.

Bibra (1993). Ponceau 4R. Bibra Toxicity Profile. Bibra Toxicology Advice, Wallington, Surrey.

Cameron TP *et al.* (1987). Mutagenic activity of 27 dyes and related chemicals in the Salmonella/microsome and mouse lymphoma tk+/- assay. Mutation Research, 189, 223-261.

Durnev AD *et al.* (1995). Analysis of the cytogenetic activity of food dyes. Voprosy Meditsinskol Khimic, 41, 50-53 [in Russian].

Fujita H and Sasaki M (1993). Mutagenicity test of food additives with Salmonella typhimurium TA97 and TA102. Ann. Rep. Tokyo Metr. Res. Lab., 44, 278.

Hayashi M *et al.* (1988). Micronucleus tests in mice on 39 food additives and eight miscellaneous chemicals. Food and Chemical Toxicology, 26, 487-500.

Honovar N and Völkner W (2002). Micronucleus assay in bone marrow cells of the mouse with RED 102 WR 23087. RCC-Cytotest Cell Research GmbH, Germany [cited in SCCNFP, 2004].

Ishidate M et al. (1978). Bull. natn. Inst. Hyg. Sci. Tokyo, 96, 55.

Ishidate M *et al.* (1984). Primary mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology, 22, 623-636.

Ishidate M *et al.* (1988). A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. Mutation Research 195, 151.

Izbirak A *et al.* (1990). Mutagenicity testing of some azo dyes used as food additives. Mikrobiyoloji.-Bulteni, 24, 48-56 [in Turkish].

Kawaguchi S *et al.* (2001). Evaluation of in vivo genotoxicity of twelve synthetic tar dyes permitted in Japan using mouse comet assay. Mutation Research, 483(S1), S170 [abstract only].

Kornbrust D and Barfknecht T (1985). Testing of 24 food, drug, cosmetic, and fabric dyes in the in vitro and the in vivo/in vitro rat hepatocyte primary culture/DNA repair assays. Environmental Mutagenesis 7, 101.

RTECS (2009). Registry of Toxic Effects of Chemical Substances. 2,7-naphthalenedisulfonic acid, 3-hydroxy-4-((4-sulfo-1-naphthalenyl)azo)-, trisodium salt. QJ6530000. Last updated May 2009.

SCCNFP (2004). The Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers opinion concerning Acid Red 18: COLIPA No. C175 (adopted on 23 April 2004 by means of the written procedure). http://ec.europa.eu/health/ph_risk/committees/sccp/documents/out265_en.pdf

Sasaki YF *et al.* (2002a). The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research, 519, 103-119.

Sasaki YF *et al.* (2002b). The comet assay with eight mouse organs: results with currently used food dyes by single and multiple treatment. Mutagenesis, 17, 572 [abstract].

Shimada C *et al.* (2010). Differential colon DNA damage induced by azo food additives between rats and mice. Journal of Toxicological Sciences 35, 547.

Tsuda S *et al.* (2001). DNA damage induced by red food dyes orally administered to pregnant and male mice. Toxicological Sciences, 61, 92.

Tarján V and Kürti M (1982). Mutagenicity testing of several food colourants certified for use in Hungary. Mutation Research 97, 228 [abstract].

Vaidya VG and Godbole NN (1978). Mutagenicity studies with four food colours using human leucocytes and mouse micronucleus test systems. Proc. Int. Symp. Environ. Agents Biol. Effects, p20. Osmania University, Hyderabad-7, India.