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Key Points 

Kinetics and metabolism 
 PAHs are  absorbed by all routes of exposure  

 PAHs are distributed widely throughout the body, with fatty tissues tending to show 
higher amounts 

 metabolites of PAH’s are generally excreted as conjugates of GSH, glucuronic acid or 
sulphate in the urine, faeces and via biliary excretion  

Health effects of acute exposure 
 few studies were identified that reported the effects of BaP alone in humans following 

acute inhalation, ingestion or dermal exposure  

Health effects of chronic exposure 
 chronic exposure to mixtures of PAHs in air have resulted in a range of respiratory 

effects, ischemic heart disease, chronic dermatitis, depressed immune system and 
cancer of the skin and lungs 

 BaP amongst other PAHs is able to form DNA adducts which are likely key to their 
mutagenic potential 

 complex mixtures of PAHs which include BaP are considered to be carcinogenic to 
humans 
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Summary of Health Effects 
PAHs typically occur in complex mixtures and not as individual compounds, BaP is 
considered to be one of the most toxic PAHs and has been extensively studied. For the 
general public, the main route of exposure to poly aromatic hydrocarbons (PAHs) is 
ingestion of food. For smokers, the contribution of smoking to total PAH exposure will be 
similar to that of food. Inhalation and skin absorption are the main routes of occupational 
exposure. 

PAHs are rapidly distributed throughout the body following all routes of exposure; they may 
be detected in most tissues minutes to hours following exposure. Benzo[a]Pyrene (BaP) is 
metabolised by cytochrome P450 enzymes and epoxide hydrolase resulting in a number of 
metabolites being formed. These metabolites include the reactive epoxide BaP 7,8 diol-9,10-
epoxide (BPDE), which is believed to be play a role in the carcinogenicity of BaP. Following 
metabolism PAHs are excreted in the urine and/or faeces depending on their molecular 
weight. 

No data on the acute effects of BaP in humans were identified and few studies were reported 
in animals. Following acute oral exposure of rats to BaP, effects on the liver were observed.  

Following chronic exposure to PAHs in an occupational setting a decrease in lung function 
was reported, as well as chest pain, respiratory irritation, cough, dermatitis and depressed 
immune system; although in most cases it was not possible to evaluate the contribution of 
BaP to such effects. Few adverse effects were observed in rats or hamsters exposed to BaP 
via inhalation. Following ingestion, myelotoxicity was observed in poor affinity aryl 
hydrocarbon-receptor (AhR) mice but not in high affinity mice. Hepatotoxicity was also 
reported. 

BaP can cross the placenta; BaP-DNA adducts have been found in foetal cord blood and 
also in the sperm. Presence of these adducts has been associated with reduced sperm 
count in men and decreased motor development in infants. BaP was found to cause adverse 
developmental and reproductive effects in mice and rats. Dietary administration during 
gestation reduced fertility and fetal abnormalities whereas administration by gavage caused 
an increase in fetal death and decreased fertility. 

Biomarkers of exposure to BaP are seen concurrently with biomarkers of genotoxic effect. 
The International Agency for Research on Cancer (IARC) has stated that BaP likely 
contributes to the genotoxic action of complex PAH mixtures that individuals may be 
exposed to occupationally. 

IARC has classified BaP as carcinogenic to humans (Group 1). No epidemiological studies 
of exposure to BaP alone in man can be identified; however sufficient data exists for 
exposure to complex PAH mixtures containing BaP.  
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Introduction  
PAHs are a large group of compounds consisting of hydrocarbons containing two or more 
benzene rings fused together or to other hydrocarbon rings. They are formed during the 
combustion of carbonaceous material at high temperatures [1]. PAHs typically occur in 
complex mixtures and not as individual compounds, the process generating the mixture may 
define its composition. BaP is considered to be one of the most toxic PAHs and has 
therefore been extensively studied; hence the majority of the data in this document refers to 
BaP. Unless otherwise specified, “PAHs” will refer to a mixture of PAH compounds (which 
may include BaP). 

Kinetics and Metabolism 
PAHs are lipophilic compounds that are readily absorbed from the lungs following inhalation, 
the gastrointestinal (GI) tract following ingestion and the skin following dermal exposure [2].  

PAHs may adsorb onto particulate matter in air. In humans, it was reported that BaP 
measured in the lungs following inhalation of soot particles was much lower than expected. 
This may be due to the ability of the pulmonary epithelial cells to metabolise BaP thereby 
facilitating its absorption and clearance from the lungs [3]. Occupational studies have 
inferred that inhaled PAHs are absorbed, as urinary metabolites were present in workers 
exposed to PAHs [2]. The absorption of BaP following inhalation is highly dependent on the 
type of particles onto which it is adsorbed and the site of deposition in the respiratory 
tract [1]. Pulmonary absorption often occurs in parallel with mucociliary clearance, by which 
PAHs that are absorbed onto inhaled particulates are cleared out of the pulmonary tree and 
subsequently swallowed [3, 4].  

PAHs are well absorbed in the GI tract by passive diffusion. The extent of absorption may 
vary depending of the bioavailability of particles, diet and PAH size (highest for smaller 
molecule PAHs) [1]. In rats, approximately 40% of absorption occurred through the GI tract 
following administration of 0.5 µg/kg BaP for 90 minutes directly into the duodenum; 38-58% 
absorption occurred following administration of BaP given by gavage or in the diet [2]. 

BaP is efficiently absorbed through the skin of animals [1]. Extensive skin absorption has 
been demonstrated in mice, as almost all of an applied dose of BaP appeared in the faeces 
following application to the skin [4]. Similarly, rapid absorption was demonstrated in rats, 
monkeys and guinea pigs [2]. 

PAHs are rapidly distributed throughout the body by all routes of exposure; they may be 
detected in most tissues minutes to hours following exposure [1]. Fatty tissues generally 
contain more PAHs than other tissues [1, 5]. However, PAHs do not accumulate in the 
body [1].  

BaP can readily cross the placenta following oral, inhalation or dermal exposure. One study 
reported that when pregnant rats were exposed to BaP via inhalation, an increase in BaP 
and metabolites was measured in both maternal and fetal blood and tissues. Similarly, BaP 
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was measured in the fetus when rats were given oral BaP on day 21 of pregnancy [2]. BaP 
has been detected in human breast milk, particularly in smokers, however animal studies 
suggest that it does not accumulate in the offspring [6]. 

Cytochrome P450 enzymes (CYPs) and epoxide hydrolase are the main enzymes involved 
in PAH metabolism. Many studies have investigated the metabolism of PAHs in tissues and 
cells following ingestion of food containing PAHs, or inhalation or ingestion of environmental 
PAHs. The liver has the greatest capacity to metabolise PAHs followed by the lungs, 
intestinal mucosa, skin and kidneys. BaP stimulates its own metabolism by inducing CYP 
enzymes via the activation of the AhR. PAHs can also inhibit CYP enzymes [1].  

PAHs are initially metabolised to several epoxides by CYP enzymes. The epoxides may 
spontaneously rearrange to phenols or are converted to dihydrodiols. PAHs are also 
metabolised to a number of quinones by CYPs. The dihydrodiols are further metabolised by 
CYPs to 4 optically active isoforms of dihydrodiol epoxides, notable amongst these is the 
anti-BaP 7,8 diol-9,10-epoxide (anti-BPDE). The stereoisomer (+) anti-BPDE is considered 
to be the most tumorigenic and predominant metabolite of BaP that forms DNA adducts in 
mammalian tissues. In addition, PAHs and their reactive metabolites undergo conjugation 
with sulphate, glutathione (GSH) and glucuronic acid [1, 7]. 

The route of exposure may influence the toxicity of PAHs. Following oral exposure the 
compound undergoes first-pass metabolism which reduces the levels of PAHs and 
metabolites that reach systemic circulation. Inhalation or dermal exposure may result in 
higher levels of PAHs reaching peripheral tissues as the compounds may bypass the 
first-pass effect of the liver [1, 2]. Genetic polymorphisms may affect the capacity of 
individuals to metabolise PAHs [1].  

Studies suggest that metabolites of PAH’s are generally excreted as conjugates of GSH, 
glucuronic acid or sulphate in the urine, faeces and via biliary excretion [7]. High molecular 
weight PAHs and their metabolites are mainly excreted via the faeces [1].  

Sources and Route of Human Exposure 
The major route of exposure to PAHs for non-smokers in the general population is food, with 
a minor contribution from inhalation of ambient air. For smokers, the contribution of smoking 
to total exposure is likely to be similar to that of food [8].  

Food may become contaminated with PAHs from environmental sources, industrial 
preparation or during home cooking [8].Various foods such as vegetables, meat and fish 
have been shown to contain PAHs, but they are largely formed due to cooking at high 
temperatures such as charbroiling, grilling and frying. Smoked and barbequed food are 
particularly important sources of exposure, although the largest contributors to PAH intake 
are “cereals and cereal products” and “vegetable fats and oils” [3, 4, 9-11]. The maximum 
estimated daily intake of BaP for a 70 kg person is 6-8 ng/kg [8, 11]. After evaluating a 
recent food survey, the Food Standards Agency (FSA) concluded that PAHs were typically 
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found in low levels in food and that consumers do not need to change their eating 
habits [12].  

In the past, metal production and agriculture were responsible for the majority of total BaP 
emissions in the UK. Likely effected by the Environmental Protection Act 1990 and the ban 
on burning agricultural stubble, total emissions in 2011 had reduced to roughly 1/20th 

(now 3 tonnes) of those in 1991. Natural sources in 2011 accounted from 47.2% of the total 
emissions, while residential and commercial sources contributed the greatest portion of the 
anthropogenic emissions at 76% [13].  

Annual mean air concentrations of BaP in the UK are generally below the EU target value 
of 1 ng/m3, with the vast majority of monitoring sites showing levels below the UK air quality 
objective of 0.25 ng/m3. Locations with point sources (e.g. industrial instillations and 
domestic solid fuel burning) are an exception to this. The main sources of BaP in the UK are 
domestic coal and wood burning, outdoor fires and industrial processes [14, 15]. 

Indoor air may be contaminated with PAH’s by infiltration of outdoor air or from indoor 
emissions, which include smoking, cooking, and heating with fuel stoves and fireplaces and 
to a lesser extent from incense and candle burning. Levels of BaP within the home appear to 
vary seasonally, with the highest concentrations found in winter. BaP levels in European 
homes were found to be between 0.01 to 0.65 ng/m3 [1].  

Mainstream tobacco smoke contains high concentrations of PAHs, levels in the range 
of 1-1.6 µg per cigarette have been measured and as such this represents a major source of 
exposure for smokers. BaP levels in sidestream smoke have been reported to range 
from 52-95 ng per cigarette, more than three times higher than that seen in mainstream 
smoke [5]. In a smoker’s home more than 87% of total PAH’s in air may be introduced by 
cigarette smoke; in a room heavily polluted with cigarette smoke, BaP levels may be as high 
as 22 ng/m3 [1]. 

PAHs are commonly detected in surface waters, due to urban runoff and industrial 
activities [3]. Contamination of drinking water with PAHs is usually associated with coal tar 
linings of distribution pipes. However, drinking water contributes only a minor amount to the 
total intake of PAHs [4, 16]. 

PAHs are found in the majority of surface soils due to atmospheric deposition or urban 
runoff. Soils near industrial sources such as coal coking often contain high concentrations of 
PAHs [3, 9]. BaP in English soils comprises approximately 5-7% by weight of the total PAH 
content [17]. The British Geological Survey defined the normal background concentrations 
for BaP in England and Wales to be 3.6 mg/kg in urban areas and 0.5 mg/kg in all other 
areas [17, 18]. 

Occupational exposure is largely through inhalation and skin absorption. The greatest levels 
of occupational exposure to BaP are in aluminium production (up to 100 µg/m3), with lesser 
exposure in roofing and paving (10-20 µg/m3) and lesser still in coal processing, wood 
impregnation, chimney sweeping and in power plants (at or below 1µg/m3) [5].  
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Health Effects of Acute/Single Exposure 

Human data 

Inhalation 
No studies were identified that reported the effects of BaP in humans following acute 
inhalation exposure.  

Ingestion 
Data on acute oral toxicity of BaP in humans are not available. 

Dermal/ocular exposure 
No studies were identified that reported effects of BaP in humans following acute dermal 
exposure. 

Animal and in-vitro data 

Inhalation 
No studies were identified that reported effects of BaP in animals following acute inhalation 
exposure. 

Ingestion 
Exposure of rats (intragastric administration) to 100 mg/kg bw/day BaP for four days 
increased relative liver weight by 27% and induced aldehyde dehydrogenase. Limited 
evidence suggested that acute ingestion of BaP (50-150 mg/kg bw/day for 4 days) does not 
cause adverse GI effects in rats, although enzyme activity was altered. It was suggested that 
more serious effects may occur at higher concentrations [2].  

Dermal/ocular exposure 
BaP applied dermally caused allergen specific contact hypersensitivity reactions in mice after 
acute applications of 120 µg. A dose dependent contact hypersensitivity response to dermal 
application of BaP has been observed in guinea pigs; two applications of 0.001% BaP 
over 2-3 weeks gave slight hypersensitivity while a 1% dose gave a more severe 
response [2]. 

Acute topical application of BaP (concentration and duration of exposure not stated) to the 
backs of shaved mice suppressed sebaceous glands, although it was not possible to 
determine if such effects were due to the solvent or BaP, as a control group was not 
used [2].  
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Health Effects of Chronic/Repeated Exposure 

Human data 

Inhalation 
A large number of epidemiological studies have been carried out considering a variety of 
occupations in which the workforce is chronically exposed to a mixture of PAHs [4]. These 
studies have demonstrated that such exposures result in symptoms including respiratory 
distress, decreased ventilatory function, chest pain, chest and throat irritation, cough, 
haematemesis, chronic dermatitis, depressed immune system and cancer of the skin and 
lungs [2, 4]. It is not possible to determine with any certainty the contribution of individual 
PAHs to these effects [4].  

One study investigated the respiratory effects of inhaled BaP in employees working in 
various areas of a rubber factory. The authors reported a decrease in ventilatory function 
following prolonged exposure, as assessed by duration of employment, the greatest effects 
being observed in workers that had the highest exposure to particulate matter and BaP. No 
attempt was made to identify other possible chemical exposures or to separate effects due to 
BaP or particulates [2]. 

Ischemic heart disease was observed to increase in a dose dependent manner in asphalt 
workers exposed to BaP. Mean exposure for the cohort was 273 ng/m3 and exposure at or 
above this level was associated with a 1.64 fold greater risk of ischemic heart disease 
mortality compared to those exposed to below 68 ng/m3 [1] 

Ingestion 
Data on chronic oral toxicity of BaP in humans are not available. 

Dermal/ocular exposure 
Few data are available pertaining to BaP alone.  

Regressive verrucae (warts) were reported in humans following up to 120 applications of 1% 
BaP over a four month period [2].  

Genotoxicity 
The formation of DNA adducts is believed to be a key event in the mutagenicity and 
carcinogenicity of PAH’s; adducts may lead to misrepair and result in mutations [1]. 
Anti-BPDE has been demonstrated to form DNA adducts in man and as such acts as a 
biomarker for exposure to BaP. Molecular epidemiological studies in individuals exposed to 
complex mixtures of PAHs have shown that BaP adducts are seen concomitantly with 
biomarkers of genotoxic effect. The observed effects include chromosomal aberrations, 
sister chromatid exchange, DNA damage and formation of 8-oxo-deoxyguanosine. These 
same markers of exposure and effect are also observed in experimental animals, with 
association. IARC considers that BaP contributes to the genotoxic effects seen in complex 
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PAH mixtures; with the anti-BPDE-DNA adduct being the most mechanistically relevant 
adduct [19].  

Smoking and diet (major sources of BaP) have been highly correlated with levels of the 
anti-BPDE-DNA adduct. The metabolite responsible for these adducts is seen to cause a 
unique array of mutations in theTP53 tumour suppressor gene, in cancers associated with 
smoking [19]. 

Evidence suggests that inhalation exposure to BaP at levels over 1 ng/m3 is predictive of 
greater genomic frequency of translocation, micronuclei and DNA fragmentation [1].  

Carcinogenicity 
No epidemiological studies on exposure to BaP alone are available for evaluation [19]. There 
is however extensive literature on the epidemiology of workforces exposed to complex 
mixtures of PAHs which include BaP. Studies include asphalt works, coke production plants, 
aluminium smelters and occupations where exposure to coal tar, coal tar pitches and soot 
occurs. Such studies clearly showed an elevated incidence of lung tumours following 
inhalation and skin tumours following chronic skin contact. It is difficult to assess with any 
confidence the contribution of BaP or any other individual PAH to such findings [3, 4, 20].  

In the 2012 evaluation, IARC classified BaP as carcinogenic to humans (Group 1). It was 
concluded that BaP contributes to the genotoxic and carcinogenic effects resulting from 
occupational exposure to complex PAHs mixtures. The robust animal evidence and 
consistent and coherent mechanistic evidence from experimental and human studies provide 
biological plausibility to support the overall classification [19].  

Estimated cumulative exposure to BaP of 100µg/m3 (equivalent to 3.3 µg/m3 for 30 years) in 
the aluminium smelting industry has been associated with a 2.68 fold increase in the 
incidence of lung cancer [1]. 

Reproductive and developmental toxicity 
There is evidence to suggest that exposure to PAHs may cause developmental effects in 
humans. This is supported by evidence in animal developmental studies.  

PAH-DNA adducts have been found in fetal cord and maternal blood after maternal 
exposure to PAHs in ambient air; in light of this the World Health Organisation states that 
prenatal exposure could increase cancer risk from PAHs [1].  

Studies show a dose-response relationship between exposure to PAHs during pregnancy 
and effects related to intrauterine growth restriction. A study of neonates showed that those 
with increased levels of PAH-DNA adducts had significantly lower birth weight, length and 
head circumference [1].  

High cord blood levels of BaP-DNA adducts has been associated with decreased birth 
weight and a reduction in postnatal weight [6].  
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An association between dietary BaP intake and decreased birth weight, decreased birth 
length and having a small for gestational age infant was found in women with low vitamin C 
intake [6].  

There is evidence to suggest that BaP may cause developmental neurotoxic effects. Human 
studies of prenatal environmental PAH exposure (determined by personal air monitoring and 
measuring BaP-DNA adduct levels in cord blood) have reported neurodevelopmental effects 
including impaired cognitive ability, impaired neuromuscular function and increased attention 
problems and anxious/depressed behaviour following prenatal exposure [6]. Infants born 
close to a coal-fired power station in China had 0.32±0.14 BaP-DNA adducts per 108 
nucleotides, this level was associated with a decreased motor development at age 2. A 0.1 
unit increase in BaP DNA adducts per 108 nucleotides, at birth, was associated with a 2 fold 
greater chance of developmental delay at age 2. After closure of this plant, lower adduct 
levels were seen in the cord blood of a new cohort and was no longer associated with 
reduced motor development [1].  

Evidence from human studies indicates that PAH or BaP exposure may cause reproductive 
toxicity in males and females. Studies in adult men exposed to PAH mixtures via 
occupational exposure or smoking have reported an association between higher levels of 
BaP-DNA adducts in sperm and male infertility [6, 21]. In a case control study in a Chinese 
population a strong association was reported between maternal blood BaP-DNA adducts 
and risk of miscarriage. In a study addressing the probability of conception in women 
undergoing IVF (in vitro fertilisation), follicular fluid BaP levels were significantly higher in 
women who did not conceive [6].  

Animal and in-vitro data 

Inhalation 
Rats exposed to BaP dust via inhalation (7.7 mg/m3, 2 hours per day, 5 days per week 
for 4 weeks) showed no treatment related lesions in the lungs or nasal cavities. No 
dose-response relationship could be demonstrated as only one concentration of BaP was 
tested [3]. In the same study, kidney sections were also examined and no adverse effects 
were noted [2, 4]. Similarly, male hamsters did not show any adverse effects following 
exposure via inhalation to 9.8 mg/m3 or 44.8 mg/m3 BaP for 4.5 hours per day, five days per 
week for 16 weeks [3]. 

Ingestion 
Few data on chronic oral toxicity of BaP in animals are available. Daily oral administration 
of 120 mg/kg bw BaP to poor affinity AhR mice (DBA/2N) for one to four weeks caused 
deaths due to myelotoxicity, whereas high affinity mice (C57B1/6N) remained unaffected 
during the 6 month treatment. Hepatotoxicity, as well as effects on liver and kidney enzymes 
have also been reported at this concentration [3, 4].  

Rats fed 1,100 mg/kg bw/day BaP in the diet for more than 100 days showed a decreased 
growth rate [3]. 
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PAHs including BaP have been shown to promote atherosclerotic plaque formation in AhR 
responsive mice, chickens and pigeons [1]. 

Dermal Exposure 
BaP (16, 32 or 64 g per application) was applied once a week for 29 weeks onto the skin of 
female mice. Dose-related epidermal thickening and a pronounced inflammatory response of 
the dermis, amongst other effects were reported in the first weeks of exposure in those 
administered the high dose, and subsequently in the lower dose groups [2].  

Genotoxicity 
Several PAHs are mutagenic and genotoxic and induce DNA adducts in vitro and in 
vivo [1, 11]. 

BaP has consistently been shown to be positive in in-vitro assays for point mutations in 
Salmonella and for chromosome damage in mammalian cells, in the presence of an 
exogenous source of metabolic activation. Indeed it is often used as a positive control in 
such assays [3]. 

An increase in the same biomarkers of genotoxic effect seen in man on exposure to complex 
PAH mixtures which may include BaP have also been seen in experimental animals exposed 
to BaP or anti-BPDE [19]. Such effects include point mutations, sister chromatic exchange, 
chromosomal aberrations, sperm abnormalities and somatic mutations. BaP induced 
mutations are notably found in tumour suppressor genes and proto-oncogenes [5].  

There is strong evidence that the formation of DNA adducts by BaP is important in mouse 
lung tumorigenesis and that this mechanism and the formation of radical-cations by BaP is 
involved in mouse skin carcinogenesis [19]. 

There is some evidence for the role of BaP in bitumen-fume genotoxicity; in mice exposed to 
bitumen fume condensates, anti-BPDE–DNA adducts and BaP metabolites have been found 
in the lungs and urine respectively [7]. 

Carcinogenicity 
IARC concluded that there is sufficient evidence that BaP is carcinogenic to experimental 
animals [19]. 

BaP applied directly to the skin of various strains of mice has been reported to induce 
malignant (and begin) skin tumours, predominantly squamous cell carcinomas. Oral 
administration of BaP to mice by gavage or diet has yielded an increase in tumour response 
in lymphoid and hematopoietic tissues and in several organs including the lung, liver 
oesophagus and tongue. An increase in mammary gland adenocarcinomas has been 
reported in rats administered BaP by gavage. Lifetime inhalation studies in hamsters gave 
dose-response related increases in papilloma’s and squamous cell-carcinomas in the upper 
respiratory tract and in the upper digestive tract [19].  
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Skin tumour development was not observed in AhR deficient mice, however squamous-cell 
carcinomas of the skin were present in the wild-type mice [19]. 

Reproductive and developmental toxicity 
BaP exposure has been shown to have effects on the development of laboratory animals 
following prenatal exposure. Developmental effects reported include decreased number of 
pups, an increase in reabsorptions, reduced pup weight and malformations [1, 2, 6]. Studies 
in mice exposed to BaP via oral administration during gestation suggest that intrauterine 
growth restriction, stillbirths and malformations following exposure may be dependent upon 
the AhR status of the mother and offspring [1-3]. 

Evidence from animal laboratory studies indicates that gestational exposure to BaP can have 
an effect on the reproductive function of offspring. Decreases in testis weight, sperm 
production, testosterone levels and fertility have been reported in male rodents. Effects 
observed in female mice include decreases in ovary weight, numbers of follicles, corpora 
lutea and fertility [1, 6]. 

Persistent neurodevelopmental effects have been observed in rats and mice exposed to BaP 
via ingestion as neonates; such effects include deficits in learning and memory, 
anxiety-related behaviours, sensorimotor development and neuromuscular function [6]. 

Trans-placental exposure to BaP (with dibenzo[a,l]pyrene) has been shown to induce lung 
and livers tumours in mice [1].  

Reproductive effects have been reported in adult laboratory animals exposed to BaP. 
Reductions in sperm count, motility and production have been reported in various strains of 
adult male rats and mice and across routes of exposure. Hormonal changes and histological 
changes in the testis have also been observed in male adult animals. Reduced fertility and 
reductions in ovary weight have been reported in female adult animals following oral or 
inhalation exposure to BaP [6].  
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Polycyclic aromatic hydrocarbons (PAHs), 
which are generated from the incomplete 
combustion of organic (carbonaceous) mate-
rial, are ubiquitous contaminants in ambient air 
(IARC, 1983, 1984a, 1984b, 1985, 2010; WHO, 
1998). Their occurrence in the air we breathe has 
been substantial during the past centuries due to 
emissions from industrial processes and energy 
production, motor vehicular traffic, incineration 
of refuse, and residential heating.

PAHs consist of two or more fused aromatic 
rings made up of carbon and hydrogen atoms. 
The ring systems can be present in multiple 
configurations and may be unsubstituted or 
substituted. PAHs range from semivolatile 
molecules to molecules with high boiling points. 
Thus, they may be found both in the gas and the 
particulate phase of ambient air or in mixtures of 
both phases. About 500 different PAHs have been 
detected in air, but often the measurements focus 
on benzo[a]pyrene (B[a]P) as a representative of 
the whole PAH family (WHO, 1998; Boström 
et al., 2002). Many of the PAHs in ambient air are 
carcinogenic (IARC, 1983, 1984a, 1984b, 1985, 
2010) (Figure 7.1), and a recent reassessment of 
their carcinogenic potential led to B[a]P being 

upgraded to a Group 1 known human carcin-
ogen (IARC, 2010). Thus there is considerable 
concern about the relationship between PAH 
exposure in the ambient air and the potential 
to contribute to human cancer incidence. The 
United States Environmental Protection Agency 
(EPA) monitors 16 priority PAHs in air due to 
health concerns: naphthalene, acenaphthylene, 
acenaphthene, fluorene, anthracene, phenan-
threne, fluoranthene, pyrene, chrysene, benz[a]
anthracene, benzo[b]fluoranthene, benzo[k]
fluoranthene, B[a]P, indeno[1,2,3-cd]pyrene, 
benzo[g,h,i]-perylene, and dibenz[a,h]anthra-
cene (in order of number of aromatic rings per 
structure) (Figure 7.1). Of particular note is that 
several PAHs (naphthalene, chrysene, benzo[b]
fluoranthene, benzo[k]fluoranthene, B[a]P, 
dibenz[a,h]anthracene, dibenzo[a,e]pyrene and 
dibenzo[a,l]pyrene, and anthanthrene) have 
been found to be carcinogenic in experimental 
animals after inhalation or intratracheal inges-
tion, increasing concern about the levels of these 
carcinogens in ambient air (Figure 7.1).
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PAH emissions in ambient air

A recent global atmospheric emission inven-
tory of PAHs (Zhang and Tao, 2009) showed 
that the emission from the 16 priority PAHs 
listed by the EPA was 520 000 tonnes per year. 
Anthropogenic sources of total PAHs in ambient 
air emissions are greater than those that come 
from natural events such as forest fires and 
volcanic eruptions.

Apart from localized risk at or near the source 
of emission, PAHs can be dispersed regionally 
and intercontinentally through atmospheric 
long-range transport. For example, PAHs 

emitted from East Asia are transported to the 
west coast of the USA, and PAHs emitted in the 
Russian Federation influence atmospheric PAH 
concentrations in the Arctic (Zhang and Tao, 
2009). The annual PAH emission from Asian 
countries is 290 000 tonnes (55% of the total); the 
amounts from China (114 000 tonnes per year) 
and India (90 000 tonnes per year) are the major 
contributors. The USA is the third largest emitter 
of PAHs, at 32 000 tonnes per year. By contrast, 
European countries account for only 9.5% of the 
total PAH emissions annually (Zhang and Tao, 
2009). The contribution of the various anthro-
pogenic sources of PAHs to the total emission 

Fig 7.1 PAHs in ambient air. 

 

An asterisk denotes a United States Environmental Protection Agency priority pollutant. (C) indicates that the compound is carcinogenic by 
inhalation or intratracheal administration in experimental animals. Source: Park and Penning (2008); reproduced with permission from John 
Wiley & Sons.
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profile can vary by country and region. The 
global sources of PAH emissions are shown in 
Table 7.1, and the main sources of PAHs in six 
European countries are shown in Table 7.2.

The largest emission of PAHs globally comes 
from incomplete combustion of organic mate-
rial, and the largest single source is from the 
combustion of biofuels. Biofuel is a single type 
of primary solid biomass (e.g. animal dung or 
peat) (Zhang and Tao, 2009). Burning biomass 
fuels such as wood on indoor open-pit stoves is 
common in developing areas, leading to harmful 
exposures to particulate matter <  2.5  µm in 
diameter (PM2.5), carbon monoxide (CO), and 
PAHs, which can be significantly reduced by the 
introduction of modern stoves (Li et al., 2011). 
Anthropogenic sources include PAHs that come 
from incomplete combustion processes (espe-
cially biofuels) and those that are made commer-
cially, are by-products of industrial processes, or 
are generated from vehicle emissions, cooking, 
food preservation, and first- and second-hand 
cigarette smoke.

Anthropogenic sources of PAHs in 
ambient air

Commercial production

PAHs produced commercially include naph-
thalene, acenaphthene, phenanthrene, fluoran-
thene, and pyrene; however, only naphthalene 
is used directly without further processing, as a 
moth repellent.

Industrial processes

Many PAHs are released into the atmos-
phere during industrial processes such as coal 
coking and petroleum refining. It is estimated 
that coal coking was responsible for the release 
of thousands of tonnes of PAHs per year in 
different countries during the 1980s and early 
1990s. Reduced coke production and technical 

improvements have led to reductions in PAH 
emissions from this source. Little is known 
about the composition of these PAH emissions 
(WHO, 1998). In petroleum refining, most of the 
emissions consist of smaller two- and three-ring 
compounds (94–99%, depending on the process 
studied) (IARC, 1989). Thus, the composition of 
PAHs from combustion (pyrogenic) versus the 
composition of PAHs from petroleum refining 
(petrogenic) can be widely different. Other 
industrial sources with significant PAH emis-
sions are carbon black plants, wood preserva-
tion (creosote) plants, the asphalt and bitumen 
industry, aluminium production (Söderberg 
electrodes), iron and steel production, foundries, 
tyre production, power plants, waste incinera-
tors, and stubble burning (WHO, 1998). Further 
restrictions may lead to lower PAH emissions 
from these industries (CORINAIR, 1997).

Estimation of the PAH emissions for six 
European countries indicates that the industrial 
sources contribute PAHs in the same range as 
mobile sources (Table 7.2; data from CORINAIR, 
1997).

Residential sources

Domestic heating with oil and wood 
stoves leads to considerable PAH emissions in 
northern European countries, and especially in 
Scandinavia (Boström et al., 2002). In Sweden, 
the emissions from wood-fired domestic heating 
are estimated to be about 100  tonnes per year, 
with minor contributions from oil combustion. 
Environmental tobacco smoke is also a consider-
able source of indoor air pollution and contami-
nation within the home (Hoh et al., 2012).

Motor vehicle emissions

The amount of PAHs released into the air 
from vehicles has been reduced considerably 
by the introduction of three-way converters. 
However, older diesel and gasoline cars with a 
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catalytic converter of outmoded design have 
5–10 times higher PAH emissions than modern 
cars. In addition, cold start at temperatures 
below the standardized cold start (23  °C), and 
especially at temperatures below 0 °C, results in 
a several-fold increase in PAH emissions. Several 
other technical variations lead to varying emis-
sions, for example spark ignition engines (WHO, 
1998). The total amounts of PAHs emitted from 
vehicles vary between countries; in the USA 
this can be as high as 6000 tonnes per year, and 
in six European countries the amount is about 
400 tonnes per year (Table 7.1 and Table 7.2).

As might be expected, not all PAHs contribute 
equally to the emissions into ambient air. Table 7.3 
lists a typical PAH profile in ambient air arising 
from different sources.

Human exposure

PAHs may be found in the gas and particu-
late phases (see Chapter 1). The levels given below 
frequently reflect the levels of discrete PAHs in 
the particulate phase and are often given as the 
sum of a limited number of PAH components. 

B[a]P is the traditional marker for PAH expo-
sure. Several additional PAH components have 
been proposed as emission markers, for example 
fluoranthene, B[a]P, and benzo[b]fluoranthene. 
Boström et al. (2002) suggested the use of the 
following set of PAHs as emission and effect 
markers for monitoring air pollution: B[a]P, 
fluoranthene, phenanthrene, methylanthracenes/
phenanthrenes, pyrene, benzo[b]fluoranthene, 
benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, 
benzo[g,h,i]-perylene, dibenz[a]anthracene, and 
dibenzo[a,l]pyrene. This list is quite similar to the 
16 priority PAHs listed by the EPA (Figure 7.1). In 
some studies, the total PAH exposure is given as 
B[a]P toxic equivalency concentrations. In this 
approach, individual components are measured 
and ranked relative to B[a]P in terms of carcino-
genicity. For example, chrysene has 1/1000th 
of the carcinogenicity of B[a]P and has a toxic 
equivalency concentration of 0.001. These calcu-
lations are used to estimate human health risk 
and can be used to calculate incremental lifetime 
cancer risk (ILCR). ILCR = exposure (μg/kg/day) 
× cancer slope factor (μg/kg/day). The ILCR is 
considered negligible when it is less than 1 in 105 

Table 7.1 Main sources of emission for the United States Environmental Protection Agency 16 
priority PAHs in China, India, and the USA

Source Global China India USA

Biofuel 56.7% 66.4% 92.5% 9.1%
Wild fire 17.0% 0% 0% 3.3%
Consumer product use 6.9% 0.9% 0.6% 35.1%
Traffic oil 4.8% 2.0% IS 23.0%
Domestic coal 3.7% 10.7% 1.3% IS
Coke production 3.6% 14.4% IS IS
Petroleum refining 2.4% 1.0% IS 8.7%
Waste incineration 1.9% IS IS 9.5%
Aluminium electrolysis 1.4% IS IS 1.9%
Open straw burning IS 2.0% 3.2% IS
Gasoline distribution IS IS IS 3.0%
Aerospace industry IS IS IS 2.5%
Other 1.5% 2.7% 3.9%
Tonnes in thousands 530 114 90 32
IS, insignificant.
Compiled from Zhang and Tao (2009).
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(less than 1 additional cancer case per 100 000 
persons), and the cancer slope factor is based on 
the extrapolation of a dose–response curve for 
tumorigenicity seen at high dose in experimental 
animals.

Background levels of PAHs in remote loca-
tions have been measured between 0.01  ng/m3 
and 0.1  ng/m3 for individual PAH components 
(WHO, 1998). In rural districts the levels were 
approximately 10 times higher, whereas in 
city streets levels may amount to 50  ng/m3 or 
more of the more abundant individual PAHs 
(Boström et al., 2002). Total PAHs in the centre 
of Stockholm, Sweden, ranged from below 
100  ng/m3 to 200  ng/m3. The most abundant 
PAH was phenanthrene. In other cities higher 
levels of individual PAHs have been measured 
(WHO, 1998; Binková et al., 2003). PAH was 
measured in the gas and particulate phase over 
summer and winter sampling periods in Kocaeli, 
Turkey. Σ13PAH in the gas and particulate phases 
ranged from 6.2  ng/m3 dibenz[a,h]anthracene 
to 98.6  ng/m3 phenanthrene in the winter, and 
from 3.0 ng/m3 benz[a]anthracene to 35.1 ng/m3 
phenanthrene in the summer. The most abundant 
PAH in both sampling periods was phenanthrene, 
followed by fluoranthene and pyrene. B[a]P toxic 

equivalency concentrations were found to be 
3-fold higher in the winter months (Gaga et al., 
2012). A similar outcome was observed in a study 
of children aged 5–6 years (n = 260) in New York 
City when measurements were conducted in the 
heating and non-heating seasons (Jung et al., 
2010). In the United Kingdom, the Toxic Organic 
Micropollutants programme measured temporal 
trends in PAH in the atmosphere from 1991 to 
2005 at six different sampling sites. Most showed 
a reduction in PAH levels and had concentra-
tions that were lower than the new air quality 
standard of 0.25 ng/m3. However, this value was 
exceeded in urban areas in the winter months 
(Meijer et al., 2008).

Indoor PAH levels usually range from 1 ng/m3 
to 50 ng/m3 due to tobacco smoke and residen-
tial heating with wood, coal, and other materials 
(WHO, 1998). Environmental tobacco smoke is 
a major contributor to air pollution and dust, 
and surfaces remain contaminated long after the 
smoking has ceased (called third-hand smoke). 
Measurement of PAHs in settled household 
dust in 132 homes showed that total PAHs were 
990 ng/g in smoking households versus 756 ng/g 
in nonsmoking households, and when corrected 

Table 7.2 Main source sectors for PAHs in 1994 in six European countries (Austria, Denmark, 
Germany, Luxembourg, Norway, and the United Kingdom)

Sector PAH emissions

Amount (tonnes per year) Percentage of total

Combustion of energy and transformation industries 6.1 0.3
Non-industrial combustion plants plus wood burning 1120 60
Combustion in manufacturing industry 63 3.4
Production processes 248 13
Road transport 383 20
Other mobile sources 10 0.5
Waste incineration 30 1.6
Agriculture and forestry 1 < 0.1
Natural sources 8 0.4
Total (approximately) 1900
Reproduced from Boström et al. (2002).
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for loading (dust/m3), the fold change was greater 
than 2-fold (Hoh et al., 2012).

PAHs in the ambient air can react with 
nitrates, hydroxyl radicals, or ozone, leading to 
the production of more water-soluble compounds. 
These compounds are rarely included in routine 
PAH measurements. However, nitro-PAHs have 
been detected on soot, and the formation of 
B[a]P-nitroquinone has been identified (Schauer 
et al., 2004). Exposure levels of nine different 
nitroarenes resulting from diesel and gasoline 
exhaust have recently been reviewed by the 
International Agency for Research on Cancer; 
diesel exhaust was ranked as a Group 1 known 
human carcinogen (Benbrahim-Tallaa et al., 
2012).

Generally the mobile sources differ in their 
PAH profile, with the heavy diesel vehicles being 
characterized by lower-molecular-weight compo-
nents than gasoline vehicles. However, per driven 
kilometre, total emissions from a gasoline-fuelled 
car are much lower than emissions from a diesel 
car. The three-way converter does not change the 
PAH profile of a gasoline-fuelled car significantly 
but reduces the total levels considerably. PAH 
levels vary with season, with higher levels being 
observed in the winter than in the summer. Data 
from Stockholm, Sweden, indicate that during 

the winter the levels of low-molecular-weight 
PAHs are increased compared with the summer 
(Prevedouros et al., 2004).

Biomonitoring

Significant progress has been made in 
biomonitoring of human exposure to PAH. 
External dose can be measured using personal-
ized air monitoring devices where PM is trapped 
on filters and then analysed for PAH content. 
Internal dose can be assessed by measuring blood 
and urinary biomarkers of exposure. Different 
analytes have been used as biomarkers of PAH 
exposure and effect. These include measuring 
PAH metabolites in the urine and intermediate 
biomarkers of effect (e.g. DNA and haemoglobin 
adducts). Analysis using urinary metabolites 
has given the most clear-cut results. Particulate 
pyrene is well correlated with total PAH in the 
breathing zone.

Urinary 1-hydroxypyrene may also reflect 
inter-individual variation in PAH metabolism. 
Occupational exposure has been found to lead 
to a 10–100 times greater urinary 1-hydroxy-
pyrene content. Danish bus drivers excreted 
more 1-hydroxypyrene than mail carriers did, 
but outdoor working mail carriers had more 

Table 7.3 Mean profiles of individual PAHs in ambient air (relative to benzo[a]pyrene = 1.0)

Compound Point source Near mobile source Home heating Transport Geometric mean

Anthracene 5.5 7.6 1.0 1.8 2.9
Phenanthrene 38 200 39 43 60
Fluoranthene 14 48 12 13 18
Pyrene 9.3 28 11 7.1 12
Benz[a]anthracene 1.4 0.82 1.0 0.78 0.97
Perylene 0.33 0.25 0.22 0.24 0.26
Benzo[e]pyrene 1.5 1.3 1.6 1.4 1.4
Benzo[g,h,i]perylene 1.4 1.5 2.4 1.3 1.6
Indeno[1,2,3-cd]pyrene 1.5 1.3 1.5 1.4 1.4
Anthanthrene 0.19 0.15 0.13 0.20 0.17
Chrysene and triphenylene 3.0 2.7 3.5 2.9 3.0
Benzofluoranthene 3.6 2.9 3.6 4.4 3.6
Source: WHO (1998); reproduced with permission from the publisher.
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PAH metabolites in their urine than those 
working indoors, indicating the impact of 
outdoor air pollution (Hansen et al., 2004). The 
use of 1-hydroxypyrene as a biomarker of PAH 
exposure has been criticized on the grounds that 
pyrene is not a carcinogenic PAH. This has led 
to the substitution of 3-hydroxy-B[a]P, but sensi-
tive methods of detection have been a challenge. 
The detection of 3-hydroxy-B[a]P has also been 
criticized as a biomarker since this metabolite is 
not derived from any of the known pathways of 
B[a]P activation.

Measurements of urinary 1-hydroxypyrene-
glucuronide, 2-naphthol, and malondialdehyde 
by synchronous fluorescence spectroscopy or 
high-performance liquid chromatography were 
used to evaluate seasonal and regional variations 
in PAH exposure and oxidative stress in Korean 
adults and women. Higher levels were found 
in individuals from industrialized areas and 
in the winter. Further elevation of 1-hydroxy-
pyrene-glucuronide was observed in children 
exposed to environmental tobacco smoke (Yoon 
et al., 2012). In a study in Chinese children from 
polluted and non-polluted areas, the levels of 
nine urinary monohydroxylated PAH metabo-
lites and 8-oxo-2′-deoxyguanosine (8-oxo-dG) 
were compared. Children from the polluted 
area had a higher PAH burden than those from 
the non-polluted area, but no significant differ-
ence in 8-oxo-dG levels was noted (Fan et al., 
2012). The effect of involuntary tobacco smoke 
exposure on urinary levels of 23 monohydrox-
ylated metabolites of PAH in 5060 subjects aged 
>  6  years was studied in the National Health 
and Nutrition Examination Survey (NHANES). 
After correcting for other confounders, signif-
icant increases in urinary 1-hydroxypye-
rene, 2-hydroxyfluorene, 3-hydroxyfluorene, 
9-hydroxyflourene, 1-hydroxypyrene, and 
1-2-hydroxy-phenanthrene were observed. 
Increases of 1.1–1.4-fold for involuntary expo-
sure were noted, which increased to 1.6–6.9-fold 

increases when children were actively exposed 
(Suwan-ampai et al., 2009).

As there is compelling evidence for the 
conversion of PAH to diol-epoxides as an activa-
tion pathway (see below), there have been recent 
advances in measuring their corresponding 
tetraol hydrolysis products in humans. Progress 
has been made in developing stable isotope dilu-
tion liquid chromatographic mass spectrometric 
methods to detect phenanthrene tetraols (Hecht 
et al., 2010; Zhong et al., 2011). Phenanthrene 
contains a bay region and undergoes similar 
metabolic transformation to B[a]P to form 
diol-epoxides, which hydrolyse to tetraols. The 
detection of phenanthrene tetraols has also 
been criticized, since it is not a carcinogenic 
PAH. Recently, methods have been developed 
to measure urinary B[a]P tetraols with femto-
mole sensitivity (Hecht et al., 2010), and these 
techniques can now be applied to biomonitoring 
studies.

Efforts have also been made to detect 
stable covalent diol-epoxide DNA and haemo-
globin adducts in exposed humans. Repaired 
diol-epoxide DNA adducts in blood can be 
measured using ELISA and chemilumines-
cence-based methods, while unrepaired DNA 
adducts can be measured in lymphocytes by 
[32P]-postlabelling methods. For example, 
(+)-7β,8α-dihydroxy-9α,10α-oxo-7,8,9,10-tetra- 
hydro-B[a]P-N2-deoxyguanosine [(+)-anti- 
B[a]PDE-N2-dGuo] adducts have also been 
detected in human maternal and umbilical 
white blood cells after exposure to air pollution, 
using ELISA-based methods (Whyatt et al.,1998; 
Santella, 1999). Total DNA and B[a]P-like DNA 
adducts were measured by [32P]-postlabelling 
in lymphocytes of nonsmoking policemen in 
Prague (n = 109) working 8 hour shifts. While 
there was no significant change in total DNA 
adducts, there was a marked increase in B[a]P-like 
DNA adducts correlated to personal exposure to 
PAHs collected on respirable particles (Topinka 
et al., 2007). Diol-epoxide DNA adducts are 
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short-lived; therefore, attention has also focused 
on the development of methods to detect haemo-
globin diol-epoxide adducts since the half-life of 
the red blood cell is 7–10 days (Day et al., 1990).

Toxicokinetics, including metabolic 
activation

Parent PAHs have low chemical reactivity 
and must be metabolically activated to elec-
trophilic intermediates to exert their carcino-
genic effects (Sims and Grover, 1974; Conney 
1982; Thakker et al., 1985). Three pathways 
of PAH activation have been proposed in the 
literature and are best exemplified with B[a]P 
(Figure 7.2). In the first pathway, B[a]P is meta-
bolically activated by either P450 peroxidase or 
another peroxidase by acting as a co-reductant 
of complex-1 (FeV). This leads to a radical cation 
on the most electron-deficient C6 atom, which is 
highly reactive and capable of forming unstable 
C8-guanine [8-(benzo[a]pyren-6-yl)guanine)], 
N7-guanine [7-benzo[a]pyren-6-yl)guanine], 
and N7-adenine [7-benzo[a]pyren-6-yl)adenine] 
depurinating DNA adducts (Cavalieri and 
Rogan, 1995). Evidence for this pathway comes 
from in vitro reactions with B[a]P, microsomes, 
and a peroxide substrate, which has led to the 
trapping of DNA adducts, as well as from mouse 
skin studies (Cavalieri et al., 1990, 1991). Data 
exist that B[a]P and dibenzo[a,l]pyrene can exert 
their tumorigenicity through this mechanism in 
mouse skin and rat mammary gland (Cavalieri 
et al., 1991, 2005) In addition, trace amounts 
of B[a]P-depurinating DNA adducts have been 
detected in the urine of smokers and in women 
exposed to household smoke (Casale et al., 
2001). However, apart from this single study, the 
evidence to support this mechanism due to inha-
lation exposure to PAH is not strong.

In the second pathway, B[a]P is metaboli-
cally activated to vicinal diol-epoxides (Jerina 
et al., 1991) formed through a three-step process 

involving oxidation and hydrolysis reactions 
(Figure 7.2). In the first step, B[a]P is converted 
preferentially in the lung by the cytochrome P450 
isozyme P4501B1 to the major (+)-7R,8S-epoxide 
and minor (–)-7S,8R-epoxide. In the second step, 
the 7R,8R-trans-dihydrodiol is predominately 
formed by the action of epoxide hydrolase. In the 
third step, diol-epoxide diastereomers are gener-
ated by another oxidation reaction via various 
P450 enzymes, including P4501B1 (Thakker 
et al., 1985; Petruska et al., 1992; Guengerich, 
1993; Constantin et al., 1994; Cavalieri and 
Rogan, 1995; Shimada et al., 1999, 2001).

Diol-epoxides have been studied in various 
animal carcinogenicity models. It has been 
revealed that the diol-epoxides with the highest 
carcinogenic activity are in general the anti-di-
astereomers and especially the enantiomers with 
R-absolute configuration at the benzylic arene 
carbon (Thakker et al., 1985; Glatt et al., 1991). 
In studies of interactions of diol-epoxides with 
DNA, they demonstrate a high preference for the 
exocyclic amino group of deoxyguanosine and 
deoxyadenosine, where the major adduct derived 
from B[a]P is (+)-anti-B[a]PDE-N2-dGuo (Jeffrey, 
1985; Gräslund and Jernström, 1989; Jerina 
et al., 1991; Geacintov et al., 1997). This pathway 
of metabolic activation has been observed for 
many PAHs in ambient air, including 5-methyl-
chrysene (Melikian et al., 1983, Koehl et al., 
1996), benz[a]anthracene (Cooper et al., 1980), 
benzo[b]fluoranthene (Ross et al., 1992), B[a]P 
(as outlined above), dibenz[a,h]anthracene (Platt 
et al., 1990), and dibenzo[a,l]pyrene (Luch et al., 
1997, 1999), in in vitro systems (cell extracts, 
microsomes, and cell culture systems), and in 
some cases in in vivo studies in animals and 
humans. For example, PAHs within airborne 
PM2.5 produced DNA bulky stable adducts in 
human lung cell co-cultures (Abbas et al., 2013).

In the third pathway, PAHs are metabolically 
activated to o-quinones by the action of aldo-
keto reductases (AKRs) (Penning et al., 1999; 
Penning, 2004). For B[a]P, the sequence involves 
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the NAD(P)+-dependent oxidation of the 7R,8R-
trans-dihydrodiol to a ketol catalysed by AKR1A1, 
AKR1C1–AKR1C4 (Figure  7.2). The ketol then 
spontaneously rearranges to a catechol, which 
undergoes air-oxidation to yield B[a]P-7,8-dione 
and reactive oxygen species (ROS) (Palackal et al., 
2001, 2002; Penning et al., 1996). B[a]P-7,8-dione 
is both electrophilic (will react with DNA) and 
redox-active. In the presence of reducing equiva-
lents and NQO1, AKRs themselves, and carbonyl 
reductase, the quinones can be reduced back to 
the corresponding catechols, and if they are not 
intercepted a futile redox cycle will ensue in 

which NADPH is depleted and ROS is amplified 
(Shultz et al., 2011). This pathway of metabolic 
activation has been observed for several PAHs in 
ambient air, including phenanthrene, chrysene, 
5-methyl-chrysene, benz[a]anthracene, and 
B[a]P in in vitro systems (recombinant enzymes) 
and cultures of human lung cells (Palackal et al., 
2001, 2002; Park et al., 2008b).

Efforts have been made to assess the contri-
bution of each of these pathways to the meta-
bolic activation of B[a]P in human lung cells. 
Using a stable isotope dilution liquid chromato-
graphic mass spectrometric method, signature 

Fig 7.2 Pathways of PAH activation using benzo[a]pyrene as an example.

Source: Park and Penning (2008); reproduced with permission from John Wiley & Sons.
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metabolites of each of the three pathways were 
measured: B[a]P-1,6-dione and B[a]-3,6-dione 
(radical cation metabolites), B[a]P-tetraol-1 
(diol-epoxide metabolites), and B[a]P-7,8-dione 
(o-quinone metabolites) in human bronchoepi-
thelial (H358) cells in the presence and absence 
of the aryl hydrocarbon receptor (AhR) agonist 
TCDD. It was found that each of the pathways 
contributed equally to B[a]P metabolism in the 
presence and absence of TCDD (Lu et al., 2011).

The rate of absorption of PAHs from the 
tracheobronchial epithelium after inhalation 
exposure is determined by their high lipophilicity 
(Gerde et al., 1993). For lipophilic carcinogens 
such as B[a]P, the delayed absorption in the 
airway mucosa is a result of slow passage through 
the airway epithelium, yielding a very high dose 
to these target cells. Because of the long retention 
time, the metabolic activation can be consider-
able even at low enzyme activities (Bond et al., 
1988).

Modes of action

Carcinogenic PAHs are generally positive in 
short-term tests for mutagenicity (Table 7.4), for 
example the bacterial Salmonella mutagenicity 
(Ames) assay and the HPRT-mammalian cell 
mutagenicity assay, provided a metabolic acti-
vation system is present (Malaveille et al., 1977; 
MacLeod et al., 1988; Chen et al., 1990; Wei et al., 
1993). In the Ames assay, a rat liver S9 activa-
tion system is used; in the HPRT assay, recom-
binant P4501A1 and P4501B1 are co-expressed. 
The mutagenic species has been identified by 
comparing the mutagenic potency of different 
PAH metabolites, which demonstrates that of 
the known metabolites the diol-epoxides are the 
most potent mutagens (Malaveille et al., 1977). 
Treatment of a plasmid containing K-Ras with 
the (+)-anti-B[a]PDE followed by transfection 
into NIH3T3 cells led to cell transformation with 
increased foci in soft agar. Rescue of the plasmid 
showed that there were single point mutations of 

the 12th and 61st codons, which could explain 
the transformation potential of the diol-epoxide. 
The dominant mutation observed was a G → T 
transversion, consistent with DNA-adduct 
formation on deoxyguanosine (Marshall et al., 
1984). One of the most compelling pieces of 
data has shown that by using ligation-mediated 
polymerase chain reaction, the (+)-anti-B[a]PDE 
preferentially forms DNA adducts in hot spots on 
the p53 tumour suppressor gene, which is one of 
the most mutated genes in human lung cancer. 
These hot spots correspond to the same codons 
that are mutated in tumours obtained from 
humans with lung cancer. The dominant muta-
tion observed was again a G  →  T transversion, 
consistent with DNA adduct formation on deox-
yguanosine (Denissenko et al., 1996; Hainaut 
and Pfeifer, 2001).

In a separate in vitro study, the mutagenic 
potency of (±)-anti-B[a]PDE and B[a]P-7,8-dione 
(AKR product) were compared in a yeast-re-
porter gene assay for p53 mutation. It was found 
that B[a]P-7,8-dione was 80-fold more mutagenic 
than the diol-epoxide provided it was permitted 
to redox cycle (Yu et al., 2002). In these exper-
iments there was a linear correlation between 
(±)-anti-B[a]PDE mutagenicity and the forma-
tion of (+)-anti-B[a]PDE-N2-dGuo adducts, and 
a linear correlation between B[a]P-7,8-dione 
mutagenicity and the formation of 8-oxo-dGuo 
adducts (Park et al., 2008a). In addition, 
B[a]P-78-dione gave predominately G → T trans-
versions, consistent with the base mispairing of 
8-oxo-dGuo with adenine. The position of the 
point mutations within p53 was quite random 
until there was biological selection for domi-
nance, and then the spectrum of mutations was 
similar to that seen in lung cancer (Park et al., 
2008b). These data suggest that B[a]P-7,8-dione 
formed by AKRs has the potential to contribute 
to the carcinogenic mode of action of B[a]P.

Planar PAHs can induce their own metabo-
lism. Compounds such as B[a]P can bind to the 
AhR (Nebert and Jensen, 1979; Nebert et al., 
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1993, 2004). This leads to nuclear localization of 
the liganded AhR, where it can act as a transcrip-
tion factor by binding to the xenobiotic response 
element to induce the CYP1A1 and CYP1B1 genes 
(Denison et al., 1988a, 1988b, 1989), which will 
result in enhanced monoxygenation of the parent 
PAH. PAH metabolism leads to the produc-
tion of electrophiles (e.g. quinones), which can 
activate the Nrf2-Keap 1 system. Nrf2 acts as a 
transcription factor and binds to the antioxidant 
response element to induce γGCS, NQO1 and 
AKR1C1–AKR1C3, and AKR1B10 (Burczynski 
et al., 1999; Jin and Penning 2007; Penning and 
Drury, 2007). Importantly, AKR1C1–AKR1C3 
are involved in the metabolic activation of PAH 
trans-dihydrodiols to the electrophilic and redox 
active PAH o-quinones, which could further 
exacerbate PAH activation via induction of 
AKRs. The PAH o-quinones produced by this 
pathway are also ligands for the AhR (Burczynski 
and Penning, 2000). Thus, both the parent PAH 
and their downstream metabolites can lead to 
the metabolic activation of PAHs in ambient air.

PAHs may, in addition to initiating carcino-
genesis via a genotoxic mechanism, exert promo-
tional effects through various modes of action. 
Certain PAHs induce inflammatory processes 
(Casale et al., 1997). The binding of PAHs to the 
AhR also leads to transcriptional upregulation of 

genes involved in growth as well as biotransfor-
mation and differentiation (Nebert et al., 1993). 
Studies also indicate the ability of both PAHs and 
their metabolites to activate kinases involved in 
survival signalling, thus giving DNA-damaged 
cells a survival advantage (Burdick et al., 2003). 
At higher concentrations some PAHs induce 
apoptosis (Solhaug et al., 2004). In addition, 
PAHs show inhibitory effects on gap junctional 
intercellular communication (Upham et al., 
1996; Weis et al., 1998).

Carcinogenicity studies in animals

Most investigations of PAH carcinogenesis 
by the respiratory route are intratracheal instil-
lation studies (WHO, 1998). In all, 10 PAHs have 
been found to be carcinogenic in experimental 
animals after inhalation or intratracheal instil-
lation (WHO, 1998; NTP, 2000) (Table  7.5). 
Only B[a]P and naphthalene have been studied 
by the inhalation route. In one inhalation study 
in hamsters, groups of 24 males were exposed to 
B[a]P condensed onto sodium chloride particles 
at concentrations of 2.2, 9.5, and 46.5 mg/m3 for 
4.5 hours per day, 7 days per week for the first 
10 weeks, then for 3 hours per day for 2 years. 
Exposure was by nose breathing only. There were 
no tumours in the controls or in the low-exposure 

Table 7.4 Genotoxicity of individual PAHs that are carcinogenic in experimental animals after 
inhalation or intratracheal instillation

Compound Results

Anthanthrene Positive, limited database
Benzo[b]fluoranthene Positive
Benzo[j]fluoranthene Positive
Benzo[k]fluoranthene Positive
Benzo[a]pyrene Positive
Chrysene Positive
Dibenz[a,h]anthracene Positive
Dibenzo[a,i]pyrene Positive
Indeno[1,2,3-cd]pyrene Positive
Naphthalene Negative for gene mutations, positive for clastogenicity in vitro
Source: WHO (1998); reproduced with permission from the publisher.
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group. In the other two groups, exposure-related 
tumours were found in the nasal cavity, larynx, 
trachea, pharynx, oesophagus, and forestomach, 
but not in the lung (Thyssen et al., 1981). RIVM 
(1989) cites two other inhalation studies with 
B[a]P not found in the open literature: one in 
mice (Knizhnikow et al., 1982; see RIVM, 1989) 
and one in rats with co-exposure with sulfur 
dioxide (Laskin et al., 1970; see RIVM, 1989). 
In both studies malignant lung tumours were 
observed.

In recent bioassay inhalation studies with 
naphthalene, Fischer 344/N rats developed 
neuroblastomas of the nasal olfactory epithelium 
after being exposed in inhalation chambers to 0, 
10, 30, or 60 ppm (80, 52, 157, or 314 mg/m3) for 
6 hours per day, on 5 days per week, for 105 weeks 
(NTP, 2000). The observed rates in males were 
0/49, 0/49, 4/48, and 3/48, respectively, and in 
females 0/49, 2/49, 3/49, and 12/49, respectively. 
In addition, adenomas of the nasal respiratory 
epithelium were observed in 0/49, 06/49, 8/48, 
and 15/48 males and in 0/49, 0/49, 4/49, and 2/49 
females, respectively. In the study with B6C3F1 
mice subjected to whole-body exposure of 0, 10, 
or 30 ppm (0, 52, or 157 mg/m3) naphthalene in 
inhalation chambers for 6 hours per day, 5 days 
per week, for 104  weeks, a statistically signifi-
cant increase in the incidence of bronchioloal-
veolar adenomas in high-dose female mice was 
observed (NTP, 2000). Increased incidences of 
bronchioloalveolar adenomas and carcinomas 
were observed in the male mice, but the increases 
were not statistically significant.

PAHs and their metabolites will also 
cause lung cancer in animals when adminis-
tered by other routes. Classically, the newborn 
mouse model of lung cancer was used to rank 
the tumorigenicity of different B[a]P metab-
olites, given that the developing lung is more 
susceptible to carcinogen exposure. Studies 
such as these showed that the (+)-anti-B[a]PDE 
was the most potent lung tumorigen of the 
known B[a]P metabolites (Buening et al., 1978; 

Kapitulnik et al., 1978). Similarly, in the A/J 
mouse lung model of B[a]P-induced carcino-
genesis, anti-B[a]PDE-DNA adducts were early 
lesions that could be detected in the initiation 
phase (Nesnow et al., 1998).

Carcinogenesis experiments with mixtures 
containing PAHs have also been reported. 
Heinrich et al. (1994) exposed groups of 72 female 
Wistar rats to a coal tar/pitch aerosol containing 
either 20 or 46 μg/m3 B[a]P for 17 hours per day, 
5 days per week, for 10 or 20 months, followed 
by a clear air period of up to 20 or 10 months, 
respectively. The cumulative doses of inhaled 
B[a]P of the four exposure groups were 71, 143, 
158, and 321 mg B[a]P/m3 hours, and the corre-
sponding lung tumour rates were 4.2%, 33.3%, 
38.9%, and 97.2%, respectively, whereas there 
were no tumours in the control group. In similar 
experiments in which rats were exposed to coal 
tar/pitch vapour condensed on the surface of fine 
carbon black particles, the resulting lung tumour 
rate was about twice as high.

Pott and Heinrich (1990) have also performed 
a lifelong inhalation study with rats exposed to 
diesel exhaust. In this study, tumour rates similar 
to those in the study with pitch pyrolysis vapours 
were induced, although the PAH content (meas-
ured as B[a]P) was 100–1000 times lower. This 
result indicates that diesel exhaust contains 
other potent carcinogenic or tumour-promoting 
compounds besides unsubstituted PAHs.

Numerous carcinogenicity studies have been 
performed using dermal application and subcu-
taneous and intramuscular injection (for over-
view, see WHO, 1998). An oral gavage study with 
B[a]P revealed tumour development in the liver, 
forestomach, auditory canal, oral cavity, skin, 
and intestines in both sexes of rats, and addi-
tionally the kidney in males and the mammary 
gland and oesophagus in females (RIVM, 2001). 
However, no lung tumours were observed 
after this route of administration. In a feeding 
study of B[a]P in mice, tumours in the tongue, 
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oesophagus, forestomach, and larynx, but not 
lung, were observed (Culp et al., 1998).

Carcinogenicity studies in humans

Occupational exposures

A review and meta-analysis on the associa-
tion between occupational exposure to PAHs and 
lung cancer development in 39 cohorts found an 
average relative risk of 1.20 per 100 μg/m3 years 
cumulative B[a]P (Armstrong et al., 2004). For 
some occupations relative risks were consider-
ably higher, but confidence intervals were very 
wide. For exposures in coke ovens, gas works, 
and aluminium industries, the risk is equivalent 
to a relative risk of 1.06 for a working lifetime of 
40 years at 1 μg/m3.

Ambient air exposures

Few studies have addressed the impact of 
exposure to PAHs in ambient air on human 
cancer. Studies using other exposure indicators 
(PM or NO2) have shown associations between 
air pollution and lung cancer; however, no PAH 
exposure information was available (Pope et al., 
2002; Hoek et al., 2002; Nafstad et al., 2003). An 
analysis of the United States data on lung cancer, 
PM exposure, and older PAH and metal air 
concentration data, supports the plausibility that 
known chemical carcinogens may be responsible 
for the lung cancer attributed to PM2.5 exposure 
in the American Cancer Society study (Harrison 
et al., 2004). A study by Cordier et al. (2004) 
found an increased risk of childhood brain cancer 
associated with PAH exposure. Both paternal 

Table 7.5 Carcinogenicity of individual PAHs in experimental animals after inhalation or 
intratracheal instillation

Compound Carcinogenicity 
(weight of evidence)

Species No. of studies with positive, 
negative, and questionable 
results

+ – ±

Anthanthrene Positive Mouse 1
Anthracene Negative Rat 1
Benzo[b]fluoranthene Positive Rat 

Hamster
1 1

Benzo[j]fluoranthene Positive Rat 1
Benzo[k]fluoranthene Positive Rat 1
Benzo[g,h,i]perylene Negative Rat 1
Benzo[a]pyrene Positive Mouse 

Rat 
Hamster

1 
9 
11

1 1

Benzo[e]pyrene Negative Rat 1
Chrysene Positive Rat 1
Dibenz[a,h]anthracene Positive Rat 

Hamster
1 
1

1

Dibenzo[a,i]pyrene Positive Hamster 2
Indeno[1,2,3-cd]pyrene Positive Rat 1
Naphthalene Positive Mouse 

Rat
1 2

Phenanthrene Negative Rat 1
Pyrene Negative Hamster 1
Source: WHO (1998); reproduced with permission from the publisher; IARC (2002).
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preconception occupational PAH exposure and 
paternal smoking were associated with increased 
risks for childhood brain tumours.

Human susceptibility

PAHs are metabolically activated by phase I 
P450 isozymes (CYP1A1, CYP1B1) in combina-
tion with epoxide hydrolase (EPHX) and phase 
I AKR isozymes (AKR1A1, AKR1C1-AKR1C4) 
and are detoxified by phase II enzymes including 
GSTs, UTGs, SULTs, and COMT. In addition, 
bulky covalent diol-epoxide DNA adducts can be 
repaired by nucleotide excision repair proteins 
(XPD [helicase], XPA, and XPC [damage recogni-
tion]), and oxidative DNA lesions can be repaired 
by base excision repair enzymes (hOGG1 and 
APE). Each of these genes is highly polymorphic 
in the human population. (A complete list of 
these variants is available at the NCBI database: 
http://www.ncbi.nlm.nih.gov/.) Many of these 
variants are non-synonymous single-nucleotide 
polymorphisms (nSNPs) that can affect enzyme 
activity. Combinations of these nSNPs rather 
than an individual SNP may affect human genetic 
susceptibility to PAH emissions in ambient air.

In a study of Prague policemen occupationally 
exposed to polluted air, B[a]P-like DNA adducts 
were detected and found to be positively asso-
ciated with SNPs in XPD and GSTM1 (Binková 
et al., 2007). In another lung cancer case–control 
study, exposure to environmental tobacco smoke 
and polymorphisms in CYP1B1 Leu(432)Val was 
significantly associated with lung cancer suscep-
tibility, with an odds ratio for at least one allele 
of 2.87 (95% confidence interval [CI], 1.63–5.07) 
(Wenzlaff et al., 2005a). Combinations of the 
polymorphism in this phase I enzyme gene 
along with those selected from either phase II 
enzyme genes (GSTM1 null, GSTP1 Ile(105)Val) 
or NADPH-quinone oxidoreductase (NQO1) 
C(609)T) were also evaluated. Here the combi-
nation of the CYP1B1 Leu(432)Val allele and 
the NQO1 C(609)T allele was associated with 

the highest risk of lung cancer (odds ratio [OR], 
4.14; 95% CI, 1.60–10.74) (Wenzlaff et al., 2005a). 
In the same study cohort, variants in GSTM1, 
GSTT1, and GSTP1 were examined to determine 
whether there was an association of the genotype 
with lung cancer incidence in never-smokers. 
Individuals who had been exposed to household 
environmental tobacco smoke for > 20 years, and 
who were carriers of either the GSTM1 null allele 
or the GSTP1 Val allele, were at a 4-fold increased 
risk of developing lung cancer (OR, 4.56; 95% 
CI, 1.21–17.21) (Wenzlaff et al., 2005b). In a lung 
cancer case–control study in China, women 
who were never-smokers were found to be at a 
significant increased risk of adenocarcinoma if 
they were carriers of the variants in the nucleo-
tide excision repair variant XRCC1 399 Gln/Gln 
versus the Arg/Arg genotype (OR, 14.12; 95% CI, 
2.14–92.95). The OR of lung adenocarcinoma 
for the XRCC1 399Gln allele with exposure to 
cooking oil smoke was 6.29 (95% CI, 1.99–19.85) 
(Li et al., 2005). DNA integrity was investigated 
in 50 bus drivers, 20 garage men, and 50 controls 
in the Czech Republic and associated with vari-
ants in the base excision repair gene hOGG1. 
Carriers of at least one variant (Cys allele) had 
a higher degree of DNA damage (Bagryantseva 
et al., 2010). To date, no molecular epidemiolog-
ical study has been performed whereby combina-
tions of polymorphic variants in phase I, phase 
II, and DNA repair genes have been pooled. 
However, based on the studies described, carriers 
of variants in all three classes of genes might be at 
higher risk of developing lung cancer from emis-
sions of PAHs in ambient air.

Conclusions

PAHs generated from the incomplete 
combustion of organic material are ubiquitous 
contaminants in urban air. There are numerous 
unsubstituted PAHs (pyrogenic) and substi-
tuted PAHs (petrogenic). The pyrogenic PAHs 
may occur in the gas phase, particulate phase, 

http://www.ncbi.nlm.nih.gov/
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or mixtures of both phases. The major world-
wide source is the combustion of biofuels, while 
other sources such as combustion plants, various 
industrial and production processes, road trans-
port, and waste incineration can contribute. 
Total PAH levels in some urban areas are in 
the range of 100–200  ng/m3 but may be even 
higher in more polluted areas and can show 
distinct seasonal variation. However, meas-
urements of total PAHs are relatively scarce. 
B[a]P is the traditional marker for PAHs, but 
various other individual PAHs have also been 
proposed, such as fluoranthene, B[a]P, and 
benzo[b]fluoranthene. Biomarkers of exposure 
include 1-hydroxypyrene, 3-hydroxy-B[a]P, and 
tetraols, but DNA and protein adducts can also 
be measured as intermediate cancer biomarkers. 
The major disease end-point of interest is lung 
cancer, and approximately 10–15% of all lung 
cancer cases are seen in never-smokers. Parent 
PAHs must be metabolically activated to elec-
trophilic intermediates (radical cations, vicinal 
diol-epoxides, and o-quinones) to act as lung 
carcinogens. All three routes have been observed 
in human lung cells. Various promotional effects 
of PAHs may contribute to their carcinogenic 
action. In all, 10 PAHs have been found to be 
carcinogenic in experimental animals after inha-
lation or intratracheal instillation. Naphthalene 
seems to be an exception compared with other 
carcinogenic PAHs as it appears to not be geno-
toxic. A meta-analysis of occupational cohort 
studies found a 20% increase in relative risk per 
100  μg/m3 years cumulative B[a]P exposure. 
Studies of ambient air pollution and cancer have 
demonstrated an association between carriers of 
polymorphic variants in phase I, phase II, and 
DNA repair enzyme genes.
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Properties of PAHs

Most polycyclic aromatic hydrocar-
bons (PAHs) with potential biolog-
ical activity have been determined 
to have a molecular structure that 
ranges in size from two to six fused 
aromatic rings (IARC, 2010). The 
physicochemical properties of 
these PAHs that are critical to their 
biological activity vary greatly, be-
cause their molecular weights cover 
a vast range.

Aqueous solubility of PAHs de-
creases approximately logarith-
mically with increasing molecular 
mass (Johnsen et al., 2005). Two-
ring PAHs, and, to a lesser extent, 
three-ring PAHs, dissolve in water; 

this makes them more readily 
available for biological uptake and  
degradation (Mackay and Callcott, 
1998; Choi et al., 2010). Furthermore, 
two- to four-ring PAHs volatilize 
sufficiently to appear in the atmo-
sphere predominantly in gaseous 
form, although the physical state of 
four-ring PAHs can depend on tem-
perature (Atkinson and Arey, 1994;  
Srogi, 2007).

In contrast, PAHs with five or 
more rings have low solubility in wa-
ter and low volatility. They therefore 
occur predominantly in solid form, 
bound to particulates in polluted air, 
soil, or sediment (Choi et al., 2010). 
In the solid state, these compounds 
are less accessible for biological 

uptake or degradation, which means 
that their persistence in the environ-
ment is increased (Johnsen et al., 
2005; Haritash and Kaushik, 2009).

The properties that influence the 
biological activity of PAHs include 
their vapour pressure, their adsorp-
tion on surfaces of solid carrier par-
ticles, their absorption into liquid 
carriers, their lipid–water partition 
coefficient in tissues, and their limits 
of solubility in the lipid and aqueous 
phases of tissues. These properties 
are linked with the metabolic activa-
tion of PAHs, as well as their deposi-
tion and disposition.

PAHs share a similar mecha-
nism of carcinogenic action in both 
humans and experimental animals. 

Part 1 • Chapter 7. Polycyclic aromatic hydrocarbons and associated occupational exposures
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This includes metabolic conversion 
to oxides and dihydrodiols, which in 
turn are oxidized to diol epoxides. 
These oxides and diol epoxides are 
the ultimate DNA-reactive metabo-
lites of PAHs. The oxides form stable 
DNA adducts, and the diol epoxides 
form stable adducts but also unsta-
ble adducts (so-called depurinating 
adducts) with DNA through formation 
of electrophilic carbonium ions.

Occupational exposure to 
PAHs

Occupational exposure to PAHs oc-
curs predominantly through inhala-
tion and dermal contact. Industrial 
processes that involve the pyroly-
sis or combustion of coal and the 
production and use of coal-derived 
products, including coal tar and 
coal tar-derived products, are major 
sources of occupational exposure to 
PAHs. Workers at coal-tar produc-
tion plants, coking plants, bitumen 
production plants, coal-gasification 
sites, smokehouses, aluminium pro-
duction plants, coal-tarring facilities, 
and municipal waste incinerators are 
exposed to PAHs. Exposure may 
also result from inhalation of engine 
exhaust and from use of products 
that contain PAHs in a variety of 
other industries, such as mining, oil 
refining, metalworking, chemical pro-
duction, transportation, and the elec-
trical industry (Vanrooij et al., 1992).

Studies in Germany measured 
concentrations of PAHs in the 
breathing zone of chimney sweeps 
during “black work”; the PAHs in 
the air samples varied depending 
on the type of fuel burned (oil, oil/
solid, or solid) (Knecht et al., 1989). 
Concentrations of PAHs in coal-tar 
products may range from less than 
1% to 70% or more (ATSDR, 2002). 
Occupational exposure can lead to 

PAH body burdens among exposed 
workers that are considerably higher 
than those in the general population.

There is growing awareness that 
uptake of PAHs through the skin is 
substantial (Jongeneelen, 2001). 
Dermal uptake has been shown to 
contribute to the internal exposure 
of workers to PAHs; a study in the 
creosote industry found that the total 
internal dose of PAHs did not neces-
sarily correlate with levels of inhala-
tion exposure alone, and that dermal 
exposure contributed significantly 
(Vanrooij et al., 1992).

Classification of PAHs

The IARC Monographs Programme 
has reviewed experimental data for 
60 individual PAHs (IARC, 2010). 
Of these 60 PAHs, one, benzo[a]
pyrene, is classified as carcino-
genic to humans (Group  1). Other 
PAHs reviewed by IARC include 
cyclopenta[cd]pyrene, dibenz[a,h]
anthracene, and dibenzo[a,l]
pyrene, which are classified as 
probably carcinogenic to humans 
(Group  2A), and benz[ j]aceanthry-
lene, benz[a]anthracene, benzo[b]
fluoranthene, benzo[ j]fluoranthene, 
benzo[k]fluoranthene, benzo[c]
phenanthrene, chrysene, dibenzo 
[a,h]pyrene, dibenzo[a,i]pyrene, in-
deno[1,2,3-cd]pyrene, and 5-methyl-
chrysene, which are classified as 
possibly carcinogenic to humans 
(Group 2B). It should be noted that in 
the evaluations of benz[ j]aceanthry-
lene, benzo[c]phenanthrene, benzo 
[a]pyrene, cyclopenta[cd]pyrene, 
dibenzo[a,h]anthracene, and diben-
zo[a,l]pyrene, the mechanistic data 
available for these compounds were 

critical for determining the over-
all evaluation for each one (IARC, 
2010).

The remaining 45 PAHs reviewed 
by IARC were acenaphthene, ace-
pyrene (3,4-dihydrocyclopenta[cd]
pyrene), anthanthrene, anthracene, 
11H-benz[bc]aceanthrylene, benz[l]
aceanthrylene, benzo[b]chrysene, 
benzo[g]chrysene, benzo[a]fluoran-
thene, benzo[ghi]fluoranthene, benzo 
[a]fluorene, benzo[b]fluorene, ben-
zo[c]fluorene, benzo[ghi]perylene, 
benzo[e]pyrene, coronene, 4H-cyclo- 
penta[def ]chrysene, 5,6-cyclopen-
teno-1,2-benzanthracene, dibenz 
[a,c]anthracene, dibenz[a,j]anthra-
cene, dibenzo[a,e]fluoranthene, 
13H-dibenzo[a,g]fluorene, dibenzo 
[h,rst]pentaphene, dibenzo[a,e]py-
rene, dibenzo[e,l]pyrene, 1,2-dihy-
droaceanthrylene, 1,4-dimethylphen
anthrene, fluoranthene, fluorene, 
1-methylchrysene, 2-methylchry- 
sene, 3-methylchrysene, 4-methyl
chrysene, 6-methylchrysene, 
2-methylfluoranthene, 3-methylflu-
oranthene, 1-methylphenanthrene, 
naphtho[1,2-b]fluoranthene, naph-
tho[2,1-a]fluoranthene, naphtho 
[2,3-e]pyrene, perylene, phenan-
threne, picene, pyrene, and triphen-
ylene. These compounds were de-
termined to be not classifiable as 
to their carcinogenicity to humans 
(Group 3), because of limited or in-
adequate experimental evidence 
(IARC, 2010).

As noted above, benzo[a]pyrene 
is the only PAH classified by IARC 
in Group  1. A review of the data 
available for this PAH indicates that 
the complete sequence of steps in 
the metabolic activation pathway 
of benzo[a]pyrene to mutagenic 
and carcinogenic diol epoxides has 
been demonstrated in humans, in 
human tissues, and in experimental 
animals. After exposure, humans 
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metabolically activate benzo[a]py-
rene to benzo[a]pyrene diol epox-
ides that form DNA adducts. The 
anti-benzo[a]pyrene-7,8-diol-9,10-
oxide–deoxyguanosine adduct has 
been measured in populations (e.g. 
coke-oven workers and chimney 
sweeps) exposed to PAH mixtures 
that contain benzo[a]pyrene. The 
reactive anti-benzo[a]pyrene-7,8-di-
ol-9,10-oxide induces mutations in 
rodent and human cells. Mutations 
(G →  T transversions) in the K-ras 
proto-oncogene in lung tumours from 
mice treated with benzo[a]pyrene are 
associated with anti-benzo[a]pyrene-
7,8-diol-9,10-oxide–deoxyguanosine 
adducts. Similar mutations in the 
KRAS proto-oncogene and muta-
tions in the tumour suppressor gene 
TP53 were found in lung tumours 
from non-smokers exposed to PAH-
rich products of coal combustion that 
are known to contain benzo[a]pyrene 
(as well as many other PAHs). In an 
in vitro study, the codons in TP53 
that are most frequently mutated in 
lung cancer in humans were shown 
to be targets for DNA adduct forma-
tion and mutation induced by ben-
zo[a]pyrene. The strong and exten-
sive experimental evidence for the 
carcinogenicity of benzo[a]pyrene 
in many animal species, support-
ed by the consistent and coherent 

mechanistic evidence from studies 
in exposed humans and in experi-
mentally exposed animals, and from 
in vitro studies in human and animal 
tissues and cells, provides biologi-
cal plausibility to support the overall 
classification of benzo[a]pyrene as 
carcinogenic to humans (Group  1) 
(IARC, 2010, 2012).

Studies of cancer in humans

There are no epidemiological stud-
ies on human exposure to individu-
al PAHs, because these chemicals  
never occur in isolation in the envi-
ronment but are present as compo-
nents of complex chemical mixtures. 
PAHs are very widespread environ-
mental contaminants, because they 
are formed during incomplete com-
bustion of materials such as coal, 
oil, gas, wood, or waste, or during 
pyrolysis of other organic materials, 
such as tobacco. Data on the carci-
nogenicity of PAHs to humans are 
available primarily from studies in 
occupational settings where workers 
are exposed to mixtures containing 
PAHs. It is difficult to ascertain the 
carcinogenicity of the component 
PAHs in these mixtures, because of 

potential chemical interactions and 
the presence of other carcinogenic 
substances.

Certain occupations associated 
with high exposure to PAHs have 
been classified by IARC as carci-
nogenic to humans (Group 1); these 
include coal gasification, coke pro-
duction, coal-tar distillation, chimney 
sweeping, paving and roofing with 
coal-tar pitch, and work involving 
mineral oils, shale-oil production, 
and aluminium production. In most 
cases the classification is based on 
epidemiological studies of increased 
cancer incidence without reference 
to supporting evidence from bio-
assays in experimental animals. 
The roles of individual PAHs in the 
genesis of cancer observed in these 
occupations could not be defined 
(IARC, 2010).

Tumour site concordance

There are six IARC Group 1 agents 
that cause non-melanoma tumours 
of the skin (Rice, 2005). Five of 
these are related to occupations 
where PAH exposures are high and 
are believed to be the causative 
agents (Table 7.1). There is a precise 
correlation between carcinogeni-
city to human skin and carcinogen-
icity to mouse skin for these five 
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Table 7.1. Group 1 agents associated with dermal exposures to polycyclic aromatic hydrocarbons (PAHs) that cause 
squamous cell carcinoma of the skin in humans and in rodents

Agent Target organ

Humans Mice Rats

Benzo[a]pyrene No data Skin Skin
Chimney sweep soots Skin, including scrotum Skin No data
Coal tar Skin, including scrotum Skin No data
Coal-tar pitch Skin, including scrotum Skin No data
Mineral oils, untreated and mildly treated Skin, including scrotum Skin No data
Shale oils Skin, including scrotum Skin No data
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PAH-associated exposures when 
the complex mixtures isolated from 
the occupational environment are  
applied topically.

In 1775, Pott made the pioneering 
observation that cancer of the scro-
tum in chimney sweeps was an occu-
pational disease resulting from direct 
contact with soot (Pott, 1775). All five 
established PAH-based chemical 
carcinogens for human skin to which 
exposures occur by direct dermal 
contact are complex mixtures: coal 
tar, coal-tar pitch, untreated and 
mildly treated mineral oils, shale oils, 
and soots. Because these mixtures 
contain PAHs, all have a genotoxic 
component to their mode of action in 
rodents. Most of the individual PAHs 
classified by IARC as either probably 
carcinogenic to humans (Group 2A) 
or possibly carcinogenic to humans 
(Group 2B) (listed above) are geno-
toxic and have been shown to cause 
skin cancer and/or be initiators of 
skin cancer in rodents (IARC, 1983, 
2010).

Soots and vapours from coke pro-
duction, aluminium production, and 
related industries also cause lung 
cancer in humans, but only extracts 
of soot and vapours from coke pro-
duction have been tested in rodents 

by an appropriate route (Table 7.2). 
Both mice and rats developed lung 
tumours after inhalation of coal-tar 
vapours from coke ovens. Soot ex-
tracts caused lung tumours in rats 
after intratracheal instillation. There 
appears to be a good correlation be-
tween lung cancer in humans and in 
rodents for these two mixtures when 
studied by an appropriate route in 
mice and rats. All these complex 
mixtures have genotoxic activity, 
which is recognized to underlie their 
carcinogenic activity in the lung. In 
summary, many of the individual 
PAHs in these complex mixtures that 
have been classified by IARC as ei-
ther probably carcinogenic or possi-
bly carcinogenic to humans are also 
genotoxic and have been shown to 
cause lung tumours in rodents when 
administered by an appropriate route 
(IARC, 2010).

The various tissue compartments 
of the respiratory tract are meta-
bolically active towards exogenous 
chemicals in both humans and ex-
perimental animals and are clear-
ly capable of transforming many 
metabolism-dependent chemicals, 
including carcinogenic PAHs, to 
their chemically reactive metabo-
lites (Rice, 2005). In the lung, met-

abolically active cell types include 
pulmonary macrophages as well as 
epithelial cells.

Benzo[a]pyrene is the only PAH 
that has been classified by IARC as 
carcinogenic to humans (Group  1). 
As indicated above, the basis for 
this classification is the extensive 
knowledge of the mechanism of car-
cinogenic action of benzo[a]pyrene 
in humans and experimental ani-
mals. None of the many remaining 
PAHs shown to be carcinogens in 
animals have been classified as an 
IARC Group 1 carcinogen, most like-
ly because much less mechanistic 
information is available for these 
agents than for benzo[a]pyrene. 
These other PAHs are classified as 
either probably carcinogenic to hu-
mans (Group  2A) or possibly carci-
nogenic to humans (Group 2B). Most 
marked human occupational expo-
sure to these compounds involves 
complex mixtures that contain more 
than one of these PAHs and that of-
ten contain other, non-PAH carcin-
ogens. Therefore, the carcinogenic 
activity of these mixtures cannot 
confidently be ascribed to any one of 
their individual components.

Table 7.2. Group 1 carcinogens associated with inhalation exposures to polycyclic aromatic hydrocarbons (PAHs) 
that cause lung cancer in humans and in rodents

Agent Target organ Route/target organ

Humans Mice Rats

Benzo[a]pyrene No data Intraperitoneal injection of and 
oral exposure to soot extracts/
lung

Intratracheal and intrapulmonary 
instillation of soot extracts/lung

Chimney sweep soots Lung No data Intratracheal instillation of soot extracts/
lung

Coal-tar vapours from 
coke ovens

Lung Inhalation/lung Inhalation/lung

Soots and vapours from 
aluminium production

Lung, bladder No data No data
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1.	 Exposure Data

1.1	 Identification of the agent

Chem. Abstr. Services Reg. No.: 50-32-8
Chem. Abstr. Name: Benzo[a]pyrene
IUPAC Systematic Name: Benzo[a]pyrene
Synonyms: BaP; benzo[def]chrysene; 
3,4-benzopyrene*; 6,7-benzopyrene*; 
benz[a]pyrene; 3,4-benz[a]pyrene*; 
3,4-benzpyrene*; 4,5-benzpyrene*  
(*alternative numbering conventions)

1

2

3

4

567

8

9

10

11

12

C20H12 
Relative molecular mass: 252.31
Description: Yellowish plates, needles from 
benzene/methanol; crystals may be mono-
clinic or orthorhombic
Boiling-point: 310–312 °C at 10 mm Hg
Melting-point: 179–179.3 °C; 178.1 °C
Spectroscopy data: Ultraviolet/visual, 
infrared, fluorescence, mass and nuclear 

magnetic-resonance spectral data have 
been reported
Water solubility: 0.00162 mg/L at 25 °C; 
0.0038 mg/L at 25 °C
log Kow (octanol–water): 6.35
Henry’s Law Constant: 0.034 Pa m3/mol at 
20 °C

From IARC (2010)

1.2	Occurrence and exposure

Benzo[a]pyrene and other polycyclic aromatic 
hydrocarbons (PAHs) are widespread environ-
mental contaminants formed during incomplete 
combustion or pyrolysis of organic material. 
These substances are found in air, water, soils and 
sediments, generally at trace levels except near 
their sources. PAHs are present in some foods 
and in a few pharmaceutical products based on 
coal tar that are applied to the skin. Tobacco 
smoke contains high concentrations of PAHs 
(IARC, 2010).

1.2.1	 Exposure of the general population

The general population can be exposed to 
benzo[a]pyrene through tobacco smoke, ambient 
air, water, soils, food and pharmaceutical prod-
ucts. Concentrations of benzo[a]pyrene in 

BENZO[a]PYRENE
Benzo[a]pyrene was considered by previous IARC Working Groups in 1972, 1983, and 2005 
(IARC, 1973, 1983, 2010). Since that time new data have become available, which have been 
incorporated in this Monograph, and taken into consideration in the present evaluation.
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sidestream cigarette smoke have been reported 
to range from 52 to 95 ng/cigarette — more than 
three times the concentration in mainstream 
smoke. Major sources of PAHs in ambient air 
(both outdoors and indoors) include residential 
and commercial heating with wood, coal or other 
biomasses (oil and gas heating produce much 
lower quantities of PAH), other indoor sources 
such as cooking and tobacco smoke, and outdoor 
sources like motor-vehicle exhaust (especially 
from diesel engines), industrial emissions and 
forest fires. Average concentrations of individual 
PAHs in the ambient air in urban areas typically 
range from 1 to 30 ng/m3; however, concentra-
tions up to several tens of nanograms per cubic 
metre have been reported in road tunnels, or 
in large cities that make extensive use of coal 
or other biomass as residential heating fuel. 
Estimates of PAH intake from food vary widely, 
ranging from a few nanograms to a few micro-
grams per person per day. Sources of PAHs in 
the diet include barbecued/grilled/broiled and 
smoke-cured meats; roasted, baked and fried 
foods (high-temperature processing); bread, 
cereals and grains (at least in part from gas/
flame-drying of grains); and vegetables grown 
in contaminated soils, or in areas with surface 
contamination from atmospheric PAH fall-out 
(IARC, 2010).

1.2.2	 Occupational exposure

Occupational exposure to PAHs occurs 
primarily through inhalation and via skin 
contact. Monitoring by means of ambient 
air-sampling or personal air-sampling at the 
workplace, to determine individual PAHs, sets 
of PAHs or surrogates (e.g. coal-tar pitch vola-
tiles) has been used to characterize exposure via 
inhalation; more recently, biological monitoring 
methods have been applied to characterize the 
uptake of certain specific PAHs (e.g. benzo[a]
pyrene) to be used as biomarkers of total expo-
sure (IARC, 2010).

Industries where occupational exposure to 
benzo[a]pyrene has been measured and reported 
include: coal liquefaction, coal gasification, coke 
production and coke ovens, coal-tar distillation, 
roofing and paving (involving coal-tar pitch), 
wood impregnation/preservation with creosote, 
aluminium production (including anode manu-
facture), carbon-electrode manufacture, chimney 
sweeping, and power plants. Highest levels of 
exposure to PAHs are observed in aluminium 
production (Söderberg process) with values up 
to 100 μg/m3. Mid-range levels are observed in 
roofing and paving (e.g. 10−20 μg/m3) and the 
lowest concentrations (i.e. at or below 1μg/m3) 
are observed in coal liquefaction, coal-tar distil-
lation, wood impregnation, chimney sweeping 
and power plants (IARC, 2010).

2.	 Cancer in Humans

No epidemiological data on benzo[a]pyrene 
alone were available to the Working Group.

3.	 Cancer in Experimental Animals

Benzo[a]pyrene was considered by three 
previous Working Groups (IARC, 1973, 1983, 
2010).

In IARC Monograph Volume 3 (IARC, 
1973) it was concluded that benzo[a]pyrene 
produced tumours in all species tested (mouse, 
rat, hamster, guinea-pig, rabbit, duck, newt, 
monkey) for which data were reported following 
exposure by many different routes (oral, dermal, 
inhalation, intratracheal, intrabronchial, subcu-
taneous, intraperitoneal, intravenous). Benzo[a]
pyrene had both a local and a systemic carcino-
genic effect, was an initiator of skin carcinogen-
esis in mice, and was carcinogenic in single-dose 
studies and following prenatal and transplacental 
exposures.
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In IARC Monograph Volume 32 (IARC, 1983) 
no evaluation was made of studies of carcino-
genicity in experimental animals published since 
1972, but it was concluded that there is sufficient 
evidence for the carcinogenicity of benzo[a]
pyrene in experimental animals.

Carcinogenicity studies with administra-
tion of benzo[a]pyrene by multiple route of 
exposure, reported after the initial evaluations, 
were subsequently reviewed in IARC Monograph 
Volume 92 (IARC, 2010) and are summarized 
below (Table 3.1). See Table 3.2 for an overview of 
malignant tumours induced in different animal 
species.

3.1	Skin application

In several studies in which benzo[a]pyrene 
was applied to the skin of different strains of mice, 
benign (squamous cell papillomas and kerato-
acanthomas) and malignant (mainly squamous-
cell carcinomas) skin tumours were observed 
(Van Duuren et al., 1973; Cavalieri et al., 1977, 
1988a; Levin et al., 1977; Habs et al., 1980, 1984; 
Warshawsky & Barkley, 1987; Albert et al., 1991; 
Andrews et al., 1991; Warshawsky et al., 1993). 
No skin-tumour development was seen in AhR−/− 
mice that lacked the aryl hydrocarbon receptor, 
whereas the heterozygous and wild-type mice 
developed squamous-cell carcinomas of the skin 
(Shimizu et al., 2000).

In a large number of initiation–promotion 
studies in mice, benzo[a]pyrene was active as an 
initiator (mainly of squamous-cell papillomas) 
when applied to the skin (IARC, 2010).

3.2	Subcutaneous injection

In subcutaneous injection studies of benzo[a]
pyrene, malignant tumours (mainly fibro-
sarcomas) were observed at the injection site in 
mice (Kouri et al., 1980; Rippe & Pott, 1989) and 
rats (Pott et al., 1973a, b; Rippe & Pott, 1989). No 
fibrosarcomas were observed in AhR−/− mice that 

lacked the aryl hydrocarbon receptor, whereas 
the heterozygous and wild-type mice did develop 
these tumours (Shimizu et al., 2000).

In another study, male and female newborn 
Swiss mice that were given benzo[a]pyrene 
subcutaneously showed a significant increase 
in lung-adenoma incidence and multiplicity 
(Balansky et al., 2007).

A single study in 12 strains of hamsters 
resulted in sarcomas at the site of injection in 
both sexes of all 12 strains (Homburger et al., 
1972).

3.3	Oral administration

After administration of benzo[a]pyrene by 
gavage or in the diet to mice of different strains 
(Sparnins et al., 1986; Estensen & Wattenberg, 
1993; Weyand et al., 1995; Kroese et al., 1997; 
Culp et al., 1998; Hakura et al., 1998; Badary 
et al., 1999; Wijnhoven et al., 2000; Estensen 
et al., 2004), increased tumour responses were 
observed in lymphoid and haematopoeitic 
tissues and in several organs, including the lung, 
forestomach, liver, oesophagus and tongue.

Oral administration of benzo[a]pyrene to 
XPA–/– mice resulted in a significantly higher 
increase of lymphomas than that observed 
in similarly treated XPA+/– and XPA+/+ mice 
(de Vries et al., 1997). Benzo[a]pyrene given by 
gavage to XPA–/–/p53+/– double-transgenic mice 
induced tumours (mainly splenic lymphomas 
and forestomach tumours) much earlier and at 
higher incidences than in similarly treated single 
transgenic and wild-type counterparts. These 
cancer-prone XPA–/– or XPA–/–/p53+/– mice also 
developed a high incidence of tumours (mainly 
of the forestomach) when fed benzo[a]pyrene in 
the diet (van Oostrom et al., 1999; Hoogervorst 
et al., 2003).

Oral administration of benzo[a]pyrene by 
gavage to rats resulted in an increased incidence of 
mammary gland adenocarcinomas (el-Bayoumy 
et al., 1995).
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3.4	Intraperitoneal injection

In a series of studies in newborn and adult 
mice, intraperitoneal injection of benzo[a]pyrene 
increased the incidence of liver (adenomas and 
carcinomas) and lung (adenomas and adenocar-
cinomas) tumours and, occasionally, forestomach 
(squamous cell papillomas and carcinomas) and 
lymphoreticular tumours (Vesselinovitch et al., 
1975a, b; Wislocki et al., 1986; Lavoie et al., 1987; 
Busby et al., 1989; Rippe & Pott, 1989; Mass 
et al., 1993; Nesnow et al., 1995; Ross et al., 1995; 
Weyand et al., 1995; Rodriguez et al., 1997; Von 
Tungeln et al., 1999).

In one study in rats with a single intraperito-
neal injection of benzo[a]pyrene, a high incidence 
of abdominal mesotheliomas and sarcomas was 
observed (Roller et al., 1992).

3.5	Inhalation

In a lifetime inhalation study (Thyssen et al., 
1981) in male hamsters, benzo[a]pyrene induced 
dose-related increases in the incidence of papil-
lomas and squamous-cell carcinomas in both 
the upper respiratory tract (nose, larynx and 
trachea) and the upper digestive tract (pharynx, 
oesophagus and forestomach).

3.6	Intrapulmonary injection

Dose-related increases in the incidence of 
malignant lung tumours (mainly epidermoid 
and squamous-cell carcinomas and a few pleo-
morphic sarcomas) were found after injection of 
benzo[a]pyrene into the lung of rats (Deutsch-
Wenzel et al., 1983; Iwagawa et al., 1989; Wenzel-
Hartung et al., 1990; Horikawa et al., 1991).

3.7	Intratracheal administration

Intratracheal administration of benzo[a]
pyrene alone or mixed with particulates and 
suspended in saline with or without suspendents 
resulted in benign and malignant respiratory 
tumours in mice (Heinrich et al., 1986a), rats 
(Pott et al., 1987; Steinhoff et al., 1991) and in 
numerous studies in hamsters (IARC, 2010). This 
treatment also induced forestomach tumours in 
hamsters (Saffiotti et al., 1972; Sellakumar et al., 
1973; Smith et al., 1975a, b, Stenbäck & Rowland, 
1979). Larger benzo[a]pyrene particles were 
generally more effective than smaller ones.

Mice that lack the nucleotide excision-repair 
gene XPA (XPA–/– mice) showed a stronger lung-
tumour response after intratracheal instillation 
of benzo[a]pyrene than did their similarly treated 
XPA+/+ and XPA+/– counterparts (Ide et al., 2000).
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Table 3.2 Summary of reports of malignant tumours clearly induced in experimental animals by 
benzo[a]pyrene

Organ 
site/ 
species

Lung Trachea Larynx Forestomach Liver Lymphoid 
tissue  
(lymphoma)

Sarcoma 
(injection 
site)

Skin Mammary 
gland

Mouse x x x x x x
Rat x x x
Hamster x x x x x
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3.8	Buccal pouch application

Repeated application of benzo[a]pyrene to the 
buccal pouch mucosa of male hamsters resulted 
in a high incidence of forestomach papillomas 
(Solt et al., 1987).

3.9	Subcutaneous tracheal grafts 
transplantation

In one study conducted in rats transplanted 
with subcutaneous rat tracheal grafts exposed to 
beeswax pellets containing various amounts of 
benzo[a]pyrene, a high incidence of squamous-
cell carcinomas was reported (Nettesheim et al., 
1977).

3.10 Intramammilary administration

In three studies in rats, benign and malig-
nant mammary gland tumours developed 
after intrammilary injection of benzo[a]pyrene 
(Cavalieri et al., 1988a, b, 1991).

3.11 Intracolonic instillation

In three experiments in mice, intraco-
lonic instillation of benzo[a]pyrene induced 
lymphomas and a variety of benign and malig-
nant tumours in various organs including the 
forestomach (Toth, 1980; Anderson et al., 1983).

3.12 Intravaginal application

Intravaginal application of benzo[a]pyrene 
in mice produced invasive cervical carcinoma; 
no such tumours were seen in controls (Näslund 
et al., 1987).

3.13 Intrafetal injection

In one study in male and female Swiss mice, 
intrafetal injection of benzo[a]pyrene produced 
lung adenomas (Rossi et al., 1983).

4.	 Other Relevant Data

Benzo[a]pyrene is a carcinogen that induces 
tumours in many animal species. Some of 
the examples relevant for this review are: lung 
tumours in mice, rats, and hamsters; skin tumours 
in mice; liver tumours in mice; forestomach 
tumours in mice and hamsters; and mammary 
gland tumours in rats (Osborne & Crosby, 1987; 
IARC, 2010). In humans, occupational exposures 
to benzo[a]pyrene-containing mixtures have 
been associated with a series of cancers: coke 
production: lung; coal gasification: lung, bladder; 
paving and roofing: lung; coal tar distillation: 
skin; soots: lung, oesophagus, haematolymphatic 
system, skin; aluminum smelting: lung, bladder; 
tobacco smoking: lung, lip, oral cavity, pharynx, 
oesophagus, larynx, bladder (IARC, 1984, 1985, 
1986, 2010).

Studies on the mechanisms of action of 
benzo[a]pyrene have been reviewed (Xue & 
Warshawsky, 2005; IARC, 2010).

4.1	Metabolism

Benzo[a]pyrene is metabolized by both phase-I 
and phase-II enzymes to form a series of arene 
oxides, dihydrodiols, phenols, and quinones and 
their polar conjugates with glutathione, sulfate, 
and glucuronide (Osborne & Crosby, 1987). 
Benzo[a]pyrene-7,8-diol is a key metabolite that 
is formed by the action of epoxide hydrolase on 
benzo[a]pyrene-7,8-epoxide. This dihydrodiol 
can be further metabolized by cytochrome P450s 
(CYPs) to a series of benzo[a]pyrene-7,8-diol-
9,10-epoxides, which form one class of ultimate 
carcinogenic metabolites of benzo[a]pyrene. 
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Both CYPs and peroxidases (e.g. prostaglandin-H 
synthase) can oxidize benzo[a]pyrene. The major 
cytochrome P450s involved in the formation of 
diols and diolepoxides are CYP1A1, CYP1A2 
and CYP1B1 (Eling et al., 1986; Shimada, 2006). 
Cytochrome P450s are inducible by benzo[a]
pyrene and other PAHs through binding to 
the aryl hydrocarbon-receptor (AhR) nuclear 
complex, leading to changes in gene transcrip-
tion of CYPs and phase-II enzymes. Mice lacking 
the AhR receptor are refractory to benzo[a]
pyrene-induced tumorigenesis (Shimizu et al., 
2000). Both CYPs and peroxidases can form 
radical cations by one-electron oxidation. These 
cations comprise another class of ultimate carci-
nogenic metabolites (Cavalieri & Rogan, 1995). 
Some polymorphisms in human CYPs and 
phase-II enzymes (glutathione S-transferases, 
uridine 5′-diphosphate glucuronosyltransferases 
and sulfotransferases modulate susceptibility 
to cancer (Shimada, 2006). In another meta-
bolic pathway, benzo[a]pyrene-7,8-dihydrodiol 
is oxidized to benzo[a]pyrene-7,8-quinone by 
enzymes of the aldo-keto reductase (AKR1) 
family. Among these, gene polymorphisms 
that influence susceptibility have been iden-
tified. NAD(P)H: quinone oxidoreductase-1 
(NQO1) catalyses the reduction of benzo[a]
pyrene quinones to hydroquinones, which may 
be re-oxidized and generate reactive oxygen 
species. Polymorphisms in this gene have also 
been described (Penning & Drury, 2007; IARC, 
2010).

The current understanding of mechanisms 
underlying benzo[a]pyrene-induced carcino-
genesis in experimental animals is almost solely 
based on two complementary pathways: those of 
the diolepoxides and the radical cations. Each 
provides a different explanation for the effects 
observed in experimental animals in specific 
tissues.

4.2	Diolepoxide mechanism

The diolepoxide mechanism for benzo[a]
pyrene features a sequence of metabolic trans-
formations: benzo[a]pyrene → benzo[a]pyrene-
7,8-oxide (by CYP1A1 and CYP1B1) → benzo[a]
pyrene-7,8-diol (by epoxide hydrolase) → benzo[a]
pyrene-7,8-diol-9,10-epoxides (by CYP1A1 and 
CYP1B1) (Xue & Warshawsky, 2005). Each class 
of metabolic intermediate has been shown to be 
genotoxic and carcinogenic (Osborne & Crosby, 
1987). The stereochemistry of the metabolic 
transformation of benzo[a]pyrene to diols and 
diolepoxides is an important component of this 
mechanism of action. Due to the creation of 
chiral carbons during the metabolic conversions, 
many of the metabolic intermediates of benzo[a]
pyrene have multiple streochemical forms (enan-
tiomeric and diastereomeric). As the metabolism 
proceeds the complexity of the stereo-chemical 
forms increases, eventually leading to four 
benzo[a]pyrene-7,8-diol-9,10-epoxides [(+)- and 
(-)-anti, (+)- and (-)-syn]. Diolepoxides react 
with DNA, mainly with the purines, deoxy-
guanosine and deoxyadenosine, and each diol-
epoxide can form both cis and trans adducts thus 
giving a total of 16 possible benzo[a]pyrene-7,8-
diol-9,10-epoxide DNA adducts. However, in 
most cases far fewer DNA adducts are actually 
observed. The most ubiquitous benzo[a]pyrene 
adduct detected in isolated mammalian DNA 
after metabolic conversion in metabolically 
competent mammalian cells in culture, or in 
mammals, is the N2-deoxyguanosine adduct, 
(+)-N2-10S-(7R ,8S ,9R-trihydroxy-7,8,9,10-
tetrahydrobenzo[a]pyrene)-yl)-2’-deox y-
guanosine (BPDE-deoxyguanosine), derived 
from 7R,8S-dihydroxy-9R,10R-epoxy-7,8,9,10-
tetrahydrobenzo[a]pyrene (anti-benzo[a]pyrene-
7,8-diol-9,10-epoxide, or BPDE). This adduct was 
first fully identified after isolation from benzo[a]
pyrene-treated human and bovine bronchial 
explants (Jeffrey et al., 1977). This diolepoxide 
is considered to be an ultimate, DNA-reactive, 
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metabolite of benzo[a]pyrene (Osborne & 
Crosby, 1987). The anti-benzo[a]pyrene-7,8-
diol-9,10-epoxide can form both stable and 
unstable (so-called ‘depurinating’) adducts with 
DNA, mediated by electrophilic carbonium 
ions (Chakravarti et al., 2008). In vivo, anti-
benzo[a]pyrene-7,8-diol-9,10-oxide produces 
stable adducts that were formed primarily with 
guanines in many species and organs (IARC, 
2010).

Mice treated with benzo[a]pyrene had 
anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-
N2-deoxyguanosine adducts in their lung tissue, 
while the lung tumours induced by benzo[a]
pyrene had G→T and G→A mutations in the 
Ki-Ras gene at codon 12 (Mass et al., 1993). In 
mice treated with benzo[a]pyrene the major 
stable DNA adduct in the epidermis was the 
anti-benzo[a]pyrene-7,8-diol-9,10-oxide-deoxy-
guanosine adduct (Melendez-Colon et al., 1999). 
Skin tumours from benzo[a]pyrene-treated mice 
or in preneoplastic skin from benzo[a]pyrene-
treated mice had G→T mutations in codon 13 and 
A→T mutations in codon 61 of the Ha-Ras gene 
(Chakravarti et al., 2008).

Benzo[a]pyrene-induced skin tumours 
harboured G→T transversion mutations in the 
Tp53 tumour-suppressor gene (Ruggeri et al., 
1993). The anti-benzo[a]pyrene-7,8-diol-9,10-
oxide-DNA adducts occurred at guanine posi-
tions in codons 157, 248, and 273 of the TP53 gene 
in anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-
treated human HeLa cells. The same positions are 
the major mutational hotspots found in human 
lung cancers (Denissenko et al., 1996).

4.3	Radical-cation mechanism

The radical-cation mechanism for benzo[a]
pyrene has been studied exclusively in connec-
tion with mouse-skin tumorigenesis (Cavalieri & 
Rogan, 1995). One-electron oxidation of benzo[a]
pyrene by CYPs or peroxidases creates a radical 
cation localized on carbon 6, as a consequence of 

the ionization potential and geometric configu-
ration. In mouse skin, this radical cation gives 
rise to the formation of covalent adducts with 
guanine (at the C8 carbon and N7 nitrogen) and 
adenine (at the N7 nitrogen). These adducts are 
unstable and are thought to generate apurinic 
sites in mouse skin. However, only low levels of 
apurinic sites were measured in the epidermis 
of mice treated with benzo[a]pyrene (Melendez-
Colon et al., 1999) and no studies to date have 
shown an increase in the number of apurinic sites 
in lung tissues treated with benzo[a]pyrene. In 
two in vivo studies, rats treated intraperitoneally 
with benzo[a]pyrene were shown to excrete 
7-(benzo[a]pyrene-6-yl)-N7-guanine in faeces 
and urine, while the same adduct was detected in 
lung tissue of mice treated intraperitoneally with 
benzo[a]pyrene (Rogan et al., 1990; Banasiewicz 
et al., 2004). Skin papillomas obtained from mice 
treated topically with benzo[a]pyrene showed 
mutations (at guanine and/or adenine) at codons 
12, 13 and 61 in the Ha-Ras oncogene (Wei et al., 
1999). Similar studies in preneoplastic skin from 
benzo[a]pyrene-treated mice showed Ha-Ras 
mutations at codons 13 and 61 (Chakravarti 
et al., 2008). The anti-benzo[a]pyrene-7,8-diol-
9,10-epoxide can also form depurinating DNA 
adducts at guanine and adenine (at the N7 
nitrogen). The distribution and chemical nature 
of the depurinating adducts (from both radical-
cation and diolepoxide intermediates) in mouse 
skin and the distribution and chemical nature of 
the specific benzo[a]pyrene-induced mutations 
in mouse-skin papillomas have been reported 
(Chakravarti et al., 2008).

4.4	Other activation mechanisms of 
benzo[a]pyrene

4.4.1	 Meso-region mechanism

The mechanism of meso-region biomethyl-
ation and benzylic oxidation features biomethyl-
ation of benzo[a]pyrene to 6-methylbenzo[a]
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pyrene, with S-adenosylmethione as the carbon 
donor (Flesher et al., 1982). This process has 
been shown to occur in vitro, and in vivo in rat 
liver (Stansbury et al., 1994). 6-Methylbenzo[a]
pyrene is further metabolized by CYPs to 
6-hydroxymethylbenzo[a]pyrene (Flesher 
et al., 1997) and then conjugated to sulfate 
by 3′-phosphoadenosine-5′-phosphosulfate 
sulfotransferase to 6-[(sulfooxy)methyl]-
benzo[a]pyrene. This reactive sulfate ester forms 
DNA adducts in vivo (Stansbury et al., 1994). 
These benzo[a]pyrene-DNA adducts have only 
been measured in rat liver (Surh et al., 1989), 
which is not a target for benzo[a]pyrene-induced 
carcinogenesis. There is no evidence to date that 
this mechanism operates in lung.

4.4.2	Mechanism via formation of ortho-
quinone/ reactive oxygen species

This mechanism features enzymatic oxidation 
of benzo[a]pyrene-7,8-diol to the ortho-quinone, 
benzo[a]pyrene-7,8-quinone, by aldo-keto 
reductases (Mangal et al., 2009). Benzo[a]pyrene-
7,8-quinone can react with DNA to yield both 
stable and depurinating DNA adducts in vitro 
(McCoull et al., 1999; Balu et al., 2006) and can 
also undergo repetitive redox cycling which 
generates reactive oxygen species that damage 
DNA (Penning et al., 1999). In human A549 
lung-tumour cells benzo[a]pyrene-7,8-quinone 
increased the formation of 8-oxo-deoxyguano-
sine and DNA strand-breaks (Park et al., 2008; 
Mangal et al., 2009). In a yeast reporter-assay, 
benzo[a]pyrene-7,8-quinone (in the presence of 
redox cycling) induced 8-oxo-deoxyguanosine 
formation and G→T transversions in the Tp53 
tumour-suppressor gene. The mutational spectra 
induced in the yeast reporter-assay closely 
matched those seen in DNA from human lung 
tumours (Shen et al., 2006). Benzo[a]pyrene-7,8-
quinone inhibited the activity of protein kinase 
C in MCF-7 cell lysates suggesting an ability to 
alter cell signalling (Yu et al., 2002). Rats treated 

with benzo[a]pyrene showed increased urinary 
concentrations of 8-oxo-deoxyguanosine, 
but lower levels in liver and lung tissues. This 
suggested that reactive oxygen species are gener-
ated during the CYP-dependent metabolism of 
benzo[a]pyrene, but induction of DNA-repair 
mechanisms may reduce these levels in target 
tissues (Briedé et al., 2004). To date this mecha-
nism has been studied only in in-vitro systems.

It is noted that formation of reactive oxygen 
species is not limited to the redox cycling of 
the ortho-quinone of benzo[a]pyrene (benzo[a]
pyrene-7,8-quinone). There are several other 
sources of benzo[a]pyrene-induced reactive 
oxygen species. In vivo, both mice and rats 
metabolize benzo[a]pyrene to benzo[a]pyrene-
1,6-quinone, benzo[a]pyrene-3,6-quinone 
and benzo[a]pyrene-6,12-quinone and these 
quinones enter into redox cycling and induce 
mutations (Osborne & Crosby, 1987; Joseph & 
Jaiswal, 1998). Many of the reactive intermedi-
ates of benzo[a]pyrene (oxides, diol-epoxides, 
radical cations) and quinone-generated reactive 
oxygen species can disrupt the balance of cellular 
oxidants and anti-oxidants by reducing the anti-
oxidant levels thus leading to an imbalance and 
an excess of reactive oxygen species.

4.4.3	Aryl hydrocarbon-receptor mechanism

The AhR regulates the transcription of 
a series of genes including Cyp1A1, Cyp1A2, 
Nqo1, Aldh3a1 (encoding aldehyde dehydro-
genase 3A1), UGT1a6 (uridine 5′-diphosphate-
glucuronosyl transferase), and Gsta1 (glutathione 
S-transferase A1). All these genes are activated by 
AhR-ligands, including benzo[a]pyrene, via the 
AhR-mediated aromatic hydrocarbon response 
element. The AhR plays a role in the response to 
oxidative stress in cell-cycle regulation and apop-
tosis. In addition, the CYP1A1/1A2-mediated 
metabolism generates oxidative stress (Nebert 
et al., 2000). Mitochondrial hydrogen-peroxide 
production was induced by an AhR-ligand in 
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wild-type mice but not in AhR−/− knockout mice 
(Senft et al., 2002). These mice were shown to 
be refractory to benzo[a]pyrene-induced carci-
nogenicity (Shimizu et al., 2000). Benzo[a]
pyrene induced oxidative stress in mouse lung 
(Rajendran et al., 2008).

4.4.4	 Immunosuppression mechanism

Benzo[a]pyrene induces immunosupres-
sion in adult mice by altering the cell-mediated 
responses (Wojdani & Alfred, 1984). Immune 
development in offspring is also altered 
following in utero exposure to benzo[a]pyrene 
(Urso & Gengozian, 1984). It is postulated that 
PAHs, including benzo[a]pyrene, act princi-
pally through their AhR-mediated CYP-derived 
metabolites (diolepoxides, quinones) to activate 
oxidative and electrophilic signalling pathways 
in lymphoid and nonlymphoid cells, including 
myeloid cells, epithelial cells, and other cell 
types. Furthermore, there is evidence that PAHs 
suppress immunity by p53-dependent path-
ways, by modulating signalling pathways in 
lymphocytes via non-genotoxic mechanisms, 
and by oxidative stress (Burchiel & Luster, 2001).

4.4.5	Epigenetic mechanisms

Benzo[a]pyrene and/or its metabolites have 
been shown to increase cell proliferation in several 
human cell lines, including terminally differenti-
ated human bronchial squamous epithelial cells 
and in lung-cancer cells where increased expres-
sion of the Cdc25B gene (cell-division cycle 
25B) was observed, along with reduced phos-
phorylation of Cdk1 (cyclin-dependent kinase 
1) (Oguri et al., 2003). Treatment with benzo[a]
pyrene increased the number of human embryo 
lung-fibroblasts in the G1–S transition via the 
activation of c-Jun, through the p53-dependent 
PI-3K/Akt/ERK (phosphatidylinositol-3-kinase/
protein kinase β/extracellular signal-regulated 
kinase) pathway (Jiao et al., 2008).

Benzo[a]pyrene and/or its metabolites also 
affect apoptosis. Benzo[a]pyrene induced apop-
tosis in human MRC-5 lung fibroblasts via the 
JNK1/FasL (c-Jun N-terminal kinase 1/Fas 
Ligand) and JNK1/p53 signalling pathways (Chen 
et al., 2005). Apoptosis induced by anti-benzo[a]
pyrene-7,8-diol-9,10-epoxide in H460 human 
lung-cancer cells was associated with induction 
of Bak (BCL2-antagonist/killer) and with activa-
tion of caspase, but it was independent of Bcl-2 
(Xiao et al., 2007).

Altered DNA methylation has been reported 
to be associated with exposure to benzo[a]
pyrene and/or its metabolites. After treatment 
of immortalized bronchial epithelial cells with 
anti-benzo[a]pyrene-7,8-diol-9,10-epoxide, the 
concentration of cytosine-DNA methyltrans-
ferase-1 was increased and was associated with 
hypermethylation of the promoters of 5–10 genes, 
including members of the cadherin gene-family 
(Damiani et al., 2008).

4.5	Human exposure to PAH-rich 
mixtures

4.5.1	 Biomarkers of exposure and effect

Molecular-epidemiological studies of cancer 
associated with occupational and environmental 
exposures to PAH have provided biomarkers that 
may be used to estimate internal exposure as well 
as to inform about molecular mechanisms that 
may be relevant to cancer causation, particularly 
in defining the early events in the carcinogen-
esis process. Biomarkers can be detected in the 
target organ, in surrogate tissues, or in tumours. 
These can be categorized into biomarkers of 
exposure, which are generally specific to the 
PAH of concern (e.g. DNA or protein adducts), 
biomarkers of effect (e.g. genotoxic and cytoge-
netic effects, 8-oxo-deoxyguanosine, sister 
chromatid exchange (SCE), micronuclei, chro-
mosomal aberrations, mutations in oncogenes, 
tumour-suppressor genes, or indicator genes), 
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and biomarkers of susceptibility (DNA-repair 
enzymes, e.g. XPA, XPC – xeroderma pigmen-
tosum complementation groups A and C), bioac-
tivation enzymes (e.g. CYPs), detoxification 
enzymes (e.g. GSTs), and mutagenic metabolites 
in urine (Kalina et al., 1998; Pilger et al., 2000; 
Simioli et al., 2004; Raimondi et al., 2005; Vineis 
& Husgafvel-Pursiainen, 2005; Matullo et al., 
2006; Farmer & Singh, 2008; Gyorffy et al., 2008). 
Although biomarkers of effect and suscepti-
bility are generally not unique to any specific 
PAH exposure, several these biomarkers may 
provide insight into the mechanism of carcino-
genesis induced in humans by PAHs or PAH-rich 
exposures.

4.5.2	Exposure to benzo[a]pyrene and 
relationship with specific biomarkers

Biomarkers of exposure to complex mixtures 
that contain benzo[a]pyrene have been studied in 
populations exposed in industrial settings: coke 
production, coal-tar distillation, the aluminium 
industry, roofing and paving with coal-tar 
pitch, coal gasification, chimney sweeping, and 
iron and steel founding. Most if not all of these 
biomarkers are genotoxic markers. Populations 
of patients who undergo coal-tar therapy and 
groups exposed to combustion emissions, and 
tobacco smokers have also been evaluated. 
Studies on biomarkers of exposure are dominated 
by those focusing on the anti-benzo[a]pyrene-
7,8-diol-9,10-oxide-DNA adduct, the most 
commonly studied PAH-DNA adduct because 
of the availability of specific analytical methods 
and standards (Gyorffy et al., 2008). In one study 
the depurinating adducts resulting from radical-
cation formation, viz. 7-(benzo[a]pyrene-6-yl)
guanine and 7-(benzo[a]pyrene-6-yl)adenine 
were found in the urine of women exposed to 
coal smoke (Casale et al., 2001). Concomitantly, 
several biomarkers of effect have also been evalu-
ated in these studies: chromosomal aberrations, 
sister chromatid exchange (Kalina et al., 1998), 

DNA damage (measured by the comet assay) and 
8-oxo-deoxyguanosine formation (Marczynski 
et al., 2002). It is important to note that these 
genotoxic effects observed in humans in rela-
tion to exposure to benzo[a]pyrene-containing 
mixtures have also been observed in experi-
mental studies where benzo[a]pyrene or anti-
benzo[a]pyrene-7,8-diol-9,10-epoxide has been 
shown to induce sister chromatid exchange 
(Pal et al., 1980; Brauze et al., 1997), chromo-
somal aberrations, micronuclei (Kliesch et al., 
1982), DNA damage (Nesnow et al., 2002), and 
8-oxo-deoxyguanosine (Thaiparambil et al., 
2007). Tobacco smoke, dietary habits and indoor 
ambient air are also important sources of expo-
sure to benzo[a]pyrene, which has been impli-
cated as one of the components of tobacco smoke 
related to the induction of lung cancer in smokers 
(Watanabe et al., 2009). In a large study of 585 
smokers and nonsmokers, smoking and diet were 
highly correlated with anti-benzo[a]pyrene-7,8-
diol-9,10-oxide-DNA adduct levels (Pavanello 
et al., 2006). Several studies have demonstrated 
moderately increased levels of 8-oxo-deoxy-
guanosine from lungs, sperm, and leukocytes of 
smokers. Increased urinary excretion of 8-oxo-
deoxyguanosine has also been reported (Hecht, 
1999). In rats exposed to benzo[a]pyrene via oral, 
intratracheal and dermal routes, anti-benzo[a]
pyrene-7,8-diol-9,10-oxide-DNA adducts were 
formed in white blood cells independently of 
the exposure route and their numbers correlated 
with those found in lung DNA, suggesting that 
anti-benzo[a]pyrene-7,8-diol-9,10-oxide-DNA-
adduct levels in white blood cells may be used as 
a surrogate for pulmonary anti-benzo[a]pyrene-
7,8-diol-9,10-oxide-DNA adducts (Godschalk 
et al., 2000).
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4.5.3	Relationship of biomarkers to human 
cancer

Mutations in TP53 are common in lung cancers 
from smokers and less common in nonsmokers. 
These mutations are G→T transversions with 
hotspots in codons 157, 248 and 273 (Hainaut 
& Pfeifer, 2001; Pfeifer et al., 2002) and they are 
associated with anti-benzo[a]pyrene-7,8-diol-
9,10-oxide-DNA adducts. The active metabolite 
anti-benzo[a]pyrene-7,8-diol-9,10-oxide causes 
a unique spectrum of TP53 mutations distinct 
from those found in cancers that are not associ-
ated with smoking (Campling & el-Deiry, 2003). 
Similar G→T mutations have been reported in 
lung tumours from nonsmoking Chinese women 
whose tumours were associated with exposure to 
PAHs from smoke generated by burning smoky 
coal in unventilated homes. The mutations were 
clustered at the CpG rich codons 153–158 of the 
TP53 gene, and at codons 249 and 273. The muta-
tion spectrum was fully consistent with exposure 
to PAHs (DeMarini et al., 2001).

4.6	Synthesis

Benzo[a]pyrene is metabolically activated 
to a series of reactive intermediates by CYP450 
and related enzymes under control of the aryl-
hydrocarbon receptor. There is strong evidence 
that the benzo[a]pyrene diolepoxide mecha-
nism operates in mouse-lung tumorigenesis, 
while there is also strong evidence that both the 
radical-cation and the diolepoxide mechanisms 
are involved in mouse-skin carcinogenesis. The 
meso-region mechanism has been studied only 
in rat liver, while the mechanism that involves 
the formation of ortho-quinone/reactive oxygen 
species has only been studied in vitro, although 
reactive oxygen species can be formed in vivo by 
other benzo[a]pyrene-mediated mechanisms. All 
these pathways reflect genotoxic mechanisms, as 
they involve alterations to DNA. Benzo[a]pyrene 
is pleotropic and has the ability to affect many 

cell- and organ-based systems. Therefore, there 
are probably many modes of carcinogenic action 
operating to different extents in vivo. These 
include mechanisms that involve AhR, oxidative 
stress, immunotoxicity and epigenetic events.

Based on the best available, consistent and 
strong experimental and human mechanistic 
evidence it is concluded that benzo[a]pyrene 
contributes to the genotoxic and carcinogenic 
effects resulting from occupational exposure to 
complex PAH mixtures that contain benzo[a]
pyrene. The most commonly encountered – and 
most widely studied – mechanistically relevant 
DNA lesion is the anti-benzo[a]pyrene-7,8-diol-
9,10-oxide-DNA adduct. The formation of this 
adduct is consistent with anti-benzo[a]pyrene-
7,8-diol-9,10-epoxide-associated genotoxic 
effects in surrogate tissues and with the muta-
tion pattern in the TP53 gene in lung tumours 
from humans exposed to PAH mixtures that 
contain benzo[a]pyrene. The fact that those 
PAH mixtures and benzo[a]pyrene itself induce 
genotoxic effects like sister chromatid exchange, 
chromosomal aberrations, micronuclei, DNA 
damage (comet assay) and 8-oxo-deoxyguano-
sine, supports the notion that benzo[a]pyrene 
contributes to human cancer.

5.	 Evaluation

There is sufficient evidence for the carci-
nogenicity of benzo[a]pyrene in experimental 
animals.

[No epidemiological data on benzo[a]pyrene 
alone were available to the Working Group.]

The genotoxic mechanism of action of 
benzo[a]pyrene involves metabolism to highly 
reactive species that form covalent adducts 
to DNA. These anti-benzo[a]pyrene-7,8-diol-
9,10-oxide-DNA adducts induce mutations in 
the K-RAS oncogene and the TP53 tumour-
suppressor gene in human lung tumours, and 
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in corresponding genes in mouse-lung tumours. 
Exposure to benzo[a]pyrene and benzo[a]pyrene-
containing complex mixtures also induce other 
genotoxic effects, including sister chromatid 
exchange, micronuclei, DNA damage and 8-oxo-
deoxyguanosine, all of which can contribute to 
the carcinogenic effects of benzo[a]pyrene and 
benzo[a]pyrene-containing complex mixtures 
in exposed humans.

Benzo[a]pyrene is carcinogenic to humans 
(Group 1).

In making the overall evaluation, the Working 
Group took the following into consideration:

The strong and extensive experimental 
evidence for the carcinogenicity of benzo[a]
pyrene in many animal species, supported by the 
consistent and coherent mechanistic evidence 
from experimental and human studies provide 
biological plausibility to support the overall 
classification of benzo[a]pyrene as a human 
carcinogen (Group 1).
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