Propylene glycol

DESCRIPTION

Name Propylene glycol

IUPAC name Propane-1,2-diol

CAS no 57-55-6

EINECS no. 200-338-0

Molecular formula $C_3H_8O_2$

Structural formula

Molecular weight (g/mol.) 76.1

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch *et al*¹¹.

Propylene glycol

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself.

In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- 1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html
- 2. Available at: http://toxnet.nlm.nih.gov/index.html
- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- 5. Available at: http://www.inchem.org/
- 6. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- 8. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

Propylene glycol

- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
- 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl: S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- 16. World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific committees/emerging/docs/scenihr o 029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Date Updated: 21 March 2016

Propylene glycol

REFERENCES

AIHA, 2010

American Industrial Hygiene Association. Current WEEL values. Available at: http://www.aiha.org/insideaiha/GuidelineDevelopment/weel/Documents/WEEL_Values2010.pdf

Andersen, K.E. and Storrs, F.J., 1982

[Skin irritation caused by propylene glycols]. *Hautarzt.*, 33, 12-14.

Arulanantham, K. and Genel, M., 1978

Central nervous system toxicity associated with ingestion of propylene glycol. *J Pediatr.*, 93(3), 515-516.

ATSDR, 1997

Toxicological profile for propylene glycol. September 1997. Available at: http://www.atsdr.cdc.gov/ToxProfiles/tp189.pdf

Berthelot-Ricou, A., Perrin, J., di Giorgio, C., de Meo, M., Botta, A., Courbiere, B., 2011 Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by comet assay. *Fert. Steril.*, 96, 1002-1007.

Burdock, G. A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

CERHR. 2004

Center for the Evaluation of Risks to Human Reproduction. NTP-CERHR Monograph on the potential human reproductive and developmental effects of propylene glycol. NIH Publication No. 04-4482. Available at:

http://ntp.niehs.nih.gov/ntp/ohat/egpg/propylene/PG Monograph.pdf

CERHR, 2003

Center for the Evaluation of Risks to Human Reproduction. National Toxicology Program, U.S. Department of Health and Human Services. NTP-CERHR-PG-03. Available at: http://cerhr.niehs.nih.gov.

ChemIDplus

Accessed September 2012. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CHEM.

Clark, C.R., Marshall, T.C., Merickel, B.S., Sanchez, A., Brownstein, D.G., Hobbs, C.H., 1979 Toxicological assessment of heat transfer fluids proposed for use in solar energy applications. *Toxic. appl. Pharmac.*, 51, 529-535.

DECOS. 2007

Dutch Expert Committee on Occupational Standards, a Committee of the Health Council of the Netherlands, Gezondheidsraad. Propylene glycol (1,2-propanediol). Health-based recommended occupational exposure limit. 2007/02OSH, The Hague, 17 October.

ECHA

Propylene glycol

European Chemicals Agency. Information on Chemicals. Accessed September 2012. Available at: http://echa.europa.eu/information-on-chemicals

EFSA, 2011

European Food Safety Authority. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 20, Revision 3 (FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30. EFSA Journal 2011; 9(7):2176. Available at: http://www.efsa.europa.eu/en/efsajournal/doc/2176.pdf

EPA. 2007

US Environmental Protection Agency. Reregistration eligibility decision for propylene glycol and dipropylene glycol. *Federal Reg.*, 72, 7873.

EPA

US Environmental Protection Agency. Integrated Risk Information System (IRIS). Accessed November 2014. Available at: http://www.epa.gov/iris/search_human.htm and http://cfpub.epa.gov/ncea/iris_drafts/erd.cfm?excCol=Archive&archiveStatus=both

EPISuite, undated

CAS 57-55-6. Accessed September 2012. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

FDA, 2011

Food and Drug Administration. Everything added to Food in the United States (EAFUS). Last updated 17 November 2011. Accessed 10 September 2012. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

Gaunt, I.F., Carpanini, F.M., Grasso, P., Lansdown, A.B., 1972 Long-term toxicity of propylene glycol in rats. *Fd Cosmet. Toxicol.*, 10, 151-162.

Good Scents Company

Record for CAS RN 57-55-6. Accessed August 2012. Available at: http://www.thegoodscentscompany.com/

Green, S., 1977

Present and future uses of mutagenicity tests for assessment of the safety of food additives. *J. envir. Path. Toxicol.*, 1, 49-54.

Guerrant, N.B., Whitlock, C.P., Wolff, M.L., Duchter, R.A., 1947

Response of rats to diets containing varying amounts of glycerol and propylene glycol. *Bull. natn. Formul. Comm. Am. pharm. Ass.*, 15, 205.

Gulati, D.K., Hommel-Barnes, L., Welch, M., Poonacha, K.B., Lamb IV, J.C., 1986 Reproductive toxicity of 7 glycol ethers and oxalic acid. *Toxicologist*, 6, 294 (Abstract 1180).

Hannuksela, M. and Förström, L., 1978

Reactions to peroral propylene glycol. Contact Dermatitis, 4, 41-45.

Propylene glycol

Harris, T.N. and Stokes, J Jr., 1943

Air-borne cross-infection in the case of the common cold: A further clinical study of the use of glycol vapors for air sterilization. *Am. J. med. Sci.*, 206, 631-636.

Hayashi, M., Kishi, M., Sofuni, T., Ishidate, M Jr., 1988

Micronucleus tests in mice on 39 food additives and eight miscellaneous chemicals. *Fd Chem. Toxic.*, 26, 487-500.

Heidelberger, C., Freeman, A.E., Pienta, R.J., Sivak, A., Bertram, J.S., Casto, B.C., Dunkel, V.C., Francis, M.W., Kakunaga, T., Little, J.B., Schechtman, L.M., 1983

Cell transformation by chemical agents – a review and analysis of the literature. A report of the U.S. Environmental Protection Agency Gene-Tox Program. *Mutation Res.*, 114, 283-385.

HSDB, 2004

Hazardous Substances Data Bank number 174. Record for propylene glycol, last revision date 25 May 2004. Accessed September 2012. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis.

HSE, 1993

UK Health and Safety Executive. EH56 Occupational exposure limits: criteria document summaries. Propane-1,2-diol, D57.

IPCS, 1997

International Chemical Safety Card 0321: propylene glycol. October 1997. Prepared by the International Programme on Chemical Safety and the Commission of the European Communities. Available at:

http://www.inchem.org/documents/icsc/icsc/eics0321.htm.

Ishidate, M Jr., Sofuni, T., Yoshikawa, K., Hayashi, M., Nohmi, T., Sawada, M., Matsuoka, A., 1984

Primary mutagenicity screening of food additives currently used in Japan. *Fd Chem. Toxic.*, 22, 623-636.

Ishidate, M Jr., Harnois, M.C., Sofuni, T., 1988

A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. *Mutation Res.*, 195, 151-213.

JECFA. 2003

Safety evaluation of certain food additives. Prepared by the fifty-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series 50.

JECFA, 2002

Safety evaluation of certain food additives and contaminants. Prepared by the fifty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series 48. Available at: http://www.inchem.org/pages/jecfa.html.

Kavlock, R.J., Short, R.D Jr., Chernoff, N., 1987

Further evaluation of an in vivo teratology screen. Teratogen. Carcinogen. Mutagen., 7, 7-16.

Propylene glycol

Kawachi, T., Yahagi, T., Kada, T., Tazima, Y., Ishidate, M., Sasaki, M., Sugiyama, T., 1980 Cooperative programme on short-term assays for carcinogenicity in Japan. *IARC Sci. Publ.*, 27, 323-330.

MacCannell, K., 1969

Hemodynamic responses to glycols and to hemolysis. *Can. J. Physiol. Pharmac.*, 47, 563-569 (cited in DECOS, 2007; Mortensen, 1993).

Marzulli, F.N. and Maibach, H.I., 1973

Antimicrobials: Experimental contact sensitisation in man. J. Soc. cosmet. Chem., 24, 399-421.

McCarroll, N.E., Piper, C.E., Keech, B.H., 1981

An E. coli micro-suspension assay for the detection of DNA damage induced by direct-acting agents and promutagens. *Envir. Mutagen.*, 3, 429-444.

Merck, 2006

The Merck Index. An encyclopedia of chemicals, drugs, and biologicals. 14th edition. Edited by O'Neil MJ et al, Merck & Co. Inc., Whitehouse Station, New Jersey.

Montharu, J., Le Guellec, S., Kittel, B., Rabemampianina, Y., Guillemain, J., Gauthier, F., Diot, P., de Monte, M., 2010

Evaluation of lung tolerance of ethanol, propylene glycol, and sorbitan monooleate as solvents in medical aerosols. *J. Aerosol Med. Pulm. Drug Deliv.*, 23, 41-46

Morris, H.J., Nelson, A.A., Calvery, H.O., 1942

Observations on the chronic toxicities of propylene glycol, ethylene glycol, diethylene glycol, ethylene glycol mono-ethyl-ether and diethylene glycol mono-ethyl-ether. *J. Pharmac. exp. Ther.*, 74, 266-273.

Morrissey, R.E., Lamb, J.C 4th, Morris, R.W., Chapin, R.E., Gulati, D.K., Heindel, J.J., 1989 Results and evaluations of 48 continuous breeding reproduction studies conducted in mice. *Fund. appl. Toxic.*, 13, 747-777.

Nomura, T., 1977

Similarity of the mechanism of chemical carcinogen-initiated teratogenesis and carcinogenesis in mice. *Cancer Res.*, 37, 969-973.

NTP

US National Toxicology Program. Accessed November 2014. Available at: http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm and http://tools.niehs.nih.gov/cebs3/ui/

OECD, 2001

Organisation for Economic Co-operation and Development. 1,2-Dihydroxypropane. CAS: 57-55-6. SIDS Initial Assessment Report for 11th SIAM (USA, January 23-26, 2001). Available at: http://www.chem.unep.ch/irdescotesptc/sids/oecdsids/indexcasnumb.htm

Pienta, R.J., 1980

Transformation of Syrian hamster embryo cells by diverse chemicals and correlation with their reported carcinogenic and mutagenic activities. *Chem. Mutagens prin. Meth. Detec.*, 6, 175-202.

Propylene glycol

Rantuccio, F., Scardigno, A., Conte, A., Sinisi, D., Coviello, C., 1979

Histological changes in rabbits after application of medicaments and cosmetic bases. *Contact Dermatitis*, 5(6), 392-397.

Robertson, O.H., Loosli, C.G., Puck, T.T., Wise, H., Lemon, H.M., Lester, W Jr., 1947 Tests for the chronic toxicity of propylene glycol and triethylene glycol on monkeys and rats by vapor inhalation and oral administration. *J. Pharmac. exp. Ther.*, 91, 52.

Sasaki, M., Sugimura, K., Yoshida, M.A., Abe, S., 1980

Cytogenic effects of 60 chemicals on cultured human and Chinese hamster cells. *La Kromosom*o, 11-20, 574-584.

Sax, N.I., 2000

Sax's dangerous properties of industrial materials. 10th Edition, p3061. Richard J Lewis (ed). Wiley-Interscience Publication, John Wiley & Sons Inc.

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf Seidler, M.J., 1970

Thesis, Tierärztl. Hochschule, Hannover.

Solt, A.K. and Neale, S., 1980

Natulan, a bacterial mutagen requiring complex mammalian metabolic activation. *Mutation Res.*, 70, 167-171.

SRC. 2011

Syracuse Research Corporation. Interactive PhysProp Database Demo. Record for 1,2-Propanediol. Available at: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386

Stenbäck, F., 1977

Local and systemic effects of commonly used cutaneous agents: lifetime studies of 16 compounds in mice and rabbits. *Acta pharmac. tox.*, 41, 417-431.

Stenbäck, F. and Shubic, P., 1974

Lack of toxicity and carcinogenicity of some commonly used cutaneous agents. *Toxic. appl. Pharmac.*, 30, 7-13.

Suber, R.L., Deskin, R., Nikiforov, I., Fouillet, X., Coggins, C.R., 1989

Subchronic nose-only inhalation study of propylene glycol in Sprague-Dawley rats. *Fd Chem. Toxic.*, 27, 573-583.

Svenberg, J.A., Petzold, G.L., Harbach, P.R., 1976

In vitro DNA damage/alkaline elution assay for predicting carcinogenic potential. *Biochem. biophys. Res. Commun.*, 72, 732-738.

Svensson, S. and Heyden, G., 1982

Experimental induction of irreversible precancerous changes in the palatal epithelium of the rat. *Int. J. oral Surg.*, 11, 52-58.

Propylene glycol

Trancik, R.J. and Maibach, H.O., 1982

Propylene glycol: irritation or sensitization? Contact Dermatitis, 8, 185-189.

Vargova, M., Poláková, H., Podstavková, S., Sisková, A., Dolan, L., Vlcek, D., Miadoková, E., 1980

The mutagenic effect of the new insecticide and acaricide pyridathion. *Mutation Res.*, 78, 353-360.

Wang, T., Noonberg, S., Steigerwalt, R., Lynch, M., Kovelesky, R.A., Rodriguez, C.A., Sprugel, K., Turner, N., 2007

Preclinical safety evaluation of inhaled cyclosporine in propylene glycol. *J. Aerosol Med.*, 20, 417-428.

Warshaw, E.M., Botto, N.C., Maibach, H.I., Fowler Jr, J.F., Rietschel, R.L., Zug, K.A., Belsito, D.V., Taylor, J.S., DeLeo, V.A., Pratt, M.D., Sasseville, D., Storrs, F.J., Marks Jr, J.G., Mathias, C.G.T., 2009

Positive patch-test reactions to propylene glycol: A retrospective cross-sectional analysis from the North American Contact Dermatitis Group, 1996 to 2006. *Dermatitis*, 20, 14-20.

Werley, M.S., McDonald, P., Lilly, P., Kirkpatrick, D., Wallery, J., Byron, P., Venitz, J., 2011 Non-clinical safety and pharmacokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs. *Toxicology*, 287, 76-90.

Wieslander, G., Norback, D., Lindgren, T., 2001

Experimental exposure to propylene glycol mist in aviation emergency training: acute ocular and respiratory effects. *Occup. envir. Med.*, 58, 649-655.