Polyethylene wax

DESCRIPTION

Name Polyethylene wax

IUPAC name Not specified.

CAS no 9002-88-4

EINECS no. Not specified.

Molecular formula $(C_2H_4)_{x-}$

Structural formula

Molecular weight 28.0536 (monomer) (g/mol) 198 – 500,000 (polymer)

71101) 130 – 300,000 (pt

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch $et\ al^{11}$.

Polyethylene wax

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself.

In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- 1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html
- 2. Available at: http://toxnet.nlm.nih.gov/index.html
- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- 5. Available at: http://www.inchem.org/
- 6. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- 8. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp

Polyethylene wax

- 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl:S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans.
 Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Date Updated: 30 March 2016

Polyethylene wax

REFERENCES

Burdock, G.A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

ChemIDplus

Record for Polythylene. Accessed June 2014. Available at: http://chem.sis.nlm.nih.gov/chemidplus/rn/9002-88-4

ChemSpider

Royal Society of Chemistry chemical structure database. Accessed June 2014. Available at: http://www.chemspider.com/

CIR, 2007

Cosmetic Ingredient Review. Final report on the safety assessment of polyethylene. *Int. J. Toxic.*, 26, 115-127.

Codex

Codex Alimentarius. International Food Standards. World Health Organization, Food and Agriculture Organization of the United Nations. Last updated 24 January 2014. Available at: http://www.codexalimentarius.org/codex-home/en/

CoE, 2000

Chemically-defined flavouring substances. Council of Europe Publishing. ISBN 92-871-4453-2.

CoE, 1992

Flavouring substances and natural sources of flavourings .Volume I. 4th Edition. Chemically-defined flavouring substances. Council of Europe Publishing. ISBN 2-7160-0147-2.

CoE, 1981

Flavouring substances and natural sources of flavourings 3rd Edition. Maisonneuve. ISBN 27160-0081-6.

ECHA

European Chemicals Agency. Information on Chemicals. Accessed June 2014. Available at: http://echa.europa.eu/information-on-chemicals

ECHA, 2014

European Chemicals Agency. Classification and Labelling (C&L) Inventory database. Last updated 8 May 2014. Available at: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

EFSA

European Food Safety Authority. Accessed June 2014. Available at: http://www.efsa.europa.eu/

EPA

US Environmental Protection Agency. Integrated Risk Information System (IRIS). Accessed June 2014. Available at: http://www.epa.gov/iris/search_human.htm and http://cfpub.epa.gov/ncea/iris_drafts/erd.cfm?excCol=Archive&archiveStatus=both

Polyethylene wax

EPISuite

Accessed June 2014. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

FDA, 2013a

US Food and Drug Administration. Everything added to Food in the United States (EAFUS). Last updated 23 April 2013. Accessed June 2014. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

FDA, 2013b

US Food and Drug Administration, Code of Federal Regulations, Title 21, Parts 172 173, 175, 176, 177 178, 179, 181. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.515]

FDA, 2013c

US Food and Drug Administration. Food Additive Status List. Last updated 21 March 2013. Available at:

http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm091048.htm#ftnP

Fisher Scientific

Accessed June 2014. Available at: http://www.fisher.co.uk/index.php/en/technical-support

Flavis

EUROPA food flavouring website. Accessed June 2014. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm

Good Scents Company

Accessed June 2014. Available at: http://www.thegoodscentscompany.com/

Hachiya, N., 1987

Evaluation of chemical genotoxicity by a series of short-term tests. *Akita J. Med.*, 14, 269-292 [in Japanese with abstract and data tables in English].

HSDB, 2008

Record for polyethylene. CAS RN 9002-88-4. Last revision date 07 October 2008. Available at: http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

IARC, 1979

International Agency for Research on Cancer. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Some monomers, plastics and synthetic elastomers, and acrolein. Volume 19. Available at: http://monographs.iarc.fr/ENG/Monographs/vol1-42/mono19.pdf

JECFA

Joint Expert Committee on Food Additives. Monographs and Evaluations. Accessed June 2014. Available at: http://www.inchem.org/pages/jecfa.html

JRC

Joint Research Centre. European chemical Substances Information System (ESIS). Accessed June 2014. Available at: http://esis.jrc.ec.europa.eu/

Polyethylene wax

Merck, 2013

The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. Ed. O'Neil MJ et al. Fifteenth edition. Royal Society of Chemistry, Cambridge, UK.

NTP

US National Toxicology Program. Accessed June 2014. Available at: http://ntp.niehs.nih.gov/?objectid=03C9AF75-E1BF-FF40-DBA9EC0928DF8B15 and http://tools.niehs.nih.gov/ntp_tox/index.cfm

NTP, 1993

US National Toxicology Program. CEBS (Chemical effects in Biological Systems) Accession number 002-02708-0001-0000-0. Record for Polyethylene AS. Genetic Toxicology - Bacterial Mutagenicity. NTP study ID A44732. Available at: http://tools.niehs.nih.gov/cebs3/ntpViews/?studyNumber=A44732

PubChem

US National Center for Biotechnology Information. Accessed June 2014. Available at: http://pubchem.ncbi.nlm.nih.gov/

RTECS, 2008

Registry of Toxic Effects of Chemical Substances. Record for Polyethylene (CAS RN 9002-88-4). Last updated February 2008.

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. ISBN 978-92-79-12788-5. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf

Sheftel, V.O., 1990

Toxic Properties of Polymers and Additives. Inglis E and Dunstall S (Eds). Rapra Technology Limited.

Sigma-Aldrich

Accessed June 2014. Available at: http://www.sigmaaldrich.com/united-kingdom.html

SRC. 2013

Syracuse Research Corporation. Interactive PhysProp Database Demo. Available at: http://esc.syrres.com/fatepointer/search.asp

Toxtree

Estimation of toxic hazard – a decision tree approach. Ideaconsult Ltd. (Version 2.6.6). Accessed June 2014. Available for download at: http://ihcp.jrc.ec.europa.eu/our labs/computational toxicology/gsar tools/toxtree

World Health Organization, 2004

International Agency for Research into Cancer, Monograph 83, Tobacco Smoke and Involuntary Smoking, page 171, IARC, Lyon, 2004.