Additive Toxicity Statement Ethyl maltol

DESCRIPTION

Name Ethyl maltol

IUPAC name 2-Ethyl-3-hydroxy-4H-pyran-4-one

CAS no 4940-11-8

EINECS no. 225-582-5

Molecular formula $C_7H_8O_3$

Structural formula

Molecular weight (g/mol) 140.1

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The

Additive Toxicity Statement Ethyl maltol

evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch $et \, al^{11}$.

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself.

In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- 1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html
- 2. Available at: http://toxnet.nlm.nih.gov/index.html

Ethyl maltol

- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- Available at: http://www.inchem.org/
- Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- 8. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
- 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl:S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans.
 Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Date Updated: 3 March 2016

Ethyl maltol

REFERENCES

Alfa Aesar

Accessed September 2013. Available at: http://www.alfa.com/en/go160w.pgm?srchtyp=product

Aoyagi, N., Kimura, R., Murata, T., 1974

Studies on *Passiflora incarnata* dry extract. I. Isolation of maltol and pharmacological action of maltol and ethyl maltol. *Chem. pharm. Bull., Tokyo*, 22(5), 1008-1013.

Bjeldanes, L.F. and Chew, H., 1979

Mutagenicity of 1,2-dicarbonyl compounds: maltol, kojic acid, diacetyl and related substances. *Mutation Res.*, 67, 367-371

Buchbauer, G., Jirovetz, L., Jäger, W., Plank, C., Dietrich, H., 1993

Fragrance compounds and essential oils with sedative effects upon inhalation. *J. pharm. Sci.*, 82, 660-664.

Burdock, G.A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

ChemIDplus

Accessed September 2013. Available at: http://chem.sis.nlm.nih.gov/chemidplus/

ChemSpider

Royal Society of Chemistry chemical structure database. Record for Ethyl maltol (4940-11-8). Accessed September 2013. Available at: http://www.chemspider.com/

CoE, 2000

Chemically-defined flavouring substances. Council of Europe Publishing. ISBN 92-871-4453-2.

ECHA

European Chemicals Agency. Information on Chemicals. Accessed September 2013. Available at: http://echa.europa.eu/information-on-chemicals

ECHA. 2013

European Chemicals Agency. Classification and Labelling (C&L) Inventory database. Last updated 30 August 2013. Available at: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

EFSA, 2010

European Food Safety Authority. Scientific opinion on flavouring group evaluation 83, revision 1 (FGE.83Rev1): Consideration of ethyl maltol and two 6-keto-1-4-dioxane derivatives substances evaluated by JECFA (65th meeting). EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids. *EFSA J.*, 8, 1409. Available at: http://www.efsa.europa.eu/en/scdocs/doc/1409.pdf EFSA, 2009

Ethyl maltol

European Food Safety Authority. Scientific Opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids on a request from the Commission on Flavouring Group Evaluation 213: alpha,beta-Unsaturated alicyclic ketones and precursors from chemical subgroup 2.7 of FGE.19. (Question No. EFSA-Q-2008-768). (Adopted on 27 November 2008.) *EFSA J.*, ON-879, 1. Available at: http://www.efsa.europa.eu/en/efsajournal/doc/879.pdf

EPA

US Environmental Protection Agency. Integrated Risk Information System (IRIS). Accessed September 2013. Available at: http://www.epa.gov/iris/search_human.htm and http://cfpub.epa.gov/ncea/iris_drafts/erd.cfm?excCol=Archive&archiveStatus=both

EPA, 2000

US Environmental Protection Agency. Notice of filing pesticide petitions to establish tolerances for certain pesticide chemicals in or on food. *Fed. Reg.*, 65, 79834. Available at: http://www.gpo.gov/fdsys/pkg/FR-2000-12-20/pdf/00-32152.pdf

EPISuite

Accessed September 2013. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

FDA. 2013a

US Food and Drug Administration. Everything added to Food in the United States (EAFUS). Last updated 23 April 2013. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

FDA 2013b

US Food and Drug Administration, Code of Federal Regulations, Title 21, Part 172, Food additives permitted for direct addition to food for human consumption, Section 172.515, Synthetic flavoring substances and adjuvants. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.515

Fisher Scientific

Accessed September 2013. Available at: http://www.fisher.co.uk/index.php/en/technical-support

Flavis

EUROPA food flavouring website. Accessed September 2013. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp search.cfm

GESTIS

Gefahrstoffinformationssystem (Databases on hazardous substances). Accessed September 2013. Available at: http://limitvalue.ifa.dguv.de/Webform_gw.aspx

Good Scents Company

Record for Ethyl maltol (4940-11-8). Accessed September 2013. Available at: http://www.thegoodscentscompany.com/

Gralla, E.J., Stebbins, R.B., Coleman, G.L., Delahunt, C.S., 1969 Toxicity studies with ethyl maltol. *Toxic. appl. Pharmac.*, 15, 604-613

Ethyl maltol

HSDB

Hazardous Substances Data Bank. Accessed September 2013. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

IARC

International Agency for Research on Cancer. World Health Organization. Accessed September 2013. Available at: http://www.iarc.fr/

JECFA, 2006a

Safety Evaluation of Certain Food Additives. Prepared by the Sixty-fifth meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Fd Add. Ser., 56. World Health Organization, Geneva. Available at: http://whqlibdoc.who.int/publications/2006/9241660562 part2 a eng.pdf

JECFA, 2006b

Evaluation of certain food additives: Sixty-Fifth Report of the Joint FAO/WHO Expert Committee on Food Additives. *WHO tech. Rep.*, 934. World Health Organization, Geneva. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_934_eng.pdf

JECFA, 1974

Evaluation of certain food additives: Eighteenth Report of the Joint FAO/WHO Expert Committee on Food Additives. *WHO tech. Rep.*, 557. World Health Organization, Rome. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_557.pdf

JECFA, 1970

Evaluation of food additives: Fourteenth report of the Joint FAO/WHO Expert Committee on Food Additives. *WHO tech. Rep.*, 462. World Health Organization, Geneva. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_462.pdf

JRC

Joint Research Centre. European chemical Substances Information System (ESIS). Accessed September 2013. Available at: http://esis.jrc.ec.europa.eu/

Kimura, R., Matsui, S., Ito, S., Aimoto, T., Murata, T., 1980 Central depressant effects of maltol analogs in mice. *Chem. pharm. Bull., Tokyo*, 28, 2570-2579.

Merck, 2013

The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. Ed. O'Neil MJ et al. Fifteenth edition. Royal Society of Chemistry, Cambridge, UK.

NTP

US National Toxicology Program. Accessed September 2013. Available at: http://ntp.niehs.nih.gov/?objectid=03C9AF75-E1BF-FF40-DBA9EC0928DF8B15 and http://tools.niehs.nih.gov/ntp_tox/index.cfm

Opdyke, D.L.J., 1975

Monographs on fragrance raw materials: Ethyl maltol. Fd Cosmet. Toxicol., 13, 805-806.

Ethyl maltol

Oser, B.L. and Ford, R.A., 1977

Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 10. GRAS substances. *Fd Technol.*, 31, 65-74.

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf

SCF, 1991

Reports of the Scientific Committee for Food (Twenty-fifth series). First series of food additives of various technological functions (Opinion expressed on 18 May 1990). Available at: http://ec.europa.eu/food/fs/sc/scf/reports/scf_reports_25.pdf

Sigma-Aldrich

Accessed September 2013. Available at: http://www.sigmaaldrich.com/united-kingdom.html

SRC, 2013

Syracuse Research Corporation. Interactive PhysProp Database Demo. Record for 4H-Pyran-4-one, 2-ethyl-3-hydroxy-. Available at: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386

Taylor, A.E., Lever, L., Lawrence, C.M., 1996

Allergic contact dermatitis from strawberry lipsalve. Contact Dermatitis, 34, 142-143.

Toxtree

Estimation of toxic hazard – a decision tree approach. Ideaconsult Ltd. (Version 2.5.0). Accessed September 2013. Available for download at: http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/toxtree

Wild, D., Kind, M.T., Gocke, E., Eckhard, K., 1983

Study of artificial flavouring substances for mutagenicity in the Salmonella/microsome, Basc and micronucleus tests. *Fd Chem. Toxic.*, 21, 707-719.