

DESCRIPTION

Name	beta-damascone	
------	----------------	--

IUPAC name

CAS 35044-68-9 1-(2,6,6-trimethylcyclohexen-1-yl)but-2-en-1-one

CAS 23726-92-3 (Z)-1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-buten-1-one CAS 23726-91-2 (E)-1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-buten-1-one

CAS no 35044-68-9 (unspecified isomer)

23726-92-3 (Z-isomer) 23726-91-2 (E-isomer)

EINECS no.

CAS 35044-68-9 Not specified CAS 23726-92-3 245-843-7 CAS 23726-91-2 245-842-1

Molecular formula

CAS 35044-68-9; 23726-92- C₁₃H₂₀O

3; 23726-91-2

Structural formula

CAS 35044-68-9

CAS 23726-92-3 isomer CAS 23726-91-2 isomer

Molecular weight (g/mol.)

CAS 35044-68-9; 23726-92- 192.3

3:

23726-91-2

CLP HEALTH HAZARD CLASSIFICATION

This ingredient has been classified under Regulation (EC) No 1272/2008 of the European Parliament and of the Council and is in the classification and labelling inventory.

The CLP classifications of this ingredient are not considered applicable for one, or more, of the following reasons:

- the level required to elicit a response in a toxicological study, with a relevant route of exposure, is far higher than that of its use in BAT products
- the toxicological effect identified does not relate to the route of exposure associated with its use in BAT products

Beta-damascone

no relevant toxicological study was identified relating to the route of exposure, and there
is only limited consumer exposure to this ingredient associated with its use in BAT
products

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch *et al*¹¹.

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Beta-damascone

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself.

In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- 1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html
- 2. Available at: http://toxnet.nlm.nih.gov/index.html
- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- 5. Available at: http://www.inchem.org/
- 6. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- 8. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
- 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl: S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- 16. World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004.
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Beta-damascone

REFERENCES

Adams, T.B., Hallagan, J.B., Putnam, J.M., Gierke, T.L., Doull, J., Munro, I.C., Newberne, P., Portoghese, P.S., Smith, R.L., Wagner, B.M., Weil, C.S., Woods, L.A., Ford, R.A., 1996 The FEMA GRAS assessment of alicyclic substances used as flavour ingredients. *Fd Chem. Toxic.*, 34, 763-828.

Alfa Aesar

Accessed September 2013. Available at: http://www.alfa.com/en/go160w.pgm?srchtyp=product

Baker, R.R. and Bishop, L.J., 2004

The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis, 71, 223-311.

Baker, R.R., Da Silva, J.R.P., Smith, G., 2004a

The effect of tobacco ingredients on smoke chemistry. Part 1: Flavourings and additives. *Food and Chemical Toxicology*, 42S, S3-S37.

Baker, R.R., Da Silva, J.R.P., Smith, G., 2004b

The effect of tobacco ingredients on smoke chemistry. Part 2: Casing ingredients. *Food and Chemical Toxicology*, 42S, S39-S52.

Baker, R.R., Massey, E.D., Smith, G., 2004c

An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. *Food and Chemical Toxicology*, 42S, S53-S83.

Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H, Hanifin, J.M., Rogers, A.E., Saurat, J.H., Sipes, I.G., Tagami, H., RIFM Expert Panel, 2007

A toxicologic and dermatologic assessment of ionones when used as fragrance ingredients. *Fd Chem. Toxic.*, 45, S130-S167.

Burdock, G.A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

Carmines, E.L., 2002

Evaluation of the potential effects of ingredients added to cigarettes. Part 1: Cigarette design, testing approach, and review of results. *Food and Chemical Toxicology*, 40, 77-91.

ChemIDplus

Accessed September 2013. Available at: http://chem.sis.nlm.nih.gov/chemidplus/

ChemSpider

Royal Society of Chemistry chemical structure database. Accessed September 2013. Available at: http://www.chemspider.com/

CoE. 2000

Chemically-defined flavouring substances. Council of Europe Publishing. ISBN 92-871-4453-2.

Beta-damascone

ECHA

European Chemicals Agency. Information on Chemicals. Accessed September 2013. Available at: http://echa.europa.eu/information-on-chemicals

ECHA, 2013

European Chemicals Agency. Classification and Labelling (C&L) Inventory database. Last updated 30 August 2013. Available at: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

FDA, 2013

Food and Drug Administration. Everything added to Food in the United States (EAFUS). Last updated 23 April 2013. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

EFSA, 2009

European Food Safety Authority. Scientific Opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids on a request from the Commission on Flavouring Group Evaluation 213: alpha,beta-unsaturated alicyclic ketones and precursors from chemical subgroup 2.7 of FGE.19. (Question No. EFSA-Q-2008-768). (Adopted on 27 November 2008). *EFSA*J.,I

ON-879,

P1-27.

Available at: http://www.efsa.europa.eu/en/scdocs/doc/cef ej879 fge213 op en.pdf

EPA

US Environmental Protection Agency. Integrated Risk Information System (IRIS). Accessed September 2013. Available at: http://www.epa.gov/iris/search_human.htm and http://cfpub.epa.gov/ncea/iris_drafts/erd.cfm?excCol=Archive&archiveStatus=both

EPISuite

Accessed September 2013. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

FDA, 2013

Food and Drug Administration. Everything added to Food in the United States (EAFUS). Last updated 23 April 2013. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

Fisher Scientific

Accessed September 2013. Available at: http://www.fisher.co.uk/index.php/en/technical-support

Flavis

EUROPA food flavouring website. Accessed September 2013. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm

Gaworski, C.L., Heck, J.D., Bennett, M.B., Wenk, M.L., 1999

Toxicologic evaluation of flavour ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. *Toxicology*, 139, 1-17.

Beta-damascone

Gaworski, C.L., Dozier, M.M., Heck, J.D., Gerhart, J.M., Rajendran, N., David, R.M., Brennecke, L.H., Morrissey, R., Bennett, M.B., 1998

Toxicologic evaluation of flavour ingredients added to cigarette tobacco: 13 week inhalation exposure in rats. *Inhalation Toxicology*, 10, 357-381.

GESTIS

Gefahrstoffinformationssystem (Databases on hazardous substances.) Accessed September 2013. Available at: http://limitvalue.ifa.dguv.de/Webform gw.aspx

Good Scents Company

Records for beta-damascone (35044-68-9); (E)-beta-damascone (23726-91-2) and (Z)-beta-damascone (23726-92-3). Accessed September 2013. Available at: http://www.thegoodscentscompany.com/

Hall, R.L., Oser, B.L., 1970

Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 4. GRAS Substances. *Fd Technol.*, 24, 25-34.

HSDB

Hazardous Substances Data Bank. Accessed September 2013. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

IARC

International Agency for Research on Cancer. World Health Organization. Accessed September 2013. Available at: http://www.iarc.fr/

IFRA, 2009

International Fragrance Association. IFRA Standard. Rose Ketones. 46th Amendment October 14 2009. Available at: www.ifraorg.org/view_document.aspx?docld=22594

JECFA. 2000

Evaluation of certain food additives. *WHO tech. Rept*, 891. Fifty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_891.pdf.

JECFA. 1999

Safety evaluation of certain food additives. Ionones and structurally related substances. *WHO Fd Add. Ser.*, 42. Prepared by the fifty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva. Available at: http://www.inchem.org/documents/jecfa/jecmono/v042je19.htm.

JRC

Joint Research Centre. European chemical Substances Information System (ESIS). Accessed September 2013. Available at: http://esis.jrc.ec.europa.eu/

Lalko, J., Lapczynski, A., Letizia, C.S., Api, A.M., 2007

Fragrance material review on *cis*-β-damascone. *Fd Chem. Toxic.*, 45, S192-S198.

Beta-damascone

Lapczynski, A., Lalko, J., McGinty, D., Bhatia, S., Letizia, C.S., Api, A.M., 2007 Fragrance material review on *trans*-β-damascone. *Fd Chem. Toxic.*, 45, S199-S204.

Letizia, C.S., Cocchiara, J., Wellington, G.A., Funk, C., Api, A.M., 2000 Monographs on fragrance raw materials: beta-1-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-2-butene-1-one. *Fd Chem. Toxic.*, 38 (Suppl. 3), S205-S210.

Merck, 2013

The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. Ed. O'Neil MJ et al, Fifteenth edition. Royal Society of Chemistry, Cambridge, UK.

Natsch, A., Emter, R., Ellis, G., 2009

Filling the concept with data: integrating data from different *in vitro* and *in silico* assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. *Toxic. Sci.*, 107, 106-121.

Natsch, A., Gfeller, H., Rothaupt, M., Ellis, G., 2007

Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. *Toxic. in Vitro*, 21, 1220-1226.

NTP

US National Toxicology Program. Accessed September 2013. Available at: http://ntp.niehs.nih.gov/?objectid=03C9AF75-E1BF-FF40-DBA9EC0928DF8B15 and http://tools.niehs.nih.gov/ntp_tox/index.cfm

Posternak, J.M., Dufour, J.J., Rogg, C., Vodoz, C.A., 1975

Toxicological tests on flavouring matters. II. Pyrazines and other compounds. *Fd Cosmet. Toxicol.*, 13, 487-490. [cited incorrectly in Belsito et al, 2007, as Posternak and Vodoz]

PubChem.

US National Center for Biotechnology Information. Accessed September 2013. Available at: http://pubchem.ncbi.nlm.nih.gov/

Roemer, E., Tewes, F.J., Meisgen, T.J., Veltel, D.J., Carmines, E.L., 2002 Evaluation of the potential effects of ingredients added to cigarettes. Part 3: In vitro genotoxicity and cytotoxicity. *Food and Chemical Toxicology*, 40, 105-111.

Rustemeier, K., Stabbert, R., Haussmann, H.-J., Roemer, E., Carmines, E.L., 2002 Evaluation of the potential effects of ingredients added to cigarettes. Part 2: Chemical composition of mainstream smoke. *Food and Chemical Toxicology*, 40, 93-104.

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific committees/emerging/docs/scenihr o 029.pdf

Sigma-Aldrich

Accessed September 2013. Available at: http://www.sigmaaldrich.com/united-kingdom.html

Beta-damascone

SRC, 2013

Syracuse Research Corporation. Interactive PhysProp Database Demo. Record for 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1 (23726-91-2). Available at: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386

Toxtree

Estimation of toxic hazard – a de*cis*ion tree approach. Ideaconsult Ltd. (Version 2.6.0). Accessed September 2013. Available for download at: http://toxtree.sourceforge.net/

Vanscheeuwijck, P.M., Teredesai, A., Terpstra, P.M., Verbeeck, J., Kuhl, P., Gerstenberg, B., Gebel, S., Carmines, E.L., 2002

Evaluation of the potential effects of ingredients added to cigarettes. Part 4: Subchronic inhalation toxicity. *Food and Chemical Toxicology*, 40, 113-131.

World Health Organization, 2004

Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004.