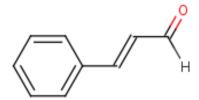
Cinnamaldehyde

DESCRIPTION

Name Cinnamaldehyde

IUPAC name 3-Phenylacrylaldehyde


3-Phenylprop-2-enal

CAS no 104-55-2

EINECS no. 203-213-9

Molecular formula C₉H₈O

Structural formula

Molecular weight

(g/mol)

132.1612

CLP HEALTH HAZARD CLASSIFICATION

This ingredient has been classified under Regulation (EC) No 1272/2008 of the European Parliament and of the Council and is in the classification and labelling inventory.

The CLP classifications of this ingredient are not considered applicable for one, or more, of the following reasons:

- the level required to elicit a response in a toxicological study, with a relevant route of exposure, is far higher than that of its use in BAT products
- the toxicological effect identified does not relate to the route of exposure associated with its use in BAT products
- no relevant toxicological study was identified relating to the route of exposure, and there
 is only limited consumer exposure to this ingredient associated with its use in BAT
 products

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

Cinnamaldehyde

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch *et al*¹¹.

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

Cinnamaldehyde

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself.

In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- 1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html
- 2. Available at: http://toxnet.nlm.nih.gov/index.html
- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- 5. Available at: http://www.inchem.org/
- 6. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- 8. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
- 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl: S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- 16. World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004.
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- 18. SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Date Updated: 2 February 2017

Cinnamaldehyde

REFERENCES

ACToR, 2012

Aggregated Computational Toxicology Resource. Chemical summary: cinnamaldehyde (104-55-2). Available at:

http://actor.epa.gov/actor/GenericChemicalPdfServlet;jsessionid=802C69D431E5620C6706091 088CDD9B5?casrn=104-55-2

Alfa Aesar

Accessed December 2013. Available at: http://www.alfa.com/en/go160w.pgm?srchtyp=product

Azizian, A. and Blevins, R.D., 1995

Mutagenicity and antimutagenicity testing of six chemicals associated with the pungent properties of specific spices as revealed by the Ames Salmonella/microsomal assay. *Archs envir. Contam. Toxicol.*, 28, 248-258.

Belsito, D.V., Fowler, J.F Jr, Sasseville, D., Marks, J.G Jr, De Leo, V.A., Storrs, F.J., 2006 Delayed-type hypersensitivity to fragrance materials in a select North American population. *Dermatitis*, 17, 23-28.

Burdock, G.A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

Carmines, E.L., 2002

Evaluation of the potential effects of ingredients added to cigarettes. Part 1: Cigarette design, testing approach, and review of results. *Fd Chem. Toxic.*, 40, 77-91.

ChemIDplus

Accessed December 2013. Available at: http://chem.sis.nlm.nih.gov/chemidplus/

ChemSpider

Royal Society of Chemistry chemical structure database. Accessed December 2013. Available at: http://www.chemspider.com/

Cocchiara, J., Letizia, C.S., Lalko, J., Lapczynski, A., Api, A.M., 2005 Fragrance material review on cinnamaldehyde. *Fd Chem. Toxic.*, 43, 867-923.

CoE, 2000

Chemically-defined flavouring substances. Council of Europe Publishing. ISBN 92-871-4453-2.

Coggins, C.R.E., Sena, E.J., Langston, T.B., Oldham, M.J., 2011

A comprehensive evaluation of the toxicology of cigarette ingredients: aromatic carbonyl compounds. *Inhal. Toxicol.*, 23 (S1), 90-101.

ECHA

European Chemicals Agency. Information on Chemicals. Accessed December 2013. Available at: http://echa.europa.eu/information-on-chemicals

Cinnamaldehyde

ECHA, 2013

European Chemicals Agency. Classification and Labelling (C&L) Inventory database. Last updated 28 November 2013. Available at: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Eder, E., Scheckenbach, S., Deininger, C., Hoffman, C., 1993

The possible role of alpha, beta-unsaturated carbonyl compounds in mutagenesis and carcinogenesis. *Toxicology Lett.*, 67, 87-103.

EFSA, 2009a

European Food Safety Authority. Scientific Opinion of the Panel on Food Contact Materials, Flavourings and Processing Aids (CEF) on a request from European Commission on Flavouring Group Evaluation 214: alpha, beta-unsaturated aldehydes and precursors from chemical subgroup 3.1 of FGE.19: cinnamyl derivatives. *EFSA J.*, 880, 1-27. Available at: http://www.efsa.europa.eu/en/scdocs/doc/880.pdf

EFSA, 2009b

European Food Safety Authority. Scientific Opinion on Flavouring Group Evaluation 68 (FGE.68): Consideration of cinnamyl alcohol and related flavouring agents evaluated by JECFA (55th meeting) structurally related to aryl-substituted saturated and unsaturated primary alcohol/aldehyde/acid/ester derivatives evaluated by EFSA in FGE.15Rev1 (2008). *EFSA J.*, 7(11), 1032. Available at: http://www.efsa.europa.eu/en/scdocs/doc/1032.pdf

EPA

US Environmental Protection Agency. Integrated Risk Information System (IRIS). Accessed December 2013. Available at: http://www.epa.gov/iris/search_human.htm and http://cfpub.epa.gov/ncea/iris_drafts/erd.cfm?excCol=Archive&archiveStatus=both

EPISuite

Accessed December 2013. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

Ezendam, J., ter Burg, W., Wijnhoven, S.W.P., 2011

Inhalation exposure to fragrance allergens. Are consumers at risk for respiratory allergies? RIVM Report 340301004/2011. Available at: http://www.rivm.nl/bibliotheek/rapporten/340301004.pdf

FDA. 2013

US Food and Drug Administration Code of Federal Regulations, Title 21, Part 182, Substances generally recognised as safe, Section 182.60 Synthetic flavoring substances and adjuvants. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.60

Fisher Scientific

Accessed December 2013. Available at: http://www.fisher.co.uk/index.php/en/technical-support

Flavis

EUROPA food flavouring website. Accessed December 2013. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm

Gaworski, C.L., Oldham, M.J., Wagner, K.A., Coggins, C.R.E., Patskan, G.J., 2011

Cinnamaldehyde

An evaluation of the toxicity of 95 ingredients added individually to experimental cigarettes: approach and methods. *Inhal. Toxicol.*, 23 (S1), 1-12.

GESTIS

Gefahrstoffinformationssystem (Databases on hazardous substances). Accessed December 2013. Available at: http://limitvalue.ifa.dguv.de/Webform_gw.aspx

Good Scents Company

Record for Cinnamaldehyde (104-55-2). Accessed December 2013. Available at: http://www.thegoodscentscompany.com/

Gowder, S.J.T. and Devaraj, H., 2008

Food flavor cinnamaldehyde-induced biochemical and histological changes in the kidney of male albino wistar rat. *Envir. Toxic. Pharmac.*, 26, 68-74.

Hagan, E.C., Hansen, W.H., Fitzhugh, O.G., Jenner, P.M., Jones, W.I., Taylor, J.M., Long, E.L., Nelson, A.A., Brouwer, J.B., 1967

Food flavorings and compounds of related structure. II. Subacute and chronic toxicity. *Fd Cosmet. Toxicol.*, 5, 141-157.

Hall, R.L. and Oser, B.L., 1965

Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. III. GRAS substances. *Fd. Technol.*, 19, 151-197.

Hardin, B.D., Schuler, R.L., Burg, J.R., Booth, G.M., Hazelden, K.P., MacKenzie, K.M., Piccirillo, V.J., Smith, K.N., 1987

Evaluation of 60 chemicals in a preliminary developmental toxicity test. *Teratogen. Carcinogen. Mutagen.*, 7, 29-48.

Hayashi, M., Kishi, M., Sofuni, T., Ishidate, M. Jr., 1988

Micronucleus tests in mice on 39 food additives and eight miscellaneous chemicals. *Fd Chem. Toxic.*, 26, 487-500.

Hébert, C.D., Yuan, J., Dieter, M.P., 1994

Comparison of the toxicity of cinnamaldehyde when administered by microencapsulation in feed or by corn oil gavage. *Fd Chem. Toxic.*, 32, 1107-1115.

Heisterberg, M.V., Menné, T., Johansen, J.D., 2011

Contact allergy to the 26 specific fragrance ingredients to be declared on cosmetic products in accordance with the EU Cosmetics Directive. *Contact Dermatitis*, 65, 266-275.

HSDB

Hazardous Substances Data Bank. Accessed December 2013. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

IARC

International Agency for Research on Cancer. World Health Organization. Accessed December 2013. Available at: http://www.iarc.fr/

Ishidate, M., Sofuni, T., Yoshikawa, K., Hayashi, M., Nohmi, T., Sawada, M., Matsuoka, A., 1984

Cinnamaldehyde

Primary mutagenicity screening of food additives currently used in Japan. Fd Chem. Toxic., 22, 623-636.

IUCLID, 2000

International Uniform Chemical Information Database. Record for Cinnamaldehyde. European Commission, European Chemicals Bureau. Available at: http://ecb.jrc.ec.europa.eu/IUCLID-DataSheets/104552.pdf

JECFA. 2001

Safety evaluation of certain food additives and contaminants. Cinnamyl Alcohol and Related Substances. WHO Fd Add. Ser., 46. Prepared by the fifty-fifth meeting of the Joint FAO/WHO Expert Committee on Food Additives. Available at: http://www.inchem.org/documents/jecfa/jecmono/v46je07.htm.

Jenner, P.M., Hagan, E.C., Taylor, J.M., Cook, E.L., Fitzhugh, O.G., 1964 Food flavourings and compounds of related structure. I. Acute oral toxicity. *Fd Chem. Toxic.*, 2, 327-343.

JRC

Joint Research Centre. European chemical Substances Information System (ESIS). Accessed December 2013. Available at: http://esis.jrc.ec.europa.eu/

Kim, K.R., Cho, K.H., Ryu, J-C., 1997

The mutagenic spectrum of cinnamaldehyde in vitro and in vivo. Envir. molec. Mutagen., 29 (Suppl. 28), 26.

Kurishita, A. and Ihara, T., 1990

Inhibitory effects of cobalt chloride and cinnamaldehyde on 5-azacytidine-induced digital malformations in rats. *Teratology*, 41, 161-166.

Mantovani, A., Stazi, A.V., Macri, C., Ricciardi, C., Piccioni, A., Badellino, E., 1989 Pre-natal (segment II) toxicity study of cinnamic aldehyde in the Sprague-Dawley rat. *Fd Chem. Toxic.*, 27, 781-786.

Marnett, L.J., Hurd, H.K., Hollstein, M.C., Levin, D.E., Esterbauer, H., Ames, B.N., 1985 Naturally-occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. *Mutation Res.*, 148, 25-34.

Merck, 2013

The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. Ed. O'Neil MJ et al. Fifteenth edition. Royal Society of Chemistry, Cambridge, UK.

Mirsalis, J.C., Tyson, C.K., Steinmetz, K.L., Loh, E.K., Hamilton, C.M., Bakke, J.P., Spalding, J.W., 1989

Measurement of unscheduled DNA synthesis and S-phase synthesis in rodent hepatocytes following *in vivo* treatment: Testing of 24 compounds. *Envir. molec. Mutagen.*, 14, 155-164.

Cinnamaldehyde

NTP

US National Toxicology Program. Accessed December 2013. Available at: http://ntp.niehs.nih.gov/?objectid=03C9AF75-E1BF-FF40-DBA9EC0928DF8B15 and http://tools.niehs.nih.gov/ntp_tox/index.cfm

Opdyke, D.L.J., 1979

Monographs on Fragrance Raw Materials: Cinnamic aldehyde. Fd Cosmet. Toxicol., 17, 253-258.

Panossian, A., Nikoyan, N., Ohanyan, N., Hovhannisyan, A., Abrahamyan, H., Gabrielyan, E., Wikman, G., 2008

Comparative study of Rhodiola preparations on behavioral despair of rats. *Phytomedicine*, 15, 84-91.

Renne, R.A., Yoshimura, H., Yoshino, K., Lulham, G., Minamisawa, S., Tribukait, A., Dietz, D.D., Lee, K.M., Westerberg, R.B., 2006

Effects of flavoring and casing ingredients on the toxicity of mainstream cigarette smoke in rats. *Inhal. Toxicol.*, 18, 685-706.

Roemer, E., Tewes, F.J., Meisgen, T.J., Veltel, D.J., Carmines, E.L., 2002 Evaluation of the potential effects of ingredients added to cigarettes. Part 3: *In vitro* genotoxicity and cytotoxicity. *Fd Chem. Toxic.*, 40, 105-111.

Rustemeier, K., Stabbert, R., Haussmann, H-J., Roemer, E., Carmines, E.L., 2002 Evaluation of the potential effects of ingredients added to cigarettes. Part 2: Chemical composition of mainstream smoke. *Fd Chem. Toxic.*, 40, 93-104.

Sanyal, R., Darroudi, F., Parzefall, W., Nagao, M., Knasmüller, S., 1997 Inhibition of the genotoxic effects of heterocyclic amines in human derived hepatoma cells by dietary bioantimutagens. *Mutagenesis*, 12, 297-303.

SCCS. 2012

Scientific Committee on Consumer Safety (SCCS). Opinion on fragrance allergens in cosmetic products. Opinion adopted by the SCCS at its 15th plenary meeting of 26-27 June 2012. Available at:

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_102.pdf

SCCS, 2011

Scientific Committee on Consumer Safety. Opinion on fragrance allergens in cosmetic products. Pre-consultation opinion adopted by the SCCS at its 13th plenary meeting of 13-14 December 2011. SCCS/1459/11. Available at:

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_073.pdf

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. ISBN 978-92-79-12788-5. Available at: http://ec.europa.eu/health/scientific committees/emerging/docs/scenihr o 029.pdf

Cinnamaldehyde

Sekizawa, J. and Shibamoto, T., 1982

Genotoxicity of safrole-related chemicals in microbial test systems. Mutation Research 101, 127-40.

Sigma-Aldrich

Accessed December 2013. Available at: http://www.sigmaaldrich.com/united-kingdom.html

SRC, 2013

Syracuse Research Corporation. Interactive PhysProp Database Demo. Available at: http://esc.syrres.com/fatepointer/search.asp

Stoner, G.D., Shimkin, M.B., Kniazeff, A.J., Weisburger, J.H., Weisburger, E.K., Gori, G.B., 1973 Test for carcinogenicity of food additives and chemotherapeutic agents by the pulmonary tumor response in strain A mice. *Cancer Res.*, 33, 3069-3085.

Uter, W., Geier, J., Frosch, P., Schnuch, A., 2010

Contact allergy to fragrances: current patch test results (2005-2008) from the Information Network of Departments of Dermatology. *Contact Dermatitis*, 63, 254-261.

Vanscheeuwijck, P.M., Teredesai, A., Terpstra, P.M., Verbeeck, J., Kuhl, P., Gerstenberg, B., Gebel, S., Carmines, E.L., 2002

Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. *Fd Chem. Toxic.*, 40, 113-131.

Warshaw, E.M., Belsito, D.V., DeLeo, V.A., Fowler, J.F Jr., Maibach, H.I., Marks, J.G., Mathias, T.C.G., Pratt, M.D., Rietschel, R.L., Sasseville, D., Storrs, F.J., Taylor, J.S., Zug, K.A., 2008 North American Contact Dermatitis Group patch-test results, 2003-2004 study period. *Dermatitis*, 19, 129-136.

White, J.M., White, I.R., Kimber, I., Basketter, D.A., Buckley, D.A., McFadden, J.P., 2009 Atopic dermatitis and allergic reactions to individual fragrance chemicals. *Allergy*, 64, 312-316.

World Health Organization, 2004

International Agency for Research into Cancer, Monograph 83, Tobacco Smoke and Involuntary Smoking, page 171, IARC, Lyon, 2004.