Cellulose fibre

DESCRIPTION

Name Cellulose fibre

IUPAC name Not specified

CAS no 65996-61-4 cellulose pulp

9004-34-6 microcrystalline cellulose

EINECS no 265-995-8 (65996-61-4)

232-674-9 (9004-34-6)

Molecular formula $C_6H_{10}O_5)_n$

Structural formula

OH OH OH

Molecular weight (g/mol) Not applicable

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The

Cellulose fibre

evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch $et \, al^{11}$.

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself. In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- 1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html
- Available at: http://toxnet.nlm.nih.gov/index.html
- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384

Cellulose fibre

- 5. Available at: http://www.inchem.org/
- 6. at: http://echa.europa.eu/information-on-chemicals
- Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 8. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
- 9. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 10. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 11. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl:S53-S83, 2004.
- 12. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 13. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 14. Available Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans.
 Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Cellulose fibre

REFERENCES

ACGIH, 2012

American Conference of Governmental Industrial Hygienists. 2012 TLVs and BEIs based on the documentation of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices.

Alfa Aesar, 2012

Accessed May 2012. Available at: http://www.alfa.com/en/go160w.pgm?srchtyp=product

Borzelleca, J.F. and Egle, J.L., 1993

An evaluation of the reproductive and developmental effects of tara gum in rats. J. Am. Coll. Toxicol., 12, 91-97.

Burdock, G.A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

ChemIDplus, 2012

Records for Cellulose, microcrystalline, 9004-34-6; Rayon (61788-77-0); Cellulose, regenerated (68442-85-3) and Cellulose, pulp (Rags; 65996-61-4). Accessed 25 September 2012. Available at:

http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp?/chemidlite.jsp.

ChemSpider, 2012

Royal Society of Chemistry chemical structure database. Accessed May 2012. Available at: http://www.chemspider.com/

CoE. 2008

Natural sources of flavourings. Report No. 3. Council of Europe Publishing. ISBN 978-92-871-6422-3.

CoE, 2007

Natural sources of flavourings. Report No. 2. Council of Europe Publishing. ISBN 978-92-871-6156-7.

CoE, 2000

Natural sources of flavourings. Report No. 1. Council of Europe Publishing. ISBN 92-871-4324-2.

CoE, 1981

Flavouring substances and natural sources of flavourings 3rd Edition. Maisonneuve. ISBN 27160-0081-6.

Conlon, M.A. and Bird, A.R., 2009

Interactive and individual effects of dietary non-digestible carbohydrates and oils on DNA damage, SCFA and bacteria in the large bowel of rats. Br. J. Nutr., 101, 1171-1177.

Cellulose fibre

CSTEE, 2002

Scientific Committee on Toxicity, Ecotoxicity and the Environment. Opinion on risk to human health from crysotile asbestos and organic substitutes. Opinion expressed at the 35th CSTEE plenary meeting Brussels, 17 December 2002. Available at: http://europa.eu.int/comm/food/fs/sc/sct/outcome_en.html.

Cullen, R.T., Miller, B.G., Clark, S., Davis, J.M., 2002

Tumorigenicity of cellulose fibers injected into the rat peritoneal cavity. Inhal. Toxicol., 14, 685-703.

DECOS, 2002

Dutch Expert Committee on Occupational Standards, Health Council of the Netherlands. Cellulose. Health-based reassessment of administrative occupational exposure limits. No. 2000/15OSH/031. 7 March 2002.

ECHA, 2012

European Chemicals Agency. Information on Chemicals. Accessed 25 September 2012. Available at: http://echa.europa.eu/information-on-chemicals.

ECHA, 2013

European Chemicals Agency. Classification and Labelling (C&L) Inventory database. Last updated 28 June 2013. Available at: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

EFSA, 2012

European Food Safety Authority. Accessed May 2012. Available at: http://www.efsa.europa.eu/

EPA, 2012

US Environmental Protection Agency. Integrated Risk Information System (IRIS). Accessed May 2012. http://www.epa.gov/iris/search_keyword.htm

EPI Suite, 2012

Accessed May 2012. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

FDA. 2011

US Food and Drug Administration. The List of Indirect Additives Used in Food Contact Substances (CFSAN Database)

http://www.fda.gov/Food/FoodIngredientsPackaging/ucm115333.htm

FDA, 2012

US Food and Drug Administration. Code of Federal Regulations, revised 1 April 2012. http://www.gpoaccess.gov/cfr/index.html

Feron, V.J., de Groot, A.P., Spanjers, M.T., Til, H.P., 1973

An evaluation of the criterion "Organ weight" under conditions of growth retardation. Fd Cosmet. Toxicol., 11, 85-94.

Cellulose fibre

Fisher Scientific, 2012.

Accessed May 2012. Available at: http://www.fisher.co.uk/index.php/en/technical-support

Flavis, 2012.

EUROPA food flavouring website. Accessed May 2012. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm

Good Scents Company, 2012.

Accessed May 2012. Available at: http://www.thegoodscentscompany.com/

Hagiwara, A., Imai, N., Sano, M., Kawabe, M., Tamano, S., Kitamura, S., Omoto, T., Asai, I., Yasuhara, K., Hayashi, S.M., 2010

A 28-day oral toxicity study of fermentation-derived cellulose, produced by Acetobacter aceti subspecies xylinum, in F344 rats. J. Toxic. Sci., 35, 317-325.

Hellgren, J., Eriksson, C., Karlsson, G., Hagberg, S., Olin, A.C., Torén, K., 2001 Nasal symptoms among workers exposed to soft paper dust. Int. Archs occup. envir. Hlth, 74, 129-132.

HSDB, 2012.

Hazardous Substances Data Bank. Accessed May 2012. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

HSE, 2011

UK Health and Safety Executive. EH40/2005 work-place exposure limits. HSE Exposure Assessment Document. Available at:

http://www.hse.gov.uk/pubns/priced/eh40.pdf

IARC, 2012

International Agency for Research on Cancer. World Health Organization. Accessed May 2012. Available at: http://www.iarc.fr/

IUCLID, 2000

Dataset for Cellulose, 9004-34-6. Available at:

http://esis.jrc.ec.europa.eu/doc/IUCLID/data_sheets/9004346.pdf

JECFA, 2012

Joint Expert Committee on Food Additives. Monographs and Evaluations. Accessed May 2012. Available at: http://www.inchem.org/pages/jecfa.html

JECFA, 1998

Safety evaluation of certain food additives and contaminants. Microcrystalline cellulose. Prepared by the forty-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series 40. Available at:

http://www.inchem.org/documents/jecfa/jecmono/v040je03.htm.

Cellulose fibre

JECFA, 1999

Evaluation of certain food additives and contaminants. Forty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report 884. http://whqlibdoc.who.int/trs/WHO_TRS_884.pdf

Maurer, J.K., Cheng, M.C., Boysen, B.G., Anderson, R.L., 1990 Two-year carcinogenicity study of sodium fluoride in rats. J. natn. Cancer Inst., 82, 1118-1126.

McCarty, J., Weiner, M., Freeman, C., Nuber, D., 2006 A dietary teratology study of a drug excipient, Avicel RCN-15, in Sprague-Dawley female rats. Toxicologist, 90, 192.

Merck, 2006

The Merck Index. An encyclopedia of chemicals, drugs, and biologicals. 14th edition. Edited by O'Neil MJ et al, Merck & Co. Inc., Whitehouse Station, New Jersey.

Morgan, D.L., Dill, J.A., Su, Y., Westerberg, B., Price, H.C., Shines, C.J., Smith, C.S., 2003 Evaluation of the chemical and physical properties of cellulose insulation aerosols and the potential acute pulmonary toxicity. Toxicologist, 71 (Suppl. 1), 44.

NTP. 2012

US National Toxicology Program. Accessed May 2012. Available at http://tools.niehs.nih.gov/ntp_tox/index.cfm

Nuber, D., Freeman, C., Weiner, M., 2006

Dietary subchronic toxicity and teratology studies Avicel CL-611 in Sprague-Dawley rats. Toxicologist, 90, 346.

Olejeme, U., Knight, E.M., Johnson, A.A., Adkins, J.S., 1992 Effects of different types and levels of dietary fiber on fetal development of rats. FASEB J., 6, A1941.

RTECS, 2011

Registry of Toxic Effects of Chemical Substances. Record for Cellulose (CAS 9004-34-6). Last updated March 2011.

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf

SCF, 1999

Reports from the Scientific Committee for Food (44th series). Opinion expressed 1997. Food science and techniques, 1999. Available at: http://aei.pitt.edu/33859/1/A560.pdf

Schmitt, D.F., Frankos, V.H., Westland, J., Zoetis, T., 1991 Toxicologic evaluation of Cellulon™ fibre: genotoxicity, pyrogenicity, acute and subchronic toxicity. J. Am. Coll. Toxicol., 10, 541-554.

Cellulose fibre

Sigma-Aldrich, 2012

Accessed May 2012. Available at: http://www.sigmaaldrich.com/united-kingdom.html

Signorin, J., Aguinaldo, E.R., Butt, M.T., 1999

A 28-day intranasal study in rats with Avicel RC-591. Toxicologist, 48, 121 (Abstract 568).

Spear, L.P. and Heyser, C.J., 1993

Is use of a cellulose-diluted diet a viable alternative to pair-feeding. Neurotoxicol. Teratol., 15, 85-89.

SRC, 2013

Syracuse Research Corporation. Interactive PhysProp Database Demo. Available at: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386

Toren, K., Järvholm, B., Sällsten, G., Thiringer, G., 1994

Respiratory symptoms and asthma among workers exposed to paper dust: a cohort study. Am. J. ind. Med., 26, 489-496.

Toxtree, 2012

Estimation of toxic hazard – a decision tree approach. Ideaconsult Ltd. (Version 2.5.0). Accessed May 2012. Available for download at:

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/toxtree

Weindruch, R., Walford, R.L., Fligiel, S., Guthrie, D., 1986

The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and life-time energy intake. J. Nutr., 116, 641-654.