Balsam Peru oil

DESCRIPTION

Name Balsam Peru oil

IUPAC name Not specified

CAS no 8007-00-9

EINECS no 232-352-8

Molecular formula Not applicable

Structural formula Not applicable

Molecular weight (g/mol) Not applicable

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this, our toxicologists evaluate the quality of all pertinent studies identified and the data used. The evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch $et\ al^{11}$.

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity

Date Updated: 19 March 2018

Balsam Peru oil

and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral™ tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself. In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

- Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html 1.
- Available at: http://toxnet.nlm.nih.gov/index.html
- Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- Available at: http://www.inchem.org/
- Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- 8. Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. Regul. Toxicol. Pharmacol. 25, 1-5.

Balsam Peru oil

- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl:S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- 16. World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_051.pdf.

Date Updated: 19 March 2018

Balsam Peru oil

REFERENCES

EPI Suite, 2012

Available via the US EPA Exposure Assessment Tools and Models website at http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm. Accessed 9 March 2012.

FDA. 2012

United States Food and Drug Administration. EAFUS: Everything added to food in the United States. Balsam, Peru (Myroxylon pereirae Klotzsch). Accessed 9 March 2012. http://www.fda.gov/Food/FoodIngredientsPackaging/FoodAdditives/FoodAdditiveListings/ucm09 1048.htm#ftnB

Freireich-Astman, M., David, M., Trattner, A., 2007

Standard patch test results in patients with contact dermatitis in Israel: age and sex differences. Contact Dermatitis, 56.103-107.

Good Scents Company, 2012

Peru balsam, Peru balsam oil, Peru balsam resinoid, Peru balsam absolute (all CAS RN 8007-00-9). http://www.thegoodscentscompany.com/data/rs1000271.html,

http://www.thegoodscentscompany.com/data/es1009811.html,

http://www.thegoodscentscompany.com/data/rs1067581.html,

http://www.thegoodscentscompany.com/data/ab1604701.html Accessed 9 March 2012.

Hausen, B.M., 2001

Contact allergy to balsam of Peru. II. Patch test results in 102 patients with selected balsam of Peru constituents. Am. J. Contact Derm., 12(2), 93-102.

Hausen, B.M., Simatupang, T., Bruhn, G., Evers, P., Koenig, W.A., 1995 Identification of new allergenic constituents and proof of evidence for coniferyl benzoate in balsam of Peru. Am. J. Contact Derm., 6, 199-208.

Helsing, P., Gjersvik, P., Holm, J.Ø., Steinkjer, B., Holsen, D., Johnsson, M., Braun, R., Vårdal, M., Austad, J., 2010

Variability in patch test reactions – first report from the Norwegian Patch Test Registry. Contact Dermatitis, 62, 309-313.

Lindberg, M., Edman, B., Fischer, T., Stenberg, B., 2007

Time trends in Swedish patch test data from 1992 to 2000. A multi-centre study based on ageand sex-adjusted results of the Swedish standard series. Contact Dermatitis, 56, 205-210.

Niinimäki, A., 1995

Double-blind placebo-controlled peroral challenges in patients with delayed-type allergy to balsam of Peru. Contact Dermatitis, 33, 78-81.

Opdyke, D.L.J., 1974a

Fragrance raw materials monographs: Peru balsam. Fd Cosmet. Toxicol., 12, 951-952.

Opdyke, D.L.J., 1974b

Fragrance raw materials monographs: Peru balsam oil. Fd Cosmet. Toxicol., 12, 953-954.

Balsam Peru oil

SCCS, 2011a

Scientific Committee on Consumer Safety. Opinion on fragrance allergens in cosmetic products. Annex 1. Clinical evidence regarding sensitization to individual fragrance chemicals and to natural extracts. Accessed 19 March 2012.

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_073_annex1.pdf

SCCS, 2011b

Scientific Committee on Consumer Safety. Opinion on fragrance allergens in cosmetic products. Annex 2. Lymph node assay (LLNA) data on 59 fragrance substances, based on a summary report submitted by the Research Institute for Fragrance Materials, Inc. Accessed 19 March 2012

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_073_annex2.pdf

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf

Veien, N.K., Hattel, T., Laurberg, G., 1996

Can oral challenge with balsam of Peru predict possible benefit from a low-balsam diet? Am. J. Contact Derm., 7, 84-87.

Date Updated: 19 March 2018