Additive Toxicity Statement Acetoin

DESCRIPTION

Name Acetoin

IUPAC name 3-hydroxybutan-2-one

CAS no 513-86-0

EINECS no. 208-174-1

Molecular formula $C_4H_8O_2$

Structural formula

Molecular weight (g/mol.) 88.1

AVAILABLE STUDIES

The available toxicity studies indicated in the Commission Implementing Decision (EU) 2015/2186 have been provided as a bibliography of published papers. The studies were obtained by BAT for toxicological assessments, to ensure that additives do not increase the inherent risk associated with the use of our products.

The risk assessment starts with a comprehensive search for relevant papers, using the additive's name, major synonyms and CAS Registry Number. The main sources searched are: TRACE¹, Toxnet², RTECS³, TSCATS⁴, INCHEM⁵, Europa Food Flavouring⁶, ECHA⁷, EAFUS⁸, ChemIDplus⁹ and eChemportal¹⁰.

RISK ASSESSMENT

Toxicological assessments are carried out by our scientists (including a number of European Registered Toxicologists (ERT)) at our Research and Development facilities in the UK. Our approach excludes the use of formally classified genotoxicants, non-threshold carcinogens, mutagens, reproductive and developmental toxicants as additives. Based on Levels of Concern and weight-of evidence, our approach ensures that additives are used at levels lower than the relevant toxicological reference value.

Following a comprehensive search for all available toxicological information, our toxicologists select the most appropriate studies for evaluation for the intended route of exposure. To do this,

Additive Toxicity Statement Acetoin

our toxicologists evaluate the quality of all pertinent studies identified and the data used. The evaluation of data quality includes an assessment of its relevance and reliability as well as the adequacy of the information for hazard/risk assessment purposes, following the principles described by Klimisch *et al*¹¹.

In the majority of BAT's products, a number of the additives are heated or combusted. The effects of heating or combustion on additive toxicity, have been addressed by extensive testing. The results of pyrolysis, smoke chemistry, *in vitro* cytotoxicity, *in vitro* genotoxicity, inhalation toxicity and tumourigenicity studies have been widely published in peer-reviewed journals. These studies are included in our risk assessments where applicable by product class.

Examples of our assessment processes can be found in published literature for example:

- An overview of the effects of tobacco ingredients on smoke chemistry and toxicity¹²
- An approach to ingredient screening and toxicological risk assessment of flavours in eliquids¹³
- Contact sensitisation risk assessment approach for pouched snus ingredients¹⁴
- Assessment of the irritation potential of Swedish snus ingredients using the Epioral[™] tissue model¹⁵

Further examples of our scientific publications are available at www.bat-science.com.

Health risks of tobacco use have primarily been determined in long term human epidemiological studies. For example, the smoking population in countries such as Canada, Australia and the UK have historically smoked Virginia style cigarettes, which contain few additives. In other countries such as the US and Germany smokers prefer American-blended style cigarettes, which contain significantly more additives. Notwithstanding the distinction in historical use of additives in these countries, there appears to be no obvious difference in the relative risks of cigarette smoking for these types of cigarette, or on the incidence of diseases such as lung cancer and chronic obstructive pulmonary disease¹⁶, suggesting that the addition of additives to cigarettes may not increase the incidence of diseases associated with smoking.

ADDICTIVENESS

In its 2010 opinion on Addictiveness and Attractiveness of additives¹⁷, SCENIHR came to the clear conclusion that no additive could be identified which has an "addictive" effect in isolation, and that there are no indications that additives increase the "addictive" effect of nicotine itself.

In a more recent final opinion¹⁸, SCENIHR reviewed 1260 additives and selected only 14 substances for further study because of their contribution to addictiveness to smoking.

CONCLUSION

Based on the available scientific evidence, BAT's scientists have concluded that the additives used in BAT's tobacco products, do not add to the toxicological risks of using those products.

1. Available at: http://www.bibra-information.co.uk/supported access to our chemical toxicology database TRACE.html

Acetoin

- 2. Available at: http://toxnet.nlm.nih.gov/index.html
- 3. Available at: http://ccinfoweb.ccohs.ca/rtecs/search.html
- 4. Available at: http://www.srcinc.com/what-we-do/databaseforms.aspx?id=384
- 5. Available at: http://www.inchem.org/
- 6. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm
- 7. Available at: http://echa.europa.eu/information-on-chemicals
- Available at: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing
- 9. Available at: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
- 10. Available at: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
- 11. Klimisch, H.J., Andreae, E., Tillmann, U., (1997). A systematic approach for evaluating the quality of experimental and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25, 1–5.
- 12. R. R. Baker, E. D. Massey and G. Smith. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 42 Suppl:S53-S83, 2004.
- 13. S. Costigan and C. Meredith. An approach to ingredient screening and toxicological risk assessment of flavours in eliquids. Regul. Toxicol. Pharmacol. 72 (2):361-369, 2015.
- 14. B. Lang, S. Costigan, S. Goodall and C. Meredith. Contact sensitisation risk assessment approach for pouched snus ingredients. Toxicology Letters 229S:S109, 2014. (Abstract)
- 15. L. Neilson, S. Faux, S., Hinchcliffe, T. Jai and C. Meredith. Assessment of the irritation potential of swedish snus ingredients using the epioral™ tissue model. Society of Toxicology, Baltimore, USA, March 15-19th. The Toxicologist, Volume 108, no 1, pg 307-308 (March 2009) (Conference Poster)
- World Health Organisation, 2004. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans.
 Volume 83. Tobacco smoke and involuntary smoking. p 171. International Agency for Research on Cancer (IARC), Lyon, 2004
- SCENIHR, 2010. Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf.
- SCENIHR, 2015. Final Opinion on Additives used in Tobacco Products (Opinion 1). The Scientific Committee on Emerging and Newly Identified Health Risks. European Union. Available at: http://ec.europa.eu/health/scientific committees/emerging/docs/scenihr o 051.pdf.

Date Updated: 2 March 2016

Acetoin

REFERENCES

Aeschbacher, H.U., Wolleb, U., Löliger, J., Spadone, J.C., Liardon, R., 1989 Contribution of coffee aroma constituents to the mutagenicity of coffee. *Fd Chem. Toxic.*, 27, 227-232.

Alfa Aesar, 2012

Accessed December 2012. Available at: http://www.alfa.com/en/go160w.pgm?srchtyp=product

Burdock, G.A., 2010

Fenaroli's Handbook of Flavor Ingredients. 6th Edition. CRC Press, Boca Raton. ISBN 978-1-4200-9077-2.

ChemIDplus, 2012

Accessed December 2012. Available at: http://chem.sis.nlm.nih.gov/ChemIDplus/.

ChemSpider, 2012

Royal Society of Chemistry chemical structure database. Accessed December 2012. Available at: http://www.chemspider.com/

CoE, 2000

Chemically-defined flavouring substances. Council of Europe Publishing. ISBN 92-871-4453-2.

ECHA, 2013

European Chemicals Agency. Information on Chemicals. Accessed June 2013. Available at: http://echa.europa.eu/information-on-chemicals

EFSA, 2011

European Food Safety Authority. Scientific Opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) on a request from the Commission on Flavouring Group Evaluation 11, Revision 2 (FGE.11Rev2): Aliphatic dialcohols, diketones, and hydroxyketones from chemical groups 8 and 10. EFSA Journal 9(2), 1170. Available at: http://www.efsa.europa.eu/en/efsajournal/doc/1170.pdf.

EPA, 2013

US Environmental Protection Agency. Integrated Risk Information System. Accessed June, 2013. Available at: http://www.epa.gov/iris/search_human.htm

EPISuite, 2012

Accessed December 2012. The database is available to download at: http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

FDA, 2011

Food and Drug Administration. Everything added to Food in the United States (EAFUS). Last updated 17 November 2011. Available at:

http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing

Fisher Scientific, 2012

Accessed December 2012. Available at: http://www.fisher.co.uk/index.php/en/technical-support

Acetoin

Flavis, 2012

EUROPA food flavouring website. Accessed December 2012. Available at: http://ec.europa.eu/food/food/chemicalsafety/flavouring/database/dsp_search.cfm

Gaunt, I.F., Branton, P.G., Kiss, I.S., Grasso, P., Gangolli, S.D., 1972 Short-term toxicity of acetoin (acetylmethylcarbinol) in rats. *Fd Cosmet. Toxicol.*, 10, 131-141.

GESTIS, 2012

Gefahrstoffinformationssystem (Databases on hazardous substances). Accessed December 2012. Available at: http://limitvalue.ifa.dguv.de/Webform_gw.aspx

Good Scents Company, 2012

Record for acetoin (513-86-0). Accessed December 2012. Available at: http://www.thegoodscentscompany.com/

HSDB, 2005

Hazardous Substances Data Bank. Record for acetoin. Last Revision Date: 14 November 2005. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.

IARC, 2012

International Agency for Research on Cancer. World Health Organization. Accessed December 2012. Available at: http://www.iarc.fr/

JECFA, 2000

Evaluation of certain food additives. Fifty-First report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 891. World Health Organization, Geneva. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_891.pdf.

JECFA, 1999

Safety evaluation of certain food additives. Prepared by the fifty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additive Series, 42. World Health Organization, Geneva. Available at:

http://www.inchem.org/documents/jecfa/jecmono/v042je20.htm.

JRC. 2012

Joint Research Centre. European chemical Substances Information System (ESIS). Accessed December 2012. Available at: http://esis.jrc.ec.europa.eu/

Kim, S.B., Hayase, F., Kato, H., 1987

Desmutagenic effect of α -dicarbonyl and α -hydroxycarbonyl compounds against mutagenic heterocyclic amines. *Mutation Res.*, 177, 9-15.

Merck, 2006

The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. Ed. O'Neil J et al. Fourteenth edition. Merck & Co., Ltd., Whitehouse Station, NJ, USA.

NTP, 2011

Acetoin

National Toxicology Programme. Twelfth report on carcinogens. Accessed June, 2013. Available at: http://ntp.niehs.nih.gov/?objectid=03C9AF75-E1BF-FF40-DBA9EC0928DF8B15.

NTP. 2009a

US National Toxicology Program. Micronucleus study in rats. Study ID: G99018. Available at: http://tools.niehs.nih.gov/ntp_tox/index.cfm?fuseaction=micronucleus.micronucleusData&endpointlist=MN¤t%5Fstrain%5Fid=Wistar%20Han&study%5Fno=G99018&cas%5Fno=513%2D86%2D0&activetab=summary

NTP, 2009b

US National Toxicology Program. Micronucleus study in mice. Study ID: G99018B. Available at: http://tools.niehs.nih.gov/ntp_tox/index.cfm?fuseaction=micronucleus.micronucleusData&cas_n o=513%2D86%2D0&endpointlist=MN

NTP, 2007

Chemical information review document for artificial butter flavoring and constituents diacetyl [CAS No. 431-03-8] and acetoin [CAS No. 513-86-0]. Supporting nomination for toxicological evaluation by the National Toxicology Program. January 2007. Available at: http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumPdf/Artificial_butter_flavoring.pdf.

NTP, 1999

US National Toxicology Program. Salmonella study. Study ID: A17696. Available at: http://tools.niehs.nih.gov/ntp_tox/index.cfm?fuseaction=salmonella.overallresults&cas_no=513-86-0&endpointlist=SA.

Opdyke, D.L.J., 1979

Monographs on fragrance raw materials: acetoin. Fd Cosmet. Toxicol., 17, 509-511.

SCENIHR, 2010

Addictiveness and Attractiveness of Tobacco Additives. The Scientific Committee on Emerging and Newly Identified Health Risks. ISBN 978-92-79-12788-5. European Union. Available at: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_029.pdf

Sigma-Aldrich, 2012

Accessed December 2012. Available at: http://www.sigmaaldrich.com/united-kingdom.html

SRC. 2011

Syracuse Research Corporation. Interactive PhysProp Database Demo. Available at: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386

Stoner, G.D., Shimkin, M.B., Kniazeff, A.J., Weisburger, J.H., Weisburger, E.K., Gori, G.B., 1973

Test for carcinogenicity of food additives and chemotherapeutic agents by the pulmonary tumor response in strain A mice. *Cancer Res.*, 33, 3069-3085.