Titanium dioxide

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal; with, with metabolic activation; without, without metabolic activation]

In vivo

Species	Test conditions	Endpoint	Results	Reference
Mouse	Intraperitoneal	Chromosome damage	+ve (weak)	NTP, 1988
$(B6C3F_1), 4-5$	(i.p.) injection			
males/group	of titanium		[A high	
	dioxide		quality	
	(13463-67-7)		study.]	
	0, 0.25, 0.5 or			
	1 g/kg bw/day			
	for 3 days.			
	Peripheral			
	blood			
	lymphocytes			
	were examined			
	for			
	micronucleated			
	PCEs 48 hr			
	after the last			
	dose.			
Mouse	Three trials,	Chromosome damage	+ve (weak)	NTP, 1988
(B6C3F ₁), 5	each involving	Cinomosome damage	1 ve (weak)	1011, 1500
males/group	daily i.p.		Some	
(except trial 2	injection for		evidence in	
with 3 mice at	3 days.		all three	
the top dose)	Trial 1: 0, 0.25,		trials.	
1 /	0.5 and 1 g/kg			
	bw/day.		[A high	
	Trial 2: 0, 1.5		quality	
	and 2 g/kg		study.]	
	bw/day (only		• -	
	one mouse at			
	top dose –			
	presumably the			
	other two			
	died).			
	Trial 3: 0, 0.5,			
	1 and 1.5 g/kg			
	bw/day.			
	In each case			
	bone marrow			
	cells were			

	examined for micronucleated PCEs, 24 hr after the final dose.			
Mouse (B6C3F ₁), 8 males/group	Titanium dioxide (13463-67-7) was given in two trials at 0, 0.625, 1.25 and 2.5 g/kg bw by single i.p. injection. Bone marrow cells were examined for chromosome aberrations 17 or 36 hr after dosing.	Chromosome damage	-ve [A high quality study.]	NTP, 1989
Mouse (B6C3F ₁), 4 males/group	Titanium dioxide (13463-67-7) was given at 0, 0.625, 1.25 and 2.5 g/kg bw by single i.p. injection; bone marrow cells were scored for SCEs 23 hr after dosing.	Chromosome effects	-ve [A high quality study.]	NTP, 1989
Rat	A single oral dose of 1 g/kg bw was given in an assay for DNA damage. [No further details are given in the citation.]	DNA damage	-ve	Kitchin & Brown, 1989
Rat (Wistar), 30 females/group	A single intratracheal instillation of titanium	DNA damage	-ve	Rehn et al. 2003

	dioxide was			
	given in saline			
	(0.15, 0.3, 0.6)			
	or 1.2 mg) -			
	either P25			
	(untreated,			
	hydrophilic			
	surface;			
	apparently			
	80:20			
	anatase:rutile)			
	or T805			
	(dispersed,			
	fumed TD,			
	treated with			
	octyl silane to			
	produce a			
	hydrophobic			
	surface).			
	Particle			
	diameter was			
	said to be			
	about 20 nm in			
	each case,			
	though electron transmission			
	microscopy			
	suggested			
	bigger			
	particles,			
	highly			
	aggregated and			
	agglomerated.			
	Lung sections			
	were taken at			
	90 days and			
	8-oxoguanidine			
	(an oxidative			
	DNA adduct)			
	quantified by			
	image analysis.			
D-4 (W' +)	E	DNA 4.		C-11- 1 1
Rat (Wistar),	Exposure to	DNA damage	-ve	Gallagher et al.
females	titanium			1994
	dioxide with			
	examination			
	for the			
	formation of			
	DNA adducts			
Ī	in lung tissue.	1	1	I

Drosophila melanogaster (Canton-S), males	[No further details are given in the citation.] Adult fruit flies were fed a solution containing 0 or 1480 ppm titanium dioxide (13463-67-7) for 3 days, mated with	Mutation	-ve [A high quality study.]	NTPa
Duoronkila	Basc females to produce 3 broods and monitored for the induction of sex-linked recessive lethals.	Mutation		NTDo
Drosophila melanogaster (Canton-S), males	Adults were injected with 0 or 5680 ppm titanium dioxide (13463-67-7) suspension, mated with Basc females to produce 3 broods and monitored for the induction of sex-linked recessive lethals.	Mutation	-ve [A high quality study.]	NTPa
Drosophila melanogaster, males and females	Fruit flies were fed titanium dioxide (13463-67-7) for 2 days at 0, 100 or 300 mM (24 g/l) in the somatic mutation (wing	Mutation	-ve	Tripathy et al. 1990

spot) assay. [No further details are given in the citations.]		
-		

In vitro

Test system	Test conditions	Endpoint	Activati on status	Results	Reference
Mouse lymphoma cells (L5178Y)	Tested at up to 0.05 (with S9) and 0.1 mg/ml (without S9) in duplicate tests. No signs of toxicity.	Mutation	With and without S9	-ve [A high quality study.]	NTPb
Mouse lymphoma, cells (L5178Y)	Various other reports of mouse lymphoma mutation assays are likely to be for the same NTP study as described above.	Mutation	With and without S9	-ve [Probably reports of the same study as above]	Myhr & Caspary, 1991; Shelby & Stasiewicz, 1984; Tennant et al. 1987a,b
Mouse lymphoma cells (L5178Y)	Cells were exposed to titanium dioxide (1317-80-2 21 nm) at seven concentrations (0.25-2 mg/ml) for 1 hr and then exposed to UV/visible light for 50 minutes.	Mutation	Without	-ve	Nakagawa et al. 1997
Human bronchial cells (BEAS- 2B)	Cells were exposed to anatase and rutile particles of different sizes at 10 µg/ml. In the Comet assay (evaluating DNA damage) rutile of 200 nm and anatase of 10, 20, 200 and >200 nm were used. The potential for induction of micronuclei	DNA damage Chromosome damage	Without	DNA damage: +ve [10 and 20 nm anatase, 200 nm rutile.] Chromosome damage: +ve [10 and 200 nm anatase.]	Gurr et al. 2005

Chinese	(chromosome damage) was examined by incubation with 200 nm rutile or 10, 200 or >200 nm anatase for 24 hr.	Chromosome	With	-ve	NTP, 1985
hamster ovary cells	(13463-67-7) was tested at up to 25 µg/ml for 2 hr (with S9) or 8 hr (without S9). The cells were harvested at 10.5 hr (without S9) or 12.5 hr (with S9) and scored for chromosome aberrations.	damage	and without S9	(Equivocal result in 1 st trial with S9, repeat trial was clean.) [A high quality study.]	
Chinese hamster ovary cells	In the same study titanium dioxide (13463-67-7) was tested at up to 25 µg/ml for 2-hr (with S9) or 26 hr (without S9) and the cells scored at 28 hr for sister chromatid exchanges (SCE).	Chromosome effects	With and without S9	-ve [A high quality study.]	NTP, 1985
Chinese hamster ovary cells	Various other reports on the ability of titanium dioxide to induce chromosome aberrations or sister chromatid exchanges (SCEs) are likely to be for the same NTP studies as described above.	Chromosome damage and effects	With and without S9	-ve [Probably the same studies as described above.]	Ivett et al. 1989; Shelby & Stasiewicz, 1984; Tennant et al. 1987a,b
Chinese hamster cells (CHL/IU)	Cells were exposed to titanium dioxide (1317-80-2 21 nm)	Chromosome damage	Without	-ve without irradiation	Nakagawa et al. 1997

	at six			+ve with	
	concentrations (25-800 µg/ml) for around 2 hr, with examination for chromosome aberrations after a further 20-hr incubation.			irradiation	
	[Parallel tests were also conducted (at 0.78-50 µg/ml) with exposure to UV/visible light for 50 minutes.]				
Syrian hamster embryo fibroblast cells	In a study comparing effects of particle size, cells were incubated with up to 10 µg/ml fine (>200 nm) or ultrafine (<20 nm) particles for 12-72 hr, and examined for micronucleus induction.	Chromosome damage	Without	+ve for ultrafine particles -ve for fine particles	Rahman et al. 2002
Chinese hamster ovary cells (K1)	Incubation with 0, 1, 2 or 5 μM (≤0.4 mg/l) titanium dioxide (13463-67-7) for 24 hr, with examination for the induction of sister chromatid exchanges (SCEs). Incubation with 0-20 μM (≤1.6 mg/l) for 18 hr in the standard micronucleus assay or 24 hr in the cytokinesis-block micronucleus assay. In each case	Chromosome damage and effects	Without	+ve (Dose-dependant increase in SCE frequency. Slight (but statistically significant) increase in micronuclei in the standard assay. Greater increase in the cytokinesis-block micronucleus assay.)	Lu et at. 1998

	titanium dioxide was added to the culture medium having been suspended in DMSO. No titanium dioxide precipitate was seen at up to 10 µM in culture, but no comment is made for any higher concentration.				
Chinese hamster ovary cells (K5)	Cells were exposed to titanium dioxide (13463-67-7) at $0.025-10~\mu g/ml$ (-S9) or $0.25-10~\mu g/ml$ (+S9) for 48 hr, with examination for the induction of micronuclei. The difficulty dissolving titanium dioxide was noted and precipitation was reported at $\geq 0.5~\mu g/ml$ (-S9) and $\geq 1~\mu g/ml$ (+S9).	Chromosome damage	With and without S9	-ve [Limited solubility would have reduced the concentration to which cells were exposed.]	Miller et al. 1995
Rat liver epithelial cells	Two ultrafine titanium dioxide preparations (1317-70-0, uncoated and 1317-80-2, coated with aluminium hydroxide and stearic acid; both 20 nm) and one pigment grade titanium dioxide (1317-70-0, 170 nm) were tested at 5, 10 and 20 µg/ml with and	Chromosome damage	Without	-ve (with and without irradiation)	Linnainmaa et al. 1997

Mouse lymphoma cells (L5178)	without UV irradiation. Cells were examined for the induction of micronuclei. Cells were exposed to titanium dioxide (1317-80-2 particle size 21 and 255 nm, and 1317-70-0 particle size 255	DNA damage	Without	+ve (1317-80-2, 255 nm caused a dose-dependant increase in	Nakagawa et al. 1997
	and 420 nm) at four or five concentrations in the range 3-3200 µg/ml, for around 2 hr, in a single cell gel assay for DNA damage. [Parallel tests were also conducted with exposure to UV/visible light for 50 minutes.]			mean tail length without irradiation. When irradiated, positive results were reported for all samples except 1317-70-0, 255 nm.)	
Rat liver cells	Hepatocytes were incubated with titanium dioxide (13463-67-7), and then examined for unscheduled DNA synthesis.	DNA damage (indicative test)	N/A	-ve	Tennant et al. 1987b
Hamster cells	A test for DNA damage. [No further details are given in the citations.]	DNA damage	Not stated in the citations	-ve	Poole et al. 1986
Human embryonic lung fibroblasts	Titanium dioxide was tested for the incorporation of tritiated thymidine in a test for DNA damage.	DNA damage (indicative test)	Without	-ve	Lemaire et al. 1982
Syrian hamster cells	Cell transformation assays were	Cell transformation	Not stated in	-ve	DiPaolo & Casto, 1979;

	conducted to determine whether cells exposed to titanium dioxide more closely resemble a cancerous state. [No further details are given in the citations.]		the citations		Mikalsen et al. 1988
Hamster cells (SA7/SHE)	Cell transformation, viral enhanced.	Cell transformation	Not stated in the citation	-ve	Heidelberger et al. 1983
Salmonella typhimurium strains TA97, TA98, TA100 and TA1535	Titanium dioxide (13463-67-7) was tested in an Ames test, including a preincubation step, at up to 10 mg/plate. Solubility was exceeded at 1 mg/plate.	Mutation	With and without S9 derived from rat and hamster liver	-ve [A high quality study.]	NTP, 1984; Zeiger et al. 1988
Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and Escherichia coli WP2uvrA	Titanium dioxide was tested in an Ames test, including a preincubation step, at up to 5 mg/plate.	Mutation	With and without S9	-ve	JCIETIC
Salmonella typhimurium strains TA97 and TA102	Titanium dioxide was tested in an Ames test, including a preincubation step, at up to 1 mg/plate.	Mutation	With and without S9	-ve [Limited study; at least 4 strains are currently recommended.]	Fujita et al. 1994
Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 TA1538 and	Titanium dioxide (13463-67-7) was tested in the Ames test in four laboratories at a dose range that did not exceed	Mutation	With and without S9 derived from rat, hamster	-ve	Dunkel et al 1985

Escherichia coli (WP2uvrA)	10 mg/plate [no further details are given].		and mouse liver		
Salmonella typhimurium 4-5 strains	Titanium dioxide (13463-67-7) was tested in the Ames test at up to 10 µg/plate.	Mutation	With and without S9	-ve [Probably the same as NTP, 1984]	Tennant et al. 1987a,b
Bacillus subtilis	Rec assay	DNA damage (indicative test)	No data given in the citations	-ve	Kada et al. 1980; Kanematsu et al. 1980
Salmonella typhimurium strains TA98, TA100 and TA102	Titanium dioxide (1317-80-2 21 nm) was tested at 5, 10, 20 and 40 mg/ml with or without exposure to UV/visible light for 10 or 50 minutes. Revertants were scored after incubation for 48 hr.	Mutation	Without	-ve (with and without irradiation)	Nakagawa et al. 1997

References

BIBRA (1990). Toxicity Profile: titanium dioxide. BIBRA Information Services Ltd., Sutton, Surrey, UK.

CCRIS (2003). Chemical Carcinogenesis Research Information System, data on titanium dioxide (13463-67-7) provided by the National Cancer Institute. Last revised 1 December 2003, accessed October, 2005. Available via National Library of Medicine, Specialized Information Services at http://toxnet.nlm.nih/gov.

Commission (1995). Commission Directive 95/45/EC of 26 July 1995 laying down specific purity criteria concerning colours for use in foodstuffs. Official Journal of the European Communities L226, 1.

DiPaolo J A & Casto B C (1979). Quantitative studies of *in vitro* morphological transformation of Syrian hamster cells by inorganic metal salts. Cancer Research 39, 1008-1013 (cited in BIBRA, 1990; IUCLID, 2000; SCCNFP, 2000).

Dunkel V C et al. (1985). Reproducibility of microbial mutagenicity assays. 2. Testing of carcinogens and noncarcinogens in *Salmonella typhimurium* and *Escherichia coli*. Environmental Mutagenesis 7 (suppl. 5), 1-248.

Fujita H et al. (1994). Mutagenicity test of food additives with *Salmonella typhimurium* TA97 and TA102. IX; Tokyo-Toritsu Eisei Kenkyusho Kenkyu Nenpo 45, 191-199 (cited in CCRIS, 2003).

Gallagher J et al. (1994). Formation of DNA adducts in rat lung following chronic inhalation of diesel emissions, carbon black and titanium dioxide particles. Carcinogenesis 15, 1291-1299 (cited in OEHHA, 2003).

Gene-tox (1992). Peer-reviewed mutagenicity test data from the Environmental Protection Agency. Data on titanium dioxide (13463-67-7), last updated 2 June 1992, accessed September 2005. Available via National Library of Medicine, Specialized Information Services at http://toxnet.nlm.nih/gov.

Gurr J-R et al. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66-73.

Heidelberger C et al. (1983). Cell transformation by chemical agents: a review and analysis of the literature: report of the US Environmental Protection Agency Gene-Tox Program. Mutation Research 114, 283-385 (cited in Gene-tox, 1992).

IUCLID (2000). International Uniform Chemical Information Database. Data sheet on titanium dioxide (13463-67-7). Institute for Health and Consumer Protection. European Commission, European Chemicals Bureau.

Ivett J L et al. (1989). Chromosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary cells *in vitro*. IV. Results with 15 chemicals. Environmental and Molecular Mutagenesis 14, 165-187 (cited in BIBRA, 1990; OEHHA, 2003).

JCIETIC [undated]. Mutagenicity test data of existing chemical substances based on the toxicity investigation of the industrial safety and health law. Japan Chemical Industry, Ecology, Toxicology and Information Centre (cited in CCRIS, 2003).

Kada T et al. (1980). Screening of environmental chemical mutagens by the rec-assay system with *Bacillus subtilis*. Chemical Mutagens 6, 149-173 (cited in BIBRA, 1990; IUCLID, 2000).

Kanematsu N et al. (1980). Rec assay and mutagenicity studies on metal compounds. Mutation Research 77, 109-116 (cited in BIBRA, 1990; IUCLID, 2000).

Kitchin K T & Brown J L (1989). Biochemical studies of promoters of carcinogenesis in rat liver. Teratogenesis, Carcinogenesis, and Mutagenesis 9, 273-285 (cited in IUCLID, 2000).

Lemaire I et al. (1982). Thymidine incorporation by lung fibroblasts as a sensitive assay for biological activity of asbestos. Environmental Research 28, 399-409 (cited in IUCLID, 2000; SCCNFP, 2000).

Linnainmaa K et al. (1997). Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicology in Vitro 11, 329-335.

Lu P-J et al. (1998). Induction of sister chromatid exchanges and micronuclei by titanium dioxide in Chinese hamster ovary-K1 cells. Mutation Research 414, 15-20.

Mikalsen S -0 et al. (1988). Morphological transformation of Syrian hamster embryo cells induced by mineral fibres and the alleged enhancement of benzo(a)pyrene. Carcinogenesis 9(6), 891-9 (cited in BIBRA, 1990; IUCLID, 2000; SCCNFP, 2000).

Miller B M et al. (1995). Evaluation of the micronucleus test *in vitro* using Chinese hamster cells: results of four chemicals weakly positive in the *in vivo* micronucleus test. Environmental and Molecular Mutagenesis 26, 240-247.

Myhr B C & Caspary W J (1991). Chemical mutagenesis at the thymidine kinase locus in L5178Y mouse lymphoma cells: results for 31 coded compounds in the National Toxicology Program. Environmental and Molecular Mutagenesis 18, 51-83 (cited in IUCLID, 2000; SCCNFP, 2000).

Nakagawa Y et al. (1997). The photogenotoxicity of titanium dioxide particles. Mutation Research 394, 125-132.

NCI (1979). Bioassay of titanium dioxide for possible carcinogenicity. CAS number 13463-67-7. National Cancer Institute. Technical Report Series No. 97. US Department of Health, Education and Welfare.

NTPa [undated]. NTP study 211708 (cited in NTP, 2004).

NTPb [undated]. NTP study 006080 (cited in NTP, 2004).

NTP (1984). NTP study 004554 (cited in NTP, 2004).

NTP (1985). NTP study 766516 (cited in NTP, 2004).

NTP (1988). NTP study 563272 (cited in NTP, 2004).

NTP (1989). NTP study 860815 (cited in NTP, 2004).

NTP (2004). NTP studies on titanium dioxide (13463-67-7). Available via the NTP database at http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm.

OEHHA (2003). Draft prioritized candidate chemicals under consideration for carcinogenicity evaluation: batch #4, October 2003. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency. Available at http://www.oehha.ca.gov/prop65/docs_state/pdf/batch4sums.pdf.

Poole A et al. (1986). The *in vitro* activities of a highly carcinogenic mineral fibre-potassium octatitanate. British Journal of Experimental Pathology 67, 289-296 (cited in BIBRA, 1990; IUCLID, 2000).

Rehn B et al. (2003). Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicology and Applied Pharmacology, 189, 84-95.

Rahman Q et al. (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo cell fibroblasts. Environmental Health Perspectives, 110, 797-800.

SCCNFP (2000). Opinion of the Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers concerning titanium dioxide. Colipa No. S75. SCCNFP/0005/98, adopted by the SCCNFP during the 14th plenary meeting of 24 October 2000.

Shelby M D & Stasiewicz S (1984). Chemicals showing no evidence of carcinogenicity in long-term, two-species rodent studies: the need for short-term test data. Environmental Mutagenesis 6, 871-878 (cited in IUCLID, 2000).

Tennant R W et al. (1987a). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. Science N Y 236, 933-941.

Tennant R W et al. (1987b). Comparative evaluation of genetic toxicity patterns of carcinogens and noncarcinogens: strategies for predictive use of short-term assays. Environmental Health Perspectives 75, 87-95 (cited in BIBRA, 1990; IUCLID, 2000; SCCNFP, 2000).

Tripathy N K et al. (1990). Genetic toxicity of six carcinogens and six non-carcinogens in the *Drosophila* wing spot test. Mutation Research 242, 169-180 (cited in IUCLID, 2000; SCCNFP, 2000).

Zeiger E et al. (1988). *Salmonella* mutagenicity tests: IV. Results from the testing of 300 chemicals. Environmental and Molecular Mutagenesis, 11(suppl 12), 1-158.