**Botanical Source** 

**Synonyms** SORBIC ACID, POTASSIUM SALT;

POTASSIUM HEXA-2,4-DIENOATE;

HEXADIENOIC ACID, POTASSIUM SALT (2,4-)

**IUPAC Name** 

**CAS Reference** 590-00-1 **E Number** E202

## **Food Legislation**

| Council of Europe (CoE) |                |  |  |
|-------------------------|----------------|--|--|
| Number                  | Number Comment |  |  |
| -                       | -              |  |  |

| US Food and Drug Administration |                                             |  |  |
|---------------------------------|---------------------------------------------|--|--|
| Number                          | Number Comment                              |  |  |
| 182.3640                        | Approved by the US FDA. FDA 21 CFR 182.3640 |  |  |

| Joint FAO/WHO Expert Committee on Food Additives (JECFA) |                    |  |  |  |  |  |
|----------------------------------------------------------|--------------------|--|--|--|--|--|
| Number                                                   | Number ADI Comment |  |  |  |  |  |
| -                                                        | -                  |  |  |  |  |  |

| FEMA     |                                                                         |  |
|----------|-------------------------------------------------------------------------|--|
| FEMA No. | Comment                                                                 |  |
| 2921     | Generally recognised as safe as a flavour ingredient:GRAS List Number 3 |  |

### **Natural Occurrence and Use in Food**

Found in mountain ash berries; used in cheese, gravies, snacks, fruit juices.

| Estimated Intake from Food and Drink                         |       |  |  |  |
|--------------------------------------------------------------|-------|--|--|--|
| Daily Intake mg/kg/day FEMA Possible Average Daily Intake mg |       |  |  |  |
| 2.3446                                                       | 0.411 |  |  |  |

# Tobacco Product Related Chemical and Biological Studies for Ingredients Added in a Mixture

| Smoke Chemistry                                     |  |                                                                                                                                    |  |  |
|-----------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Published Source Level Tested % Comment             |  |                                                                                                                                    |  |  |
| BAT 0.60000 not associated with significant increas |  | At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke. |  |  |
|                                                     |  | An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.                              |  |  |

| Ames Activity                           |                                                                                                                                                                          |                                                                                                                                                    |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Published Source Level Tested % Comment |                                                                                                                                                                          |                                                                                                                                                    |  |
| ВАТ                                     | AT 0.60000 Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient. |                                                                                                                                                    |  |
| Philip Morris 0.08370                   |                                                                                                                                                                          | Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient. |  |

| Micronucleus     |                |                                                                                                                                                               |  |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Published Source | Level Tested % | Comment                                                                                                                                                       |  |
| BAT              | 0.60000        | Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient. |  |

| Neutral Red                             |                                                                                                                                                                   |                                                                                                                                                |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Published Source Level Tested % Comment |                                                                                                                                                                   |                                                                                                                                                |  |
| ВАТ                                     | 0.60000 Within the sensitivity of the test system the invitro cytotoxicity of the cigarette smoke condensate was not increased by the addition of the ingredient. |                                                                                                                                                |  |
| Philip Morris 0.08370                   |                                                                                                                                                                   | Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was no increased by the addition of the ingredient. |  |

| Inhalation            |                |                                                                                                                                                    |  |  |
|-----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Published Source      | Level Tested % | Comment                                                                                                                                            |  |  |
|                       |                | The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.                 |  |  |
| Lorillard 0.00001     |                | The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.                 |  |  |
| Philip Morris 0.08370 |                | The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke. |  |  |

| Mouse Skin Painting |                                        |                                                                                                                                                                                                                                                                                        |  |  |
|---------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Published Source    | ublished Source Level Tested % Comment |                                                                                                                                                                                                                                                                                        |  |  |
| Lorillard           | 0.00001                                | None of the changes appeared to be substantial enough to conclude that the tumour promotion capacity of the condensate was discernibly different between condensate produced from cigarettes with the ingredient in comparison with condensate from cigarettes without the ingredient. |  |  |

#### References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37.

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B, Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Gaworski CL, Dozier MM, Heck JD, Gerhart JM, Rajendran N, David RM. Brennecke LH, Morrissey R. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: 13 week inhalation exposures in rats. Inhal. Toxicol. 1998; 10:357-381

Gaworski CL, Heck JD, Bennett MB, Wenk ML. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. Toxicology. 1999; 139(1-2):1-17.

# Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

### References

Baker RR, Bishop LJ. The pyrolysis of non-volatile tobacco ingredients using a system that simulates cigarette combustion conditions. J. Anal. Appl. Pyrolysis 2005, 74, 145-170.

# **Toxicological Data on the Unburnt Ingredient**

[+ve, positive; -ve, negative; ?, equivocal; with, with metabolic activation; without, without metabolic activation]

### In vivo

| Species                                                   | Test conditions                                                                                                                                        | Endpoint           | Results | Reference                 |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|---------------------------|
| Rat (8 per group [sex not specified in expert review])    | Intraperitoenal injection with up to 1.2 g potassium sorbate/kg bw. Liver examined for DNA damage using alkaline elution.                              | DNA damage         | -ve     | Jung et al.<br>1992       |
| Mouse<br>(4 males per<br>group)                           | Comet assay with a single oral dose of sorbic acid or potassium sorbate of 2 g/kg bw. Many organs assessed for DNA damage 3 and 24 hr after treatment. | DNA damage         | -ve     | Sasaki et al.<br>2002     |
| Mouse (5 per group [sex not specified in expert review])  | Animals dosed with sorbic acid at up to 5 g/kg bw/day by gavage. Bone marrow examined for micronuclei.                                                 | Chromosome damage  | -ve     | Jung et al.<br>1992       |
| Mouse (5 per group [sex not specified in expert review])  | Animals dosed with sorbic acid at up to 5 g/kg bw/day by gavage. Bone marrow examined for sister chromatid exchanges.                                  | Chromosome effects | -ve     | Jung et al.<br>1992       |
| Mouse (10 per group [sex not specified in expert review]) | Animals dosed with sorbic acid at 15 mg/kg bw/day by gavage for 30 days.  Bone marrow examined for chromosome aberrations.                             | Chromosome damage  | -ve     | Bannerjee &<br>Giri, 1986 |

| Mouse                       | Animals dosed at doses      | Chromosome | 1. & 2.          | Munzner et al. |
|-----------------------------|-----------------------------|------------|------------------|----------------|
| [group size not             | equivalent to up to         | damage     | -ve              | 1990           |
| specified in expert review] | 200 mg sorbic acid/kg bw.   |            | 3. +ve           |                |
| expert review               | Gavage:                     |            | (small, but      |                |
|                             | 1. & 2. freshly-prepared    |            | statistically    |                |
|                             | sodium or potassium         |            | significant      |                |
|                             | sorbate;                    |            | increase at      |                |
|                             | 3. stored sodium sorbate;   |            | 200 mg/kg        |                |
|                             | 4. stored potassium sorbate |            | bw)              |                |
|                             | Solvate                     |            | 4. –ve           |                |
|                             | Intraperitoneal injection:  |            | , ,              |                |
|                             | 5. & 6. fresh or stored     |            | 5. & 6.          |                |
|                             | potassium sorbate;          |            | -ve              |                |
|                             | 7. stored sodium sorbate    |            |                  |                |
|                             |                             |            | 7. +ve           |                |
|                             | Bone marrow examined        |            | (slight          |                |
|                             | for micronuclei.            |            | increase at      |                |
|                             |                             |            | 200 mg/kg<br>bw) |                |
|                             |                             |            | DW)              |                |
| Mouse                       | Intraperitoneal injection   | Chromosome | +ve              | Mukherjee et   |
| [group size not             | of sorbic acid at           | damage     |                  | al. 1988       |
| specified in                | 150 mg/kg bw. Bone          |            |                  |                |
| expert review]              | marrow examined for         |            |                  |                |
|                             | micronuclei.                |            |                  |                |
| Mouse                       | Intraperitoneal injection   | Chromosome | +ve              | Mukherjee et   |
| [group size not             | of sorbic acid at 75 mg/kg  | effects    |                  | al. 1988       |
| specified in                | bw. Bone marrow             |            |                  |                |
| expert review]              | examined for sister         |            |                  |                |
|                             | chromatid exchanges.        |            |                  |                |
|                             |                             |            |                  |                |

| Hamster [group size not specified in expert review] | Animals administered (by gavage or by intraperitoneal injection) doses equivalent to up to 200 mg sorbic acid/kg bw of freshly-prepared or stored sodium or potassium sorbate. Bone marrow examined for micronuclei.                | Chromosome damage  | +ve with fresh or stored sodium sorbate by injection  -ve with all other dosing regimens | Munzner et al.<br>1990 |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------|------------------------|
| Hamster [group size not specified in expert review] | Animals administered (by gavage or by intraperitoneal injection) doses equivalent to up to 200 mg sorbic acid/kg bw of freshly-prepared or stored sodium or potassium sorbate. Bone marrow examined for chromosome aberrations.     | Chromosome damage  | +ve with fresh or stored sodium sorbate by injection  -ve with all other dosing regimens | Munzner et al.<br>1990 |
| Hamster [group size not specified in expert review] | Animals administered (by gavage or by intraperitoneal injection) doses equivalent to up to 200 mg sorbic acid/kg bw of freshly-prepared or stored sodium or potassium sorbate. Bone marrow examined for sister chromatid exchanges. | Chromosome effects | -ve                                                                                      | Munzner et al.<br>1990 |

## In vitro

| In vitro                                                           |                                                                                                                                                                                                                                                   |                                                                                                    |                           |                                                                       |                              |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------|------------------------------|
| Test system                                                        | Test conditions                                                                                                                                                                                                                                   | Endpoint                                                                                           | Activation status         | Results                                                               | Reference                    |
| Human cells [test system not further specified in expert review]   | Treatment with sorbic acid. Assay for unscheduled DNA synthesis. [No further details in expert review.]                                                                                                                                           | DNA damage                                                                                         | With and without S9       | -ve                                                                   | Jung et al. 1992             |
| Human cells [test system not further specified in expert review]   | Treatment with potassium sorbate. [No further details in expert review.]                                                                                                                                                                          | Single stranded<br>DNA breaks                                                                      | With and<br>without<br>S9 | -ve                                                                   | Jung et al. 1992             |
| Hamster cells [test system not further specified in expert review] | Treatment with sorbic acid, potassium sorbate, freshly-prepared sodium sorbate, or sodium sorbate that had been heated to 80°C and then stored for 48 hr. Cells examined for micronuclei or transformation [No further details in expert review.] | Chromosome damage and cell transformation  [Transformed cells exhibit cancer-like characteristics] | Without S9                | Heated and stored sodium sorbate: +ve All other testing regimens: -ve | Schiffmann & Schlatter, 1992 |

| Hamster cells [test system not further specified in expert review]                  | Treatment with potassium sorbate or freshly-prepared or stored (2-4 wk at room temperature) sodium sorbate. Cells assessed for point mutation and sister chromatid exchanges. [No further details in expert review.] | Mutation;<br>chromosome<br>effects | With and without S9                       | Stored sodium sorbate: +ve for point mutation with S9  All other testing regimens: -ve | Munzner et al.<br>1990                                                                                               |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Mammalian<br>cells [test<br>system not<br>further<br>specified in<br>expert review] | Sorbic acid,<br>sodium sorbate<br>or potassium<br>sorbate. [No<br>further details<br>in expert<br>review.]                                                                                                           | Mutation                           | [Not<br>specified<br>in expert<br>review] | Sodium<br>sorbate:<br>+ve<br>Sorbic<br>acid and<br>potassium<br>sorbate:<br>-ve        | Budayova,<br>1985;<br>Hasegawa et al.<br>1984                                                                        |
| Mammalian cells [test system not further specified in expert review]                | High concentrations of sorbic acid, sodium sorbate or potassium sorbate. Cells examined for chromosome damage and sister chromatid exchanges. [No further details in expert review.]                                 | Chromosome damage and effects      | [Not<br>specified<br>in expert<br>review] | +ve                                                                                    | Abe & Sasaki,<br>1977;<br>Hasegawa et al.<br>1984; Ishidate<br>& Odashima,<br>1977; Ishidate<br>et al. 1984;<br>1988 |

| Mammalian cells [test system not further specified in expert review]        | Treatment with stored freshly-prepared sodium sorbate or stored sodium or potassium sorbate. Cells examined for aneuploidy. [No further details in expert review.] | Change in chromosome number | [Not<br>specified<br>in expert<br>review]                                         | +ve                                | Schlatter et al.<br>1992   |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------|------------------------------------|----------------------------|
| Salmonella<br>typhimurium<br>strains TA98,<br>TA98, TA100,<br>TA1535        | Ames test with sorbic acid at up to 6.6 mg/plate                                                                                                                   | Mutation                    | With and<br>without<br>rat and<br>hamster<br>liver S9                             | -ve<br>[Good<br>quality<br>study.] | NTP, undated               |
| Salmonella typhimurium [strain not specified in expert review]              | Ames tests with the intestinal contents of mice fed sorbic acid or potassium sorbate at approximately 5 or 16 g/kg bw/day for 1 yr.                                | Mutation                    | [Not<br>stated in<br>expert<br>review<br>whether<br>tested also<br>without<br>S9] | +ve at the top dose (with S9)      | Tsuchiya &<br>Yamaha, 1984 |
| Salmonella<br>typhimurium<br>[strains not<br>specified in<br>expert review] | Ames test with sodium sorbate. [No further details in expert review.]                                                                                              | Mutation                    | [Not<br>stated in<br>expert<br>review<br>whether<br>tested also<br>with S9]       | Weakly<br>+ve<br>(without<br>S9)   | Yoshida, 1982              |
| Salmonella<br>typhimurium<br>strains TA98,<br>TA100                         | Ames test with potassium sorbate [concentration not stated].                                                                                                       | Mutation                    | With and<br>without<br>S9                                                         | -ve                                | Kitano et al.<br>2002      |

| Salmonella<br>typhimurium<br>[strains not<br>specified in<br>expert review] | Ames tests with<br>sorbic acid or<br>potassium<br>sorbate. [No<br>further details<br>in expert<br>review.]     | Mutation                              | With and without S9                                                         | -ve           | Jung et al.,<br>1992; Nonaka,<br>1989; Ishidate<br>et al. 1984 &<br>1988; Morita et<br>al. 1981;<br>Kawachi et al.<br>1980; d'Aquino<br>& Santini,<br>1977; LBI,<br>1974 |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salmonella<br>typhimurium<br>[strains not<br>specified in<br>expert review] | Ames tests with freshly-prepared or stored sodium or potassium sorbate. [No further details in expert review.] | Mutation                              | [Not<br>stated in<br>expert<br>review<br>whether<br>tested also<br>with S9] | -ve           | Munzner et al.<br>1990                                                                                                                                                   |
| Bacillus<br>subtilis<br>strains M45,<br>H17                                 | Rec assay with potassium sorbate [concentration not stated].                                                   | DNA damage<br>[indicative test]       | Not stated                                                                  | -ve           | Kitano et al.<br>2002                                                                                                                                                    |
| Bacillus subtilis [strains not specified in expert review]                  | Rec assay with potassium sorbate [no further details in expert review]                                         | DNA damage<br>[indirect<br>indicator] | Not stated                                                                  | Weakly<br>+ve | Nonaka, 1989                                                                                                                                                             |
| Bacillus<br>subtilis<br>[strains not<br>specified in<br>expert review]      | Rec assay with sorbic acid. [No further details in expert review.]                                             | DNA damage<br>[indirect<br>indicator] | Not stated                                                                  | -ve           | Morita et al.<br>1981; Namiki et<br>al. 1980;<br>Khoudokormoff<br>& Gist-<br>Brocades, 1978;<br>Hayatsu et al.<br>1975; Kada,<br>1974                                    |

| Saccharomyces<br>cerevisiae | Test with potassium sorbate. [No further details in expert review.]                                       | Mutation | Not stated | -ve | LBI, 1974                |
|-----------------------------|-----------------------------------------------------------------------------------------------------------|----------|------------|-----|--------------------------|
| Drosophila<br>melanogaster  | Wing spot test<br>with sodium or<br>potassium<br>sorbate. [No<br>further details<br>in expert<br>review.] | Mutation | N/A        | -ve | Schlatter et al.<br>1992 |

#### References

Abe S & Sasaki M (1977). J. Natn. Cancer Inst. 58, 1635 (cited in BIBRA, 1995).

Bannerjee T S & Giri A K (1986). Toxicology Letters 31, 101 (cited in BIBRA, 1995).

BIBRA (1995). Toxicity Profile: Sorbic Acid and its Common Salts. BIBRA International, Carshalton, Surrey, UK.

Budayova E (1985). Neoplasma 32, 341 (cited in BIBRA, 1995).

CIR (1987). Final report of the safety assessment for sorbic acid and potassium sorbate, prepared by the Expert Panel of Cosmetic Ingredient Review, 13 November (cited in BIBRA, 1995).

d'Aquino M & Santini P (1977). Archos Lat.-Am. Nutr. 27, 411 (cited in CIR, 1987).

FASEB (1975). Evaluation of the helath aspects of sorbic acid and its salts as food ingredients. NTIS PB 262 663. Prepared for the FDA by the Federation of American Societies for Experimental Biology (cited in BIBRA, 1995).

Hasegawa M M et al. (1984). Food and Chemical Toxicology 22, 501 (cited in BIBRA, 1995).

Hayatsu H et al. (1975). Mutation Research 30, 417 (cited in BIBRA, 1995).

Ishidate M Jr & Odashima S (1977). Mutation Research 48, 337 (cited in BIBRA, 1995).

Ishidate M Jr et al. (1984). Food and Chemical Toxicology 22, 623 (cited in BIBRA, 1995).

Ishidate M Jr et al. (1988). Mutation Research 195, 151 (cited in BIBRA, 1995).

Jung R et al. (1992). Food and Chemical Toxicology 31, 1 (cited in BIBRA, 1995).

Kada T (1974). Ann. Rep. Nat. Inst. Genet. 24, 43 (cited in CIR, 1987).

Kawachi T et al. (1980). Appl. Meth. Oncol. 3, 253 (cited in BIBRA, 1995).

Khoudokormoff B & Gist-Brocades N V (1978). Mutation Research 53, 208 (abstract; cited in BIBRA, 1995).

Kitano K et al. (2002). Mutagenicity and DNA-damaging activity caused by decomposed products of potassium sorbate reacting with ascorbic acid in the presence of Fe salt. Food and Chemical Toxicology 40, 1589-1594.

LBI (1974). Mutagenic evaluation of compound FDA 73-4 (potassium sorbate). Prepared for FDA by Litton Bionetics, Inc. (cited in FASEB, 1975).

Morita K et al. (1981). J. Soc. Cosmet. Chem., Japan 15, 243 (cited in CIR, 1987).

Mukherjee A et al. (1988). Toxicology Letters 42, 47 (cited in BIBRA, 1995).

Munzner R et al. (1990). Food and Chemical Toxicology 28, 397 (cited in BIBRA, 1995).

Namiki M et al. (1980). Mutation Research 73, 21 (cited in BIBRA, 1995).

Nonaka M (1989). Environmental and Molecular Mutagenesis 14(S15), 143 (abstract; cited in BIBRA, 1995).

NTP (undated). US National Toxicology Program. Studies on sorbic acid. Salmonella study no. 561534 [accessed 2004].

Sasaki Y F et al. (2002). The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Res. 519, 103-119.

Schiffmann D & Schlatter J (1992). Food and Chemical Toxicology 30, 669 (cited in BIBRA, 1995).

Schlatter J et al. (1992). Food and Chemical Toxicology 30, 843 (cited in BIBRA, 1995).

Tsuchiya T & Yamaha T (1984). Mutation Research 130, 267 (cited in BIBRA, 1995).

Yoshida D (1982). Personal communication (cited in Hasegawa et al., 1984).