Botanical Source

Synonyms METHYL PROPANAL(2-);

ISOBUTYL ALDEHYDE;

ISOBUTANAL;

ISOBUTYRIC ALDEHYDE

IUPAC Name

CAS Reference 78-84-2

E Number

Food Legislation

Council of Europe (CoE)			
Number	mber Comment		
92	Listed by the Council of Europe as acceptable for use in food at up to 1 ppm.		

US Food and Drug Administration		
Number	Comment	
172.515	Approved by the US FDA. FDA 21 CFR 172.515	

Joint FAO/WHO Expert Committee on Food Additives (JECFA)		
Number	ADI	Comment
252	130	No safety concern at current levels of intake when used as a flavouring agent.

FEMA	
FEMA No.	Comment
2220	Generally recognised as safe as a flavour ingredient:GRAS List Number 3

Natural Occurrence and Use in Food

Found in apple, banana, barley, beans, beef, beer, blue cheese, brandy, bread, wheat, butter; used in gelatin and puddings, candy, frozen dairy products.

Estimated Intake from Food and Drink		
Daily Intake mg/kg/day	FEMA Possible Average Daily Intake mg	

	0.734	0.001624	
	0.734	0.001024	

Tobacco Product Related Chemical and Biological Studies for Ingredients Added in a Mixture

Smoke Chemistry		
Published Source	Level Tested %	Comment
BAT	0.00100	At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke.
Philip Morris	0.00020	An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.

Ames Activity		
Published Source	Level Tested %	Comment
ВАТ	0.00100	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient.
Philip Morris	0.00020	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient.

Micronucleus		
Published Source	Level Tested %	Comment
ВАТ	0.00100	Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient.

Neutral Red		
Published Source	Level Tested %	Comment
ВАТ	0.00100	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke condensate was not increased by the addition of the ingredient.
Philip Morris	0.00020	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was not increased by the addition of the ingredient.

Inhalation		
Published Source	Level Tested %	Comment
BAT	0.00100	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.
Lorillard	0.00120	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.
Philip Morris	0.00020	The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke.

Mouse Skin Painting		
Published Source	Level Tested %	Comment
Lorillard	0.00120	None of the changes appeared to be substantial enough to conclude that the tumour promotion capacity of the condensate was discernibly different between condensate produced from cigarettes with the ingredient in comparison with condensate from cigarettes without the ingredient.

References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37.

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B, Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Gaworski CL, Dozier MM, Heck JD, Gerhart JM, Rajendran N, David RM. Brennecke LH, Morrissey R. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: 13 week inhalation exposures in rats. Inhal. Toxicol. 1998; 10:357-381

Gaworski CL, Heck JD, Bennett MB, Wenk ML. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. Toxicology. 1999; 139(1-2):1-17.

Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

References

Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 2004, 71, 223-311.

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal; with, with metabolic activation; without, without metabolic activation]

In vivo

Species	Test conditions	Endpoint	Result	Reference
Drosophila	Wild-type males fed	Mutation	-ve	Woodruff et
melanogaster	isobutyraldehyde (80,000 ppm)			al. 1985
	or given it by injection (50,000	(Sex-linked		
(this assay	ppm) (concentrations producing	recessive		
can be	roughly 30% mortality), and then	lethal		
classed as in	mated with unexposed females to	mutation)		
vivo or in	produce 3 broods, which were			
vitro)	examined for the frequency of			
	sex-linked recessive lethal			
	mutations			

In vitro

Test system	Test conditions	Endpoint	Activation	Result	References
Human lymphocytes	Cells exposed at 0.002%, examined for sister chromatid exchanges after 24 and 48 hr	Chromosom e effects	without	-ve limited study as S9 was not used	Obe & Beek, 1979 (cited in JECFA, 1998 and IUCLID, 2000)
Chinese hamster ovary cells	Test conditions not specified in the citation, exposed cells examined for sister chromatid exchanges	Chromosom e effects	without	+ve	NTP, 1985 (cited in IUCLID, 2000)

Chinese hamster ovary cells	Test conditions not specified in the citation, exposed cells examined for chromosome aberrations	Chromosom e damage	unspecified	+ve	NTP, 1985 (cited in IUCLID, 2000)
Mouse lymphoma cells (L5178Y)	Test conditions not specified in the citation	Mutation	unspecified	+ve	NTP, 1986 (cited in IUCLID, 2000)
Salmonella typhimurium, strains TA98, TA100, TA1535 and TA1537	Tested at concentrations of up to 10 mg/plate, using a preincubation method	Mutation	with and without S9	-ve (a high quality study)	Mortelmans et al. 1986
Salmonella typhimurium, strains TA98, TA100 and TA102	Tested at concentrations of up to 8 mg/plate using a preincubation method	Mutation	with and without S9	-ve (limited study, only 3 strains used)	Aeschbacher et al. 1989 (cited in IUCLID, 2000)
Salmonella typhimurium, strains TA100, TA102 and TA104	Tested (using a preincubation step) at concentrations of up to 5 mg/plate	Mutation	with and without S9	-ve according to abstract and discussion, equivocal in 2 strains with S9 according to a table footnote	Dillon et al. 1998

Salmonella typhimurium, strains TA98, TA100, TA1535 and TA1537	Tested in a spot test at 0.2 mg/plate	Mutation	with and without S9	-ve (a spot test is a relatively limited study)	Florin <i>et al</i> . 1980
Salmonella typhimurium, strains TA98 and TA100	Test involved a preincubation step, other conditions not specified in the brief abstract	Mutation	with and without S9	-ve (a limited study, only 2 strains used)	Sasaki & Endo, 1978
Salmonella typhimurium, strains TA98, TA100, TA1535 TA1537, TA1538, G46, C3076 and D3052	Tested at up to 1 mg/ml using a gradient plate technique	Mutation	with and without S9	+ve	McMahon et al. 1979
Escherichia coli, strains WP2 and WP2 uvrA	Tested at up to 1 mg/ml using a gradient plate technique	Mutation	with and without S9	+ve	McMahon et al. 1979
Escherichia coli Sd-4-73	Tested using a paper disc method at up to 25 µl/disc	Mutation	without	-ve (old test method of uncertain relevance)	Szybalski <i>et al.</i> 1958 (cited in IUCLID, 2000)

References

Aeschbacher H U *et al.* (1989). Contribution of coffee aroma constituents to the mutagenicity of coffee. Food and Chemical Toxicology, <u>27</u>, 227-232 (cited in IUCLID, 2000).

- Dillon D *et al* (1998). The effectiveness of *Salmonella* strains TA100, TA102 and TA104 for detecting mutagenicity of some aldehydes and peroxides. Mutagenesis, 13, 19-26.
- Florin I *et al* (1980). Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology, <u>15</u>, 219-232.
- Obe G & Beek B (1979). Mutagenic activity of aldehydes. Drug and Alcohol Dependence, $\underline{4}$, 91-94 (cited in JECFA, 1998 and IUCLID, 2000).
- IUCLID (2000). IUCLID dataset on isobutyraldehyde. International Uniform Chemical Information Database. European Chemicals Bureau, European Commission.
- JECFA (1998). Safety evaluation of certain food additives and contaminants. Forty-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series 40. World Health Organization, Geneva. http://www.inchem.org/documents/jecfa/jecmono/v040je11.htm.
- McMahon R E *et al* (1979). Assay of 855 test chemicals in ten tester strains using a new modification of the Ames test for bacterial mutagens. Cancer Research, <u>39</u>, 682-693.
- Mortelmans K *et al* (1986). Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environmental Mutagenesis, <u>8</u> (suppl. 7), 1-119.
- NTP (1985). National Toxicology Program: Fiscal Year 1985, Annual Plan (cited in IUCLID, 2000).
- NTP (1986). National Toxicology Program: Fiscal Year 1986, Annual Plan (cited in IUCLID, 2000).
- Sasaki Y & Endo R (1978). Mutagenicity of aldehydes in *Salmonella typhimurium*. Mutation Research, 54, 251-252 (abstract 27).
- Szybalski W (1958). Special microbiological systems. 2. Observations on chemical mutagenesis in microorganisms. Annals of the New York Academy of Science, <u>76</u>, 475-489 (cited in IUCLID, 2000).
- Woodruff R C *et al* (1985). Mutagenesis testing in Drosophila. V. Results of 53 coded compounds tested for the National Toxicology Program. Environmental Mutagenesis, <u>7</u>, 677-702.