Botanical Source

Synonyms ISOPENTYL ISOVALERATE IUPAC Name ISOPENTYL ISOVALERATE

CAS Reference 659-70-1

E Number

Food Legislation

Council	Council of Europe (CoE)		
Number	Comment		
458	Listed by the Council of Europe as acceptable for use in food at up to 60 ppm.		

US Food and Drug Administration		
Number	Comment	
172.515	Approved by the US FDA. FDA 21 CFR 172.515	

Joint FAO/WHO Expert Committee on Food Additives (JECFA)			
Number	ADI	Comment	
50	1400	ADI acceptable. No safety concern at current levels of intake when used as a flavouring agent	

FEMA		
FEMA No.	Comment	
2085	Generally recognised as safe as a flavour ingredient:GRAS List Number 3	

Natural Occurrence and Use in Food

Found in banana, tomato, beer, spearmint; used in frozen dairy goods, candy.

Estimated Intake from Food and Drink				
Daily Intake mg/kg/day FEMA Possible Average Daily Intake mg				
0.01292	20.798			

Tobacco Product Related Chemical and Biological Studies for Ingredients Added as a Mixture

Smoke Chemistry				
Published Source	Level Tested %	Comment		
BAT	0.00300	At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke.		
Philip Morris	0.00110	An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.		

Ames Activity				
Published Source	Level Tested %	Comment		
ВАТ	0.00300	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient.		
Philip Morris	0.00110	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient.		

Micronucleus			
Published Source	Level Tested %	Comment	
ВАТ	0.00300	Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient.	

Neutral Red				
Published Source	Level Tested %	Comment		
BAT	0.00300	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke condensate was not increased by the addition of the ingredient.		
Philip Morris	0.00110	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was not increased by the addition of the ingredient.		

Inhalation				
Published Source	Level Tested %	Comment		
BAT	0.00300	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.		
Philip Morris	0.00110	The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke.		

Mouse Skin Painting				
Published Source	Level Tested %	Comment		

References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37.

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B, Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

References

Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 2004, 71, 223-311.

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal with, with metabolic activation; without, without metabolic activation]

In vitro

Test system	Test conditions	Endpoint	Activation status	Results	Reference
Chinese hamster lung cells	Cells incubated for 48 hours with up to 0.25 mg/ml [not clear if tested at up to toxic concentrations] and examined for chromosome aberrations and polyploidy	Chromosome damage and changes in chromosome number	Without	-ve [Limited study, not tested with activation]	Ishidate et al. 1984, 1988
Salmonella typhimurium strains TA92, TA94, TA98, TA100, TA1535, TA1537, possibly TA2637	Ames test with up to 10 mg/plate	Mutation	With and without	-ve (Good quality test)	Ishidate et al. 1984
Salmonella typhimurium strains TA97, TA102	Ames test with up to 1 mg/plate	Mutation	With and without	-ve (Limited test)	Fujita & Sasaki, 1987

Salmonella typhimurium strains TA98, TA100, TA1535, TA1537, TA1538	Ames test with a mixture of isoamyl acetate, n-amyl butyrate and isoamyl isovalerate. [English abstract only. Full paper is in Chinese and may contain additional information.]	Mutation	With and without	Mixture gave a +ve result but there was no indication of which component may have been responsible	Shao et al. 1979
Bacillus subtilis strains M45, H17	Rec assay (measuring differential killing) at up to 20 µl/disc (about 20 mg/disc)	DNA damage (indicative test).	Without	Inconclusive (no growth inhibition in either strain) There is an inconsistency between this study and that of Oda et al. (below) in that they reported toxicity at only 17 µg/disc, which is about 1000x lower than the dose Yoo reported as non-toxic	Yoo, 1986
Bacillus subtilis strains M45, H17	Rec assay (measuring differential killing) at up to 17 µg/disc	DNA damage (indicative test).	Without	-ve	Oda et al. 1978

References

Fujita H & Sasaki M (1987). Mutagenicity test of food additives with Salmonella typhimurium TA 97 and TA102(II). Annual Report. Tokyo Toritsu Eisei Kenkyusho Nempo (Tokyo Metr. Res. Lab.) 38, 423.

Ishidate M et al. (1984). Primary mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology 22, 623-636.

Ishidate M et al. (1988). A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell culture. Mutation Research 195, 151-213.

Oda Y et al. (1978). Mutagenicity of food flavours in bacteria. 1. Osaka-Furitsu Koshu Eisei Kenkyu Shokuhin Eisei Hen 9, 177.

Shao S Y et al. (1979). Mutagenicity testing of 36 chemicals including pesticides, food additives and drugs in the Salmonella/microsome system. Shih Yen Sheng Wu Hsueh Pao (Acta Biologiae Experimentalis (Sinica)) 12, 41-49 [in Chinese with English abstract].

Yoo Y S (1986). Mutagenic and antimutagenic activities of flavoring agents used in foodstuffs. Journal of the Osaka City Medical Centre 34, 267-288 [in Japanese with English abstract and tables].