Botanical Source

Synonyms GLYCERINE;

PROPANETRIOL (1,2,3-)

IUPAC Name GLYCEROL

CAS Reference 56-81-5 **E Number** E422

Food Legislation

Council	Council of Europe (CoE)	
Number	Comment	
-	-	

US Food and Drug Administration		
Number	Comment	
182.1320 Approved by the US FDA. FDA 21 CFR 182.1320		

Joint FAO/WHO Expert Committee on Food Additives (JECFA)		
Number	ADI	Comment
909	17000	Evaluation not finalized, pending definition of "flavouring agent". On the basis of the available data, the total daily intake arising from use levels necessary to achieve the desired effect does not represent a hazard to health

FEMA		
FEMA No.	Comment	
2525	Generally recognised as safe as a flavour ingredient:GRAS List Number 3	

Natural Occurrence and Use in Food

Found in beer, cherry, wine; used in milk products, baked goods, meat products.

Estimated Intake from Food and Drink		
Daily Intake mg/kg/day FEMA Possible Average Daily Intake mg		

	24.435	7.279	
_			

Tobacco Product Related Chemical and Biological Studies for Ingredients Added in a Mixture

Smoke Chemistry		
Published Source Level Tested %		Comment
BAT	7.00000	At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke.
Philip Morris	4.20480	An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.

Ames Activity			
Published Source Level Tested %		Comment	
ВАТ	7.00000	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient.	
Philip Morris	4.20480	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient.	

Micronucleus		
Published Source	Level Tested %	Comment
BAT	7.00000	Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient.

Neutral Red		
Published Source	Level Tested %	Comment
ВАТ	7.00000	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke condensate was not increased by the addition of the ingredient.
Philip Morris	4.20480	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was not increased by the addition of the ingredient.

Inhalation		
Published Source	Level Tested %	Comment
BAT	7.00000	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.
Lorillard	5.10000	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.
Philip Morris	4.20480	The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke.

Mouse Skin Painting		
Published Source Level Tested %		Comment
Lorillard	2.40000	None of the changes appeared to be substantial enough to conclude that the tumour promotion capacity of the condensate was discernibly different between condensate produced from cigarettes with the ingredient in comparison with condensate from cigarettes without the ingredient.

References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37.

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B, Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Gaworski CL, Dozier MM, Heck JD, Gerhart JM, Rajendran N, David RM. Brennecke LH, Morrissey R. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: 13 week inhalation exposures in rats. Inhal. Toxicol. 1998; 10:357-381

Gaworski CL, Heck JD, Bennett MB, Wenk ML. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. Toxicology. 1999; 139(1-2):1-17.

Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

References

Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 2004, 71, 223-311.

Carmines EL, Gaworski CL. Toxicological evaluation of glycerin as a cigarette ingredient. Food Chem Toxicol. 2005; 43(10):1521-1539

Heck JD, Gaworski CL, Rajendran N, Morrissey RL. Toxicologic evaluation of humectants added to cigarette tobacco: 13-week smoke inhalation study of glycerin and propylene glycol in Fischer 344 rats. Inhal Toxicol. 2002, 14(11):1135-52.

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal with, with metabolic activation; without, without metabolic activation]

In vivo

Species	Test conditions	Endpoint	Results	Reference
Rats, males	Gavage administration of 1 g/kg bw, bone marrow cells examined for chromosome aberrations	Chromosome damage	Equivocal Weak activity was reported in this Soviet study (but see comment below)	Barilyak and Kozachuk, 1985
Rats, males	Administration [probably by gavage] of 0.01, 0.1 and 1 g/kg bw. After 2 weeks [the period of treatment is unclear], the males were mated with untreated females, and the incidence of early foetal deaths was monitored	Dominant lethal effect (germ cell mutations/chromosome damage)	Equivocal Though a dose- related effect was reported in this Soviet study, none of the other compounds reported as positive would have be expected to possess mutagenic activity, so the validity of the study is questionable	Barilyak and Kozachuk, 1985

In vitro

Test system	Test conditions	Endpoint	Activation	Results	References
Human	Cells incubated	Chromosome	Without	-ve	Greenrod
lymphocytes or	with glycerol at	damage			and Fenech,
whole blood	0.17 or			Limited	2003
	0.68 mg/ml, and			study, not	

	examined for micronuclei.			tested with S9.	
Chinese hamster lung fibroblasts	Incubated for 48 hr at up to 1 mg/ml, cells examined for chromosome aberrations and polyploidy. Highest concentration chosen on basis of either toxicity or osmotic pressure	Chromosome damage. Changes in chromosome number.	Without	-ve (limited study as no S9 was used)	Ishidate et al. 1984
Chinese hamster ovary WBL cells	Cells were incubated for 4 hr with glycerol at up to 1 M, which was not toxic. Cells were examined for chromosome aberrations	Chromosome damage	Without	-ve (limited study as no S9 was used)	Galloway et al. 1987
Chinese hamster ovary WBL cells	Tested at six concentrations up to 1 mg/ml. Cells were treated for 2 hr with activation and 10 or 14 hr without activation. Cells were examined for chromosome aberrations	Chromosome damage	With and without S9	-ve good quality study	Doolittle et al. 1988; Lee et al. 1988
Human peripheral blood cells	Incubated at unspecified concentrations	Chromosome effects	Without	? Small increase in SCE	Tucker et al. 1984

(lymphocytes)	for 75 hr, cells assessed for sister-chromatid exchanges (SCEs)			frequency reported, data not shown in paper. Minimal data were presented	
Chinese hamster ovary WBL cells	Tested at five concentrations up to 1 mg/ml. Cells were treated for 2 hr with activation and 25.5 hr without activation. Cells were examined for sister chromatid exchanges (SCEs)	Chromosome effects	With and without S9	-ve good quality study	Doolittle et al. 1988; Lee et al. 1988
Chinese hamster ovary K1-BH4 cells	Tested at six concentrations up to 1 mg/ml. Cells were treated for 5 hr and examined for HGPRT mutations	Somatic cell mutation	With and without S9	-ve [significant increases at top two doses without S9, but not doserelated and considered to be of no biological relevance] good quality study	Doolittle et al. 1988; Lee et al. 1988
Rat hepatocytes	Tested at eight separate laboratories, at	DNA damage	Not applicable	-ve good quality	Fautz et al. 1991

	concentrations ranging from 0.01-3.2 mg/ml up to 1-126 mg/ml. Both single strand breaks and unscheduled DNA synthesis (UDS) were monitored			study	
Rat hepatocytes	Tested at five concentrations up to 1 mg/ml. Tested in duplicate using cells from two male rats, net nuclear grain counts were monitored	DNA damage	Not applicable	-ve good quality study	Doolittle et al. 1988; Lee et al. 1988
Salmonella typhimurium strains TA92, TA94, TA98, TA100, TA1535 and TA1537 (possibly also TA2637)	Tested at up to 50 mg/plate	Mutation	With and without S9	-ve good quality study	Ishidate et al. 1984
Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538	Tested at five concentrations up to 1 mg/plate (with a repeat in TA100 at "slightly higher" concentrations [not disclosed])	Mutation	With and without S9	-ve good quality study	Doolittle et al. 1988; Lee et al. 1988
Salmonella typhimurium strains TA98,	Tested at up to 10 mg/plate, in three separate	Mutation	With and without S9	-ve good quality	Haworth et al. 1983

TA100, TA1535 and TA1537	laboratories			study	
Salmonella typhimurium (various strains)	Several Ames tests. Some were of high quality.	Mutation	With and without S9	-ve	Clark et al. 1979; Ishidate et al. 1988; Litton Bionetics, 1975; Shimizu et al. 1985; Stolzenberg and Hine, 1979; Yamaguchi, 1982 (all cited in Bibra, 2004); Fujita et al. 1994; Haresaku et al. 1985; MacPhee, 1985
Escherichia coli bacteria	No details given in secondary source	Mutation	With and without S9	-ve	Shimizu et al. 1985
Bacillus subtilis bacteria, strains H17 and M45	A rec assay measuring differential killing, which reflects DNA damage. No details given except the incubation time (0.5 hr)	DNA damage	Without	+ve [the relevance of this result is unclear, because all 25 tested compounds were reported to have an effect and no mention was	Nonaka, 1989

				made of negative controls. The study was only published as an abstract]	
Saccharomyces cerevisiae yeast	No details given in secondary source	Mutation	With and without S9	-ve	Litton Bionetics, 1975
Saccharo- myces cerevisiae yeast	Tested at a very high concentration of 184.2 g/l, cells examined for DNA damage.	DNA damage	Unstated	? Some evidence, possibly due to the high test concen- tration	Tuite et al. 1981

References

Barilyak I R & Kozachuk S Y (1985). Tsitol. Genet. 19, 436 (cited in Bibra, 2004).

Bibra (2004). Toxicity Profile: glycerol (draft update to 1993 Toxicity Profile). Bibra, Sutton, Surrey.

CCRIS (2002). File Locator, ChemIDplus website - http://chem.sis.nlm.nih.gov/chemidplus/cmplxqry.html

Clark C R et al. (1979). Toxicology and Applied Pharmacology, 51, 529 (cited in Bibra, 2004).

Doolittle D J et al. (1988). The genotoxic activity of glycerol in an in vitro test battery. Food and Chemical Toxicology, 26, 631.

Fautz R et al. (1991). Report of a comparative study of DNA damage and repair assays in primary rat hepatocytes with five coded chemicals. Mutation Research, 260, 281-294.

Fujita H et al (1994). Mutagenicity test of food additives with Salmonella typhimurium TA97 and TA102. IX, Tokyo-Toritsu Eisei Kenkyusho Kenkyu Nenpo 45, 191-199 (cited in CCRIS, 2002).

Galloway S M et al. (1987). Effects of high osmotic strength on chromosome aberrations, sister-chromatid exchanges and DNA strand breaks, and the relation to toxicity. Mutation Research, 189, 15.

Greenrod W & Fenech M (2003). The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro. Mutagenesis 18, 119-126.

Haresaku M et al. (1985). Journal of the Society of Cosmetics Chemists 19, 100-104.

Haworth S et al. (1983). Salmonella mutagenicity test results for 250 compounds, Environmental Mutagenesis, 5 (Suppl.1), 3-142.

Ishidate M et al. (1984). Primary mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology, 22, 623-636.

Ishidate M et al. (1988). A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell culture. Mutation Research, 195, 151-213.

Lee C K et al. (1988). The genotoxic activity of glycerol in an in vitro test battery. Toxicologist, 8, 103 (cited in Bibra, 2004).

Litton Bionetics (1975). NTIS PB-2435 479 (cited in Bibra, 2004).

MacPhee D G (1985). Indications that mutagenesis in Salmonella may be subject to catabolite repression. Mutation Research 151, 35-41.

Nonaka M (1989). DNA repair tests on food additives. Environmental and Molecular Mutagenesis, 14 (Suppl. 15), 143.

Shimizu H et al. (1985). Japanese Journal of industrial Health, 27, 400 (cited in Bibra, 2004).

Stolzenberg S J & Hine C H (1979). Journal of Toxicological and Environmental Health, 5, 1149 (cited in Bibra, 2004).

Tucker J D et al. (1984). Detection of sister-chromatid exchanges in human peripheral lymphocytes induced by ethylene dibromide vapour. Mutation Research, 138, 93-98.

Tuite M F et al. (1981). Genetics 98, 691.

Yamaguchi T (1982). Agric. Biol. Chemistry, 46, 849 (cited in Bibra, 2004).