Botanical Source

Synonyms ETHOXY-4-HYDROXYBENZALDEHYDE(3-)

IUPAC Name 3-ETHOXY-4-HYDROXYBENZALDEHYDE

CAS Reference 121-32-4

E Number

Food Legislation

Council of Europe (CoE)		
Number	Comment	
108	Listed by the Council of Europe as acceptable for use in food.	

US Food and Drug Administration		
Number	Comment	
182.60	Approved by the US FDA. FDA 21 CFR 182.60	

Joint FA	Joint FAO/WHO Expert Committee on Food Additives (JECFA)			
Number	ADI	Comment		
893	3	No safety concern at current levels of intake when used as a flavouring agent.		

FEMA		
FEMA No.	Comment	
2464	Generally recognised as safe as a flavour ingredient:GRAS List Number 3	

Natural Occurrence and Use in Food

Found in vanilla beans; used in alcoholic beverages, imitation vanilla extract, breakfast cereals.

Estimated Intake from Food and Drink		
Daily Intake mg/kg/day	FEMA Possible Average Daily Intake mg	
2.2175	70.542	

Tobacco Product Related Chemical and Biological Studies for Ingredients Added in a Mixture

Smoke Chemistry			
Published Source	Level Tested %	Comment	
BAT	0.25000	At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke.	
Philip Morris	0.01660	An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.	

Ames Activity			
Published Source Level Tested %		Comment	
BAT	0.25000	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient.	
Philip Morris	0.01660	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient.	

Micronucleus			
Published Source	Level Tested %	Comment	
ВАТ	0.25000	Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient.	

Neutral Red			
Published Source Level Tested %		Comment	
ВАТ	0.25000	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke condensate was not increased by the addition of the ingredient.	
Philip Morris	0.01660	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was not increased by the addition of the ingredient.	

Inhalation

Published Source Level Tested %		Comment	
BAT	0.25000	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.	
Lorillard	0.08480	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.	
Philip Morris 0.01660		The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke.	

Mouse Skin Painting			
Published Source	Level Tested %	Comment	
Lorillard	0.08480	None of the changes appeared to be substantial enough to conclude that the tumour promotion capacity of the condensate was discernibly different between condensate produced from cigarettes with the ingredient in comparison with condensate from cigarettes without the ingredient.	

References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37.

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B, Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Gaworski CL, Dozier MM, Heck JD, Gerhart JM, Rajendran N, David RM. Brennecke LH, Morrissey R. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: 13 week inhalation exposures in rats. Inhal. Toxicol. 1998; 10:357-381

Gaworski CL, Heck JD, Bennett MB, Wenk ML. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. Toxicology. 1999; 139(1-2):1-17.

Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

References

Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 2004, 71, 223-311.

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal; with, with metabolic activation; without, without metabolic activation]

In vivo

Species	Test	Endpoint	Results	Referen
	conditions			ce
Mice (numbers not specified in brief report)	Not specified in brief report	Chromosome damage	-ve	NTP, 1996
Groups of 5 mice	Intraperitoneal injection (no further details given in brief report)	Chromosome damage	-ve	Ohuchida et al. 1989
Groups of 4 mice	Two intraperitoneal injections of 0.33, 0.67 or 1 g/kg bw, 24 hr apart	Chromosome damage	-ve	Wild <i>et al.</i> 1983

In vitro

Species	Test	Endpoint	Activati	Results	Referen
	conditions		on		ce
Human white blood cells	Concentrations up to 2.0 mM	Chromosome effects	without	+ve	Jansson <i>et</i> al. 1988
Mouse lymphoma cells	Mouse lymphoma L5178Y TK+/- assay (no further details given in abstract)	Mutation	with and without	+ve with activation	Heck et al. 1989
Chinese hamster lung cells	Concentrations up to 0.25 mg/ml	Chromosome damage and effects	without	-ve chromosome aberrations, but increased incidence of cells having more than one full set of chromosomes (polyploidy)	Ishidate et al. 1984
Chinese hamster ovary cells	Concentrations up to 100 µM	Chromosome effects	without	-ve	Sasaki et al. 1987
Chinese hamster ovary cells	Cells pretreated with mitomycin C exposed to	Chromosome effects	without	enhanced ability of mitomycin C to induce SCE	Sasaki <i>et</i> <i>al</i> . 1987

	concentrations up to 100 µM				
Salmonella typhimurium	TA1535, TA100, WP2uvrA TA1537, TA98 with concentrations up to 5 mg/plate	Mutation	with and without	-ve	JETOC, 1997
Salmonella typhimurium	TA1535, TA100, TA1537, TA1538, TA98 concentrations unspecified in abstract	Mutation	with and without	-ve	Heck et al. 1989
Salmonella typhimurium	TA92, TA1535, TA100, TA1537, TA94, TA98 with concentrations up to 10 mg/plate	Mutation	with and without	-ve	Ishidate et al. 1984
Salmonella typhimurium	TA1535, TA100, TA1537, TA98 with concentrations up to 8 mg/plate	Mutation	with and without	-ve	Mortelma ns <i>et al</i> . 1986
Salmonella typhimurium	TA1535, TA100, TA1537, TA1538, TA98 with concentrations up to 3.6 mg/plate	Mutation	with and without	-ve	Wild <i>et al.</i> 1983
Bacillus subtilis	DNA repair (rec) assay using H17 and M45 with concentration of 21 µg/disk.	DNA damage	Not clear from Japanese paper	-ve	Oda <i>et al</i> . 1978
Drosophila melanogaster	Basc test in which material was fed to flies	Heritable mutation	not applicable	-ve	Wild <i>et al</i> . 1983

References

Heck J.D. et al. (1989). Toxicologist 9, 257.

Ishidate M. Jr et al. (1984). Fd Chem. Toxic. 22, 623.

Jansson T. et al. (1988). Mutation Res. 206, 17.

JETOC (1997). Mutagenicity test data of existing chemical substances based on the toxicity investigation system of the Industrial Safety and Health Law. Supplement. Japan Chemical Industry Ecology-Toxicology & Information Center.

Mortelmans K. et al. (1986). Envir. Mutagen. 8. Suppl. 7, 1.

NTIS (1996). National Toxicology Program: Annual plan for fiscal year 1996. PB97141675.

Oda Y. et al. (1978). Osaka Furitsu KEKHSEH 9, 177.

Ohuchida A. et al. (1989). Mutation Res. 216, 371.

Sasaki Y.F. et al. (1987). Mutation Res. 189, 313.

Wild D. et al. (1983). Fd Chem. Toxic. 21, 707.