Botanical Source Coffea spp;

Coffea Arabica; Coffea canephora; Coffea robusta

Synonyms

IUPAC Name

CAS Reference 93348-12-0

68916-18-7 84650-00-0 8001-67-0

E Number

Food Legislation

Council of Europe (CoE)		
Number	Number Comment	
148 Listed by the Council of Europe as acceptable for use in food.		

US Food and Drug Administration	
Number Comment	
182.20 Approved by the US FDA. FDA 21 CFR 182.20	

Joint FAO/WHO Expert Committee on Food Additives (JECFA)			
Number ADI Comment			
-	-	-	

FEMA		
FEMA No. Comment		
Generally recognised as safe as a flavour ingredient:GRAS List Number 3		

Natural Occurrence and Use in Food	
Found in coffee; used in baked goods, candy, syrups.	

Estimated Intake from Food and Drink		
Daily Intake mg/kg/day FEMA Possible Average Daily Intake mg		

- -

Tobacco Product Related Chemical and Biological Studies for Ingredients Added in a Mixture

Smoke Chemistry		
Published Source	Level Tested %	Comment
BAT	0.27000	At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke.
Philip Morris	0.00950	An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.

Ames Activity		
Published Source	Level Tested %	Comment
ВАТ	0.27000	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient.
Philip Morris	0.00950	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient.

Micronucleus		
Published Source	Level Tested %	Comment
ВАТ	0.27000	Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient.

Neutral Red		
Published Source	Level Tested %	Comment
BAT	0.27000	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke condensate was not increased by the addition of the ingredient.
Philip Morris	0.00950	Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was not increased by the addition of the ingredient.

Inhalation		
Published Source	Level Tested %	Comment
BAT	0.27000	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.
Lorillard	0.00750	The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.
Philip Morris	0.00950	The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke.

Mouse Skin Painting		
Published Source	Level Tested %	Comment
Lorillard	0.00750	None of the changes appeared to be substantial enough to conclude that the tumour promotion capacity of the condensate was discernibly different between condensate produced from cigarettes with the ingredient in comparison with condensate from cigarettes without the ingredient.

References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37.

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B,

Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Gaworski CL, Dozier MM, Heck JD, Gerhart JM, Rajendran N, David RM. Brennecke LH, Morrissey R. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: 13 week inhalation exposures in rats. Inhal. Toxicol. 1998; 10:357-381

Gaworski CL, Heck JD, Bennett MB, Wenk ML. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. Toxicology. 1999; 139(1-2):1-17.

Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

References

Baker RR, Bishop LJ. The pyrolysis of non-volatile tobacco ingredients using a system that simulates cigarette combustion conditions. J. Anal. Appl. Pyrolysis 2005, 74, 145-170.

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal; with, with metabolic activation; without, without metabolic activation]

In vivo

Test system	Test conditions	Summary of Results	References
Humans, other mammals	IARC reviewed the in vivo genotoxicity of coffee in their 1991 assessment of carcinogenicity	Otherwise healthy splenectomized coffee drinkers, some of whom occasionally drank tea, had an increased frequency of micronuclei in both reticulocytes and mature erythrocytes. Instant coffee did not induce micronuclei (chromosome damage) or sister chromatid exchange in the bone-marrow cells of rodents. Coffee reduced the genotoxic activity of several model mutagens <i>in vivo</i> .	IARC, 1991
		No significant new data on <i>in vivo</i> genotoxicity were presented in more recent reviews.	Nehlig & Debry, 1994 & 1996

In vitro

In vitro									
Test system	Test conditions	Summary of Results	References						
Mammalian and	IARC reviewed the in	The urine of coffee drinkers was not	IARC, 1991						
bacterial cells,	vitro genotoxicity of	mutagenic to bacteria but induced							
and insects (the	coffee in their 1991	chromosomal aberrations in cultured							
last could also	assessment of	mammalian cells.							
be described as	carcinogenicity	Brewed coffee induced							
in vivo)		chromosomal aberrations and sister							
		chromatid exchange in cultured							
		human lymphocytes. Sister							
		chromatid exchange was also							
		induced in cultured mammalian							
		cells. In insects, negative results for							
		both brewed and instant coffee were							
		obtained for aneuploidy,							
		chromosomal aberrations, dominant							
		lethal effects and sex-linked							
		recessive lethal mutation; brewed							
		and instant coffee gave weakly							
		positive results in assays for somatic							
		cell mutation and mitotic							
		recombination. In bacteria, brewed,							
		instant and decaffeinated coffee were							
		mutagenic (particularly to strains							
		with enhanced sensitivity to							
		oxidative mutagens) and induced							
		DNA damage.							
		Instant coffee induced chromosomal							
		aberrations in cultured human							
		lymphoctyes and induced mutations							
		and sister chromatid exchange in							
		cultured mammalian cells; it was not							
		mutagenic in host-mediated bacterial							
		mutagenic assays.							
		Decaffeinated coffee induced							
		chromosomal aberrations in cultured							
		human lymphocytes and sister							
		chromatid exchange in cultured							
		mammalian cells. It gave negative							
		results in assays for somatic cell							
		mutation and mitotic recombination							
		assays in insects.							
		Coffee reduced the genotoxic							
		activity of several model mutagens							
		in vitro.							

		No significant new data on <i>in vitro</i> genotoxicity were presented in more recent reviews.			Nehlig & Debry, 1994 & 1996
Salmonella typhimurium TA98, YG1024, YG1029	Two instant coffee products were tested in an Ames assay using standard plate incorporation with five (unspecified) concentrations.	Mutation	With S9 without	+ve -ve	Johansson et al. 1995

References

IARC (1991). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 51. Coffee, tea, mate, methylxanthines and methylglyoxal. p 41-206. International Agency for Research on Cancer, Lyon.

Johansson MAE *et al* (1995). Characterization of mutagenic activity in instant hot beverage powders. Environmental and Molecular Mutagenesis, <u>25</u>, 154.

Nehlig A & Debry G (1994). Potential genotoxic, mutagenic and antimutagenic effects of coffee: a review. Mutation Research, <u>317</u>, 145-162.

Nehlig A & Debry G (1996). Coffee and cancer: a review of human and animal data. World Review of Nutrition and Dietetics, <u>79</u>, 185-221.