Botanical Source

Synonyms Benzene Carbaldehyde;

Benzenemethylal; Benzoic aldehyde

IUPAC Name

CAS Reference 100-52-7

E Number

Food Legislation

Council of Europe (CoE)			
Number	Number Comment		
101	Listed by the Council of Europe as acceptable for use in food.		

US Food and Drug Administration		
Number	Comment	
182.60	Approved by the US FDA. FDA 21 CFR 182.60	

Joint FAO/WHO Expert Committee on Food Additives (JECFA)				
Number ADI Comment				
22	9300	ADI 0-5.0 mg/kg bw		

FEMA	
FEMA No.	Comment
2127	Generally recognised as safe as a flavour ingredient:GRAS List Number 3

Natural Occurrence and Use in Food

Found in apple juice, almond, apricot, artichoke, asparagus, beans, beef, beer; used in baked goods, chewing gum.

Estimated Intake from Food and Drink				
Daily Intake mg/kg/day FEMA Possible Average Daily Intake mg				
0.34	48.15			

Tobacco Product Related Chemical and Biological Studies for Ingredients Added in a Mixture

Smoke Chemistry			
Published Source Level Tested % Comment			
BAT	0.03000	At maximum application level this ingredient is not associated with significant increases in levels of Hoffmann analytes in smoke.	
Philip Morris	0.00120	An overall assessment of the data suggests that this ingredient did not add to the toxicity of smoke.	

Ames Activity			
Published Source Level Tested % Comment			
BAT 0.03000 Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke condensate was not increased by the addition of the ingredient.		system the Ames activity of the cigarette smoke condensate was not increased by the	
Philip Morris	0.00120	Within the sensitivity and specificity of the system the Ames activity of the cigarette smoke was not increased by the addition of the ingredient.	

Micronucleus			
Published Source Level Tested % Comment			
ВАТ	0.03000	Within the sensitivity of the in vitro micronucleus assay the activity of the cigarette smoke condensate was not increased by the addition of the ingredient.	

Neutral Red			
Published Source Level Tested % Comment			
BAT 0.03000 vitro o		Vithin the sensitivity of the test system the in itro cytotoxicity of the cigarette smoke ondensate was not increased by the addition of the ingredient.	
Philip Morris 0.00120		Within the sensitivity of the test system the in vitro cytotoxicity of the cigarette smoke was not increased by the addition of the ingredient.	

Inhalation				
Published Source	Level Tested %	Comment		
		The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.		
Lorillard 0.00009		The results indicate that the addition of the ingredient had no discernible effect on the inhalation toxicity of mainstream smoke.		
Philip Morris	0.00120	The data indicate that the addition of the ingredient, when added with one of three groups, did not increase the inhalation toxicity of the smoke.		

Mouse Skin Painting			
Published Source Level Tested % Comment			
Lorillard	0.00009	None of the changes appeared to be substantial enough to conclude that the tumour promotion capacity of the condensate was discernibly different between condensate produced from cigarettes with the ingredient in comparison with condensate from cigarettes without the ingredient.	

References

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol. 2004; 42 Suppl:S3-37

Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004; 42 Suppl:S39-52.

Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004; 42 Suppl:S53-83.

Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol. 2002; 40(1): 77-91.

Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol. 2002; 40(1): 93-104.

Roemer E, Tewes FJ, Meisgen TJ, Veltel DJ, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem Toxicol. 2002; 40(1): 105-111.

Vanscheeuwijck PM, Teredesai A, Terpstra PM, Verbeeck J, Kuhl P, Gerstenberg B,

Gebel S, Carmines EL. Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity. Food Chem Toxicol. 2002; 40(1): 113-131.

Gaworski CL, Dozier MM, Heck JD, Gerhart JM, Rajendran N, David RM. Brennecke LH, Morrissey R. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: 13 week inhalation exposures in rats. Inhal. Toxicol. 1998; 10:357-381

Gaworski CL, Heck JD, Bennett MB, Wenk ML. Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice. Toxicology. 1999; 139(1-2):1-17.

Tobacco Product Related Chemical and Biological Studies for Ingredients Tested Singly

References

Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 2004, 71, 223-311.

Toxicological Data on the Unburnt Ingredient

[+ve, positive; -ve, negative; ?, equivocal; with, with metabolic activation; without, without metabolic activation]

In vivo

Species	Test conditions	Endpoint	Result	Reference
Drosophi la melanoga ster	1150 ppm was dissolved in feed (5% sucrose) and treatment lasted for 3 days, or 2500 ppm was administered as a single injection. Sex-linked	Germ cell mutation.	-ve	IUCLID, 2000
	recessive lethal mutation test – treated males were mated with untreated females and offspring examined for effects.			

In vitro

Test system	Test conditions	Endpoint	Activation	Result	References
Human lymphocytes and Chinese hamster ovary cells Chinese hamster B241 and ovary cells	Tested up to 1.6 mg/ml in hamster cells and up to 2 mmol/l in human cells. Cells examined for evidence of sister chromatid exchange. Tested up to 50 nmol/l in B241 cells and 1.6 mg/ml in ovary cells.	Chromoso me effects. Chromoso me damage [presumabl y aberrations].	With and without S9 (hamster); without (human) With and without S9.	+ve Ovary cells: -ve B241 cells: +ve	Feron et al. 1991; IUCLID, 2000; JECFA, 1997 Feron et al. 1991; JECFA, 1997; TNO BIBRA, 1989
Chinese hamster lung cells	Chromosome aberration test. No further details given.	Chromoso me damage	With and without S9.	+ve	IUCLID, 2000

Mouse lymphoma L5178Y TK +/- cells	Mutagenesis assay. No details provided.	Mutation.	With and without S9.	+ve (with S9 only).	Heck <i>et al</i> . 1989
Mouse lymphoma L5178Y cells	Mutagenesis assay. Tested up to a concentration of 0.48 mg/ml (0.64 mg/ml was lethal to cells).	Mutation.	Without.	+ve	McGregor et al. 1991; IUCLID, 2000
Salmonella typhimurium, strains TA98, TA100, TA1535, TA1537; Escherichia coli, strain WP2uvrA/pK M101	Ames test. Tested up to 5 mg/plate. (This dose was toxic.)	Mutation.	With and without S9.	-ve	JETOC, 2000
Salmonella typhimurium, strains TA97, TA98, TA100, TA1535, TA1537, TA1538, (TA2637)	Ames test. Presumably tested up to around 5 mg/plate.	Mutation.	With and without S9.	-ve	Heck <i>et al.</i> 1989; (IUCLID, 2000); Zeiger & Margolin, 2000
Salmonella typhimurium, strains TA98, TA1537, TA7001, TA7002, TA7003, TA7004, TA7005, TA7006	Ames test. Presumably tested up to 5 mg/plate.	Mutation.	With and without S9.	+ve in strain TA700 5 with S9ve in all others.	Gee <i>et al</i> . 1998

Salmonella typhimurium, strains TA100, TA102, TA104	Ames test. Tested up to 3.3 mg/plate. (This dose was toxic.)	Mutation.	With and without S9.	-ve	Dillon et al. 1998
Salmonella typhimurium, strains TA98, TA100, TA102, TA104, TA1535, TA1537	Ames test. Various conditions. Tested up to 3.3 mg/plate or 30 µmol/plate.	Mutation.	With and without S9.	-ve	JECFA, 1997
Mouse/Salmon ella typhimurium	Two mice were given ~2.1 g benzaldehyde/kg bw by stomach tube. The urine was subjected to an Ames test using Salmonella typhimurium.	Mutation.	Not applicable.	-ve	TNO BIBRA, 1989
Bacillus subtilis, strains H17, M45	Recombination assay. No further details given.	Chromoso me effects.	With and without S9.	+ve (with S9 only)	IUCLID, 2000
Neurospora (fungus)	No details given.	Mutation.	Not specified.	-ve	TNO BIBRA, 1989

References

Dillon D. et al. (1998). Mutagenesis 13, 19.

Feron V.J. et al. (1991). Mutation Res. 259, 363.

Gee P. et al. (1998). Mutation Res. 412, 115.

Heck J.D. et al. (1989). Toxicologist 9, 257.

IUCLID (2000). International Uniform Chemical Information Database. Institute for Health and Consumer Protection. European Chemicals Bureau.

JECFA (1997). Prepared by the 46th meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Fd Add. Ser. 37, 1.

JETOC (2000). Japan Chemical Industry Ecology-Toxicology & Information Center. Mutagenicity test data of existing chemical substances based on the toxicity investigation system of the Industrial Sfaety and Health Law. Supplement 2.

McGregor D.B. et al. (1991). Envir. molec. Mutagen. 17, 196.

TNO BIBRA (1989). Toxicity Profile. Benzaldehyde.

Zeiger E. & Margolin B.H. (2000). Regul. Toxic. Pharmac. 32, 21