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DISCLAIMER

Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic
Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human
Services.
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UPDATE STATEMENT

A Toxicological Profile for Toluene, Draft for Public Comment was released in September 2015. This
edition supersedes any previously released draft or final profile.

Toxicological profiles are revised and republished as necessary. For information regarding the update
status of previously released profiles, contact ATSDR at:

Agency for Toxic Substances and Disease Registry
Division of Toxicology and Human Health Sciences
Environmental Toxicology Branch
1600 Clifton Road NE
Mailstop F-57
Atlanta, Georgia 30329-4027
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FOREWORD

This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic
Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The
original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised
and republished as necessary.

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects
information for these toxic substances described therein. Each peer-reviewed profile identifies and
reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is
also presented, but is described in less detail than the key studies. The profile is not intended to be an
exhaustive document; however, more comprehensive sources of specialty information are referenced.

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile
begins with a public health statement that describes, in nontechnical language, a substance's relevant
toxicological properties. Following the public health statement is information concerning levels of
significant human exposure and, where known, significant health effects. The adequacy of information to
determine a substance's health effects is described in a health effects summary. Data needs that are of
significance to the protection of public health are identified by ATSDR.

Each profile includes the following:

(A) The examination, summary, and interpretation of available toxicologic information and
epidemiologic evaluations on a toxic substance to ascertain the levels of significant human
exposure for the substance and the associated acute, subacute, and chronic health effects;

(B) A determination of whether adequate information on the health effects of each substance
is available or in the process of development to determine levels of exposure that present a
significant risk to human health of acute, subacute, and chronic health effects; and

©) Where appropriate, identification of toxicologic testing needed to identify the types or
levels of exposure that may present significant risk of adverse health effects in humans.

The principal audiences for the toxicological profiles are health professionals at the Federal, State, and
local levels; interested private sector organizations and groups; and members of the public.

This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that has been
peer-reviewed. Staffs of the Centers for Disease Control and Prevention and other Federal scientists have
also reviewed the profile. In addition, this profile has been peer-reviewed by a nongovernmental panel
and was made available for public review. Final responsibility for the contents and views expressed in
this toxicological profile resides with ATSDR.

TRhdetBrayre

Patrick N. Breysse, Ph.D., CIH
Director, National Center for Environmental Health and
Agency for Toxic Substances and Disease Registry
Centers for Disease Control and Prevention



TOLUENE vi

*Legislative Background

The toxicological profiles are developed under the Comprehensive Environmental Response,
Compensation, and Liability Act of 1980, as amended (CERCLA or Superfund). CERCLA section
104(i)(1) directs the Administrator of ATSDR to “...effectuate and implement the health related
authorities” of the statute. This includes the preparation of toxicological profiles for hazardous
substances most commonly found at facilities on the CERCLA National Priorities List and that pose the
most significant potential threat to human health, as determined by ATSDR and the EPA. Section
104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR to prepare a toxicological profile
for each substance on the list. In addition, ATSDR has the authority to prepare toxicological profiles for
substances not found at sites on the National Priorities List, in an effort to “...establish and maintain
inventory of literature, research, and studies on the health effects of toxic substances” under CERCLA
Section 104(i)(1)(B), to respond to requests for consultation under section 104(i)(4), and as otherwise
necessary to support the site-specific response actions conducted by ATSDR.
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous
substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation
of available toxicologic and epidemiologic information on a substance. Health care providers treating
patients potentially exposed to hazardous substances may find the following information helpful for fast
answers to often-asked questions.

Primary Chapters/Sections of Interest

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating
patients about possible exposure to a hazardous substance. It explains a substance’s relevant
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of
the general health effects observed following exposure.

Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets,
and assesses the significance of toxicity data to human health.

Chapter 3: Health Effects: Specific health effects of a given hazardous compound are reported by type
of health effect (e.g.,death, systemic, immunologic, reproductive), by route of exposure, and by
length of exposure (acute, intermediate, and chronic). In addition, both human and animal studies
are reported in this section.

NOTE: Not all health effects reported in this section are necessarily observed in the clinical
setting. Please refer to the Public Health Statement to identify general health effects observed
following exposure.

Pediatrics: Four new sections have been added to each Toxicological Profile to address child health
issues:
Chapter 1 How Can (Chemical X) Affect Children?
Chapter 1 How Can Families Reduce the Risk of Exposure to (Chemical X)?
Section 3.7 Children’s Susceptibility
Section 6.6 Exposures of Children

Other Sections of Interest:
Section 3.8 Biomarkers of Exposure and Effect
Section 3.11  Methods for Reducing Toxic Effects

ATSDR Information Center
Phone: 1-800-CDC-INFO (800-232-4636) or 1-888-232-6348 (TTY)
Internet: http://www.atsdr.cdc.gov

The following additional materials are available online:
Case Studies in Environmental Medicine are self-instructional publications designed to increase primary

health care providers’ knowledge of a hazardous substance in the environment and to aid in the
evaluation of potentially exposed patients (see https://www.atsdr.cdc.gov/csem/csem.html).


https://www.atsdr.cdc.gov/csem/csem.html
http:http://www.atsdr.cdc.gov
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Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene
(prehospital) and hospital medical management of patients exposed during a hazardous materials
incident (see https://www.atsdr.cdc.gov/MHMI/index.asp). Volumes I and II are planning guides
to assist first responders and hospital emergency department personnel in planning for incidents
that involve hazardous materials. Volume III—Medical Management Guidelines for Acute
Chemical Exposures—is a guide for health care professionals treating patients exposed to
hazardous materials.

Fact Sheets (ToxFAQs™) provide answers to frequently asked questions about toxic substances (see
https://www.atsdr.cdc.gov/toxfaqs/Index.asp).

Other Agencies and Organizations

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease,
injury, and disability related to the interactions between people and their environment outside the
workplace. Contact: NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, GA
30341-3724 « Phone: 770-488-7000 « FAX: 770-488-7015 « Web Page:
https://www.cdc.gov/nceh/.

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational
diseases and injuries, responds to requests for assistance by investigating problems of health and
safety in the workplace, recommends standards to the Occupational Safety and Health
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains
professionals in occupational safety and health. Contact: NIOSH, 395 E Street, S.W., Suite 9200,
Patriots Plaza Building, Washington, DC 20201 ¢ Phone: 202-245-0625 or 1-800-CDC-INFO
(800-232-4636) « Web Page: https://www.cdc.gov/niosh/.

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for
biomedical research on the effects of chemical, physical, and biologic environmental agents on
human health and well-being. Contact: NIEHS, PO Box 12233, 104 T.W. Alexander Drive,
Research Triangle Park, NC 27709 « Phone: 919-541-3212 « Web Page:
https://www.niehs.nih.gov/.

Clinical Resources (Publicly Available Information)

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics
in the United States to provide expertise in occupational and environmental issues. Contact:
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 « Phone: 202-347-4976
* FAX: 202-347-4950 * e-mail: AOEC@AOEC.ORG ¢« Web Page: http://www.aoec.org/.

The American College of Occupational and Environmental Medicine (ACOEM) is an association of
physicians and other health care providers specializing in the field of occupational and
environmental medicine. Contact: ACOEM, 25 Northwest Point Boulevard, Suite 700, Elk
Grove Village, IL 60007-1030 « Phone: 847-818-1800 « FAX: 847-818-9266 « Web Page:
http://www.acoem.org/.

The American College of Medical Toxicology (ACMT) is a nonprofit association of physicians with
recognized expertise in medical toxicology. Contact: ACMT, 10645 North Tatum Boulevard,


http:http://www.acoem.org
http:http://www.aoec.org
mailto:AOEC@AOEC.ORG
http:https://www.niehs.nih.gov
https://www.cdc.gov/niosh
https://www.cdc.gov/nceh
https://www.atsdr.cdc.gov/toxfaqs/Index.asp
https://www.atsdr.cdc.gov/MHMI/index.asp
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Suite 200-111, Phoenix AZ 85028 « Phone: 844-226-8333 « FAX: 844-226-8333 « Web Page:
http://www.acmt.net.

The Pediatric Environmental Health Specialty Units (PEHSUs) is an interconnected system of specialists
who respond to questions from public health professionals, clinicians, policy makers, and the
public about the impact of environmental factors on the health of children and reproductive-aged
adults. Contact information for regional centers can be found at http://pehsu.net/findhelp.html.

The American Association of Poison Control Centers (AAPCC) provide support on the prevention and
treatment of poison exposures. Contact: AAPCC, 515 King Street, Suite 510, Alexandria VA
22314 « Phone: 701-894-1858 ¢ Poison Help Line: 1-800-222-1222 « Web Page:
http://www.aapcc.org/.


http:http://www.aapcc.org
http://pehsu.net/findhelp.html
http:http://www.acmt.net
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2. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to

substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each
profile, and makes recommendations for derivation of MRLs.
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assure consistency across profiles and adherence to instructions in the Guidance.
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PEER REVIEW

A peer review panel was assembled for toluene. The panel consisted of the following members:

1. Luis Haro Garcia, Ph.D., Departamento de Salud Publica, Facultad de Medicina, Universidad
Nacional Auténoma de México, México DF, México;

2. Zemin Wang, M.D., Ph.D., DABT, Department of Environmental Health, Indiana University,
Bloomington, Indiana; and

3. Scott E. Bowen, Ph.D., Associate Professor and BCN Area Chair, President, Michigan Chapter of
the Society for Neuroscience, WSU Psi Chi Advisor, Department of Psychology, Wayne State
University, Detroit, Michigan.

These experts collectively have knowledge of toluene’s physical and chemical properties, toxicokinetics,
key health end points, mechanisms of action, human and animal exposure, and quantification of risk to
humans. All reviewers were selected in conformity with the conditions for peer review specified in
Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, and Liability Act, as
amended.

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer
reviewers' comments and determined which comments will be included in the profile. A listing of the
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their
exclusion, exists as part of the administrative record for this compound.

The citation of the peer review panel should not be understood to imply its approval of the profile's final
content. The responsibility for the content of this profile lies with the ATSDR.
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TOLUENE 1

1. PUBLIC HEALTH STATEMENT FOR TOLUENE

This Public Health Statement summarizes the Agency for Toxic Substances and Disease Registry’s
(ATSDR) findings on toluene, including chemical characteristics, exposure risks, possible health effects

from exposure, and ways to limit exposure.

The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the
nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal
clean-up activities. The EPA has found toluene in at least 990 of the 1,832 current or former NPL sites.
The total number of NPL sites evaluated for toluene is not known. But the possibility remains that as
more sites are evaluated, the sites where toluene is found may increase. This information is important

because these future sites may be sources of exposure, and exposure to toluene may be harmful.

If you are exposed to toluene, many factors determine whether you’ll be harmed. These include how
much you are exposed to (dose), how long you are exposed (duration), how often you are exposed
(frequency), and how you are exposed (route of exposure). You must also consider the other chemicals

you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health.

WHAT IS TOLUENE?

Toluene is a clear, colorless liquid with a distinctive smell. It is a good solvent (a substance that can
dissolve other substances). Toluene occurs naturally in crude oil and in the tolu tree. It is produced in the

process of making gasoline and other fuels from crude oil and in making coke from coal.

Toluene is used in making paints, paint thinners, fingernail polish, lacquers, adhesives, and rubber and in
some printing and leather tanning processes. It is used in the production of benzene, nylon, plastics, and
polyurethane and the synthesis of trinitrotoluene (TNT), benzoic acid, benzoyl chloride, and toluene

diisocyanate. It is also added to gasoline along with benzene and xylene to improve octane ratings.

WHAT HAPPENS TO TOLUENE WHEN IT ENTERS THE ENVIRONMENT?

Toluene can be released into the air, water, and soil at places where it is produced or used. Toluene is
commonly found in air, particularly when there is heavy vehicular traffic. Monitoring data of outdoor air

in the United States shows that toluene is present at average levels of approximately 1-35 parts per billion
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by volume (ppbv). Indoor air samples can contain higher levels of toluene in places where products such

as paint thinners, solvents, or tobacco products are used.

Toluene can enter surface waters and groundwater (e.g. wells) from solvent and petroleum products spills.
Toluene can also leak from underground storage tanks at gasoline stations and other facilities. When
toluene-containing products are placed in landfills or waste disposal sites, toluene can enter the soil and
water near the waste site. It is possible for toluene to be broken down in subsurface (below ground) water
primarily by anaerobic microorganisms. Toluene will readily evaporate into the air or be degraded by
microorganisms in surface waters. Leaking underground storage tanks can contaminate the soil with
toluene and other petroleum-product components. Toluene in surface soils rapidly evaporates into the air.

Toluene is readily broken down to other chemicals by microorganisms in the soil.

HOW MIGHT | BE EXPOSED TO TOLUENE?

Toluene enters the environment when you use materials that contain it, such as paints, paint thinners,
adhesives, fingernail polish, and gasoline; it evaporates rapidly from these materials and becomes mixed

with the air you breathe.

Individuals who work with gasoline, paint, lacquer, or dyes have greater exposures to toluene, as do

individuals who smoke or intentionally inhale products containing toluene for its euphoric effects.

HOW CAN TOLUENE ENTER AND LEAVE MY BODY?

Toluene can enter your body from the air, water, or soil. You are exposed to toluene by breathing outdoor
or indoor air containing this substance. Gasoline contains toluene and so do some other products used in
occupational or home settings (e.g., solvents, paint thinners). Inhalation and dermal exposure is possible

when using these products.

Toluene is not frequently detected in drinking water. If you are using a well that has been contaminated
by toluene from an accidental spill, you may ingest some; however, this route of exposure is less likely
than breathing in toluene from air. Toluene evaporates quickly from soils. Therefore, it is unlikely you
will be exposed to it from soil, unless you come in contact with soil near a hazardous waste site

containing it or an accidental spill.
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When you breathe toluene, it is taken directly into your blood from your lungs. Similarly, when you

touch products containing toluene (e.g., nail polish remover) or bathe in water containing toluene, toluene
can pass through your skin into your bloodstream. When you ingest food or drink containing toluene, it is
also absorbed from your GI tract into your bloodstream. Factors such as your age, sex, body composition,

and health status affect what happens to toluene once it is in your body.

After being taken into your body, the majority of toluene is removed from your body within a day;
however, a small amount may accumulate in fat tissue with daily exposure. Toluene may leave your body
unchanged in the air you breathe out or in your urine after some of it has been changed to other
chemicals. Generally, your body turns toluene into less harmful chemicals such as hippuric acid. More

information on how toluene can enter and leave your body can be found in Chapter 3.

HOW CAN TOLUENE AFFECT MY HEALTH?

A serious health concern is that toluene may have an effect on your nervous system (brain and nerves).
Nervous system effects can be temporary, such as headaches, dizziness, or unconsciousness. However,
effects such as incoordination, cognitive impairment, and vision and hearing loss may become permanent
with repeated exposure, especially at high levels associated with intentional solvent abuse. High levels of
toluene exposure during pregnancy, such as those associated with solvent abuse, may lead to
developmental effects, such as retardation of mental abilities and growth in children. Other health effects

of potential concern may include immune, kidney, liver, and reproductive effects.

Single exposures to toluene or repeated exposures over a few weeks can cause headaches and sleepiness,
and can impair your ability to think clearly. Whether or not toluene does this to you depends on the
amount you take in, how long you are exposed, how frequently you are exposed, and your genetic
susceptibility and age. One very dangerous activity is to expose yourself to a large amount of toluene in a
short time by deliberately inhaling/sniffing paint or glue. At first, you will feel light-headed. If exposure
continues, you can become dizzy, sleepy, or unconscious. When exposure is stopped, the sleepiness and
dizziness usually goes away. However, you could die, because high-level toluene can interfere with the
way you breathe and the way your heart beats. If you deliberately breathe in large amounts of toluene
during pregnancy, developmental effects, such as retardation of mental abilities and growth, may occur in

your children.
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Day-after-day exposure to low to moderate levels of toluene in the workplace may cause tiredness,
confusion, weakness, drunken-type actions, memory loss, nausea, and loss of appetite in some people.
These symptoms usually disappear when exposure is stopped. You may experience some hearing and
color vision loss after long-term daily exposure to toluene in the workplace. Combinations of toluene and
some common medicines like aspirin and acetaminophen may increase the effects of toluene on your
hearing. Researchers do not know if the low levels of toluene that you breathe at work will cause any
permanent effects on your brain or body after many years. If you choose to repeatedly breathe in toluene
from glue or paint thinners, you may permanently damage your brain. You may also experience problems
with your speech, vision, or hearing, have loss of muscle control, loss of memory, poor balance, and

decreased mental ability.

Some studies in people have shown reproductive effects, such as an increased risk of spontaneous
abortions, from repeated, low to moderate levels of toluene in the workplace. However, other factors,
such as exposure to other chemicals, smoking, and alcohol use, may have affected the results of the
studies, so it is not possible to say definitively whether toluene has reproductive effects in people. No
reports are available of developmental effects in children of pregnant women exposed to low to moderate

levels of toluene in the workplace.

The effects of toluene on animals are similar to those seen in humans. The main effect of toluene is on
the brain and nervous system, but animals exposed to moderate or high levels of toluene also show
harmful effects in their liver, kidneys, and lungs and impaired immune function. Animal studies do not
indicate that toluene exposure results in reproductive effects (e.g., damage to reproductive organs,
infertility, abortion, premature birth), but do indicate that high levels of toluene during pregnancy can
produce developmental effects, similar to those observed in human mothers who intentionally breathed in

high levels of toluene during pregnancy (see next section regarding how toluene may affect children).

Studies in workers and animals exposed to toluene generally indicate that toluene is not carcinogenic
(cancer-causing). The International Agency for Research on Cancer determined that toluene is not
classifiable as to its carcinogenicity in humans (Group 3). The EPA determined there is inadequate
information to assess the carcinogenic potential of toluene. The American Conference of Governmental
Industrial Hygienists (ACGIH) determined that toluene is not classifiable as a human carcinogen (A4).

The U.S. National Toxicology Program (NTP) has not considered the carcinogenic potential of toluene.

See Chapters 2 and 3 for more information on health effects of toluene.
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HOW CAN TOLUENE AFFECT CHILDREN?

This section discusses potential health effects of toluene exposure in humans from when they’re first

conceived to 18 years of age.

Children may breathe air contaminated with toluene by family use of glues, paints, or cleaning solvents,
or by accidents involving products containing toluene. Toluene vapors are heavier than air and since
young children are closer to the ground or floor because of their height, they may breathe more toluene
than adults during accidental exposures. Also, children have faster breathing rates than adults and may
therefore breathe in more toluene. Older children and adolescents may be exposed to toluene if they
breathe household products containing it to get “high”. Nursing mothers who breathe toluene in
workplace air may transfer some toluene in breast milk to their infants. Toluene is not stored in the body.
Toluene in the body either rapidly leaves or is turned into less harmful chemicals. Thus, nursing mothers,
who do not currently work in jobs with toluene and who do not deliberately breathe large amounts of

toluene, are expected to transfer very little toluene in breast milk.

The effects of toluene on children have not been studied very much, but toluene is likely to produce the
same types of effects on the brain and nervous system in children as it does in adults. Some older
children and adolescents who have repeatedly breathed large amounts of toluene to get high have
developed loss of muscle control, loss of memory, poor balance, and decreased mental abilities. Some of
these changes may last for a long time after toluene has left the body. Young animals exposed to toluene

have shown changes in behavior, hearing loss, and chemical changes in their brains.

Human fetuses and newborn babies may be more sensitive to toluene than adults, because their bodies
may not be as able to turn toluene into less harmful chemicals. Some animal studies suggest that young
animals might be more susceptible to toluene effects on health; however, shortly after birth, human babies
begin to develop the ability to turn toluene into less harmful chemicals. By the time children are 1—-

3 years of age, they may be equal to adults in this ability.

Some mothers who breathed large amounts of toluene during pregnancy to get high have had children
with birth defects, including retardation of mental abilities and growth. Results from animal studies have
found similar effects in newborn animals that had mothers that breathed large amounts of toluene during

pregnancy; however, when the animal mothers breathed small amounts of toluene during pregnancy, no
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birth defects were found in their newborn animals. When pregnant animals breathe small amounts of

toluene during pregnancy, studies show that very little toluene reaches the developing fetus.

More information on the effects of toluene on children can be found in Chapter 3.

HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO TOLUENE?

If your doctor finds that you have been exposed to significant amounts of toluene, ask whether your
children might also be exposed. Your doctor might need to ask your state health department to

investigate. You may also contact the state or local health department with health concerns.

Toluene is a solvent that is used in making paints, paint thinners, fingernail polish, lacquers, adhesives,
and rubber. Toluene is added to gasoline and is used in some printing and leather tanning processes.
Follow instructions on product labels to minimize exposure to toluene. Families can reduce their risk of
exposure to toluene by using consumer products containing the chemical (such as paints, glues, inks, and
stain removers) in well-ventilated areas or using consumer products without toluene. When not in use,
toluene-containing products should be tightly covered to prevent evaporation into the air. Household
chemicals should be stored out of the reach of young children to prevent accidental poisonings. Storing
items that contain toluene in a locked shed or another secure area outside location may reduce the
potential for accidental exposure in young children (or intentional exposure by older youth). Always
store household chemicals in their original labeled containers. Never store household chemicals in
containers that children would find attractive to eat or drink from, such as old soda bottles. Keep your

Poison Control Center’s number next to the phone.

If you have concerns about the presence of toluene in your tap water, you can call your local health
department and request information on testing results of local public drinking water or ask how to get
your well tested. If concerns remain, use bottled water for drinking. Prevent children from eating or
playing in the dirt if you live near a waste site that has been contaminated with toluene, and always have

them wash their hands prior to eating in case of potential exposure.

Your children may be exposed to toluene by inhaling products that contain it. Sometimes, older children
sniff household chemicals in an attempt to get high. Talk with children about the dangers of sniffing

chemicals such as toluene.
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ARE THERE MEDICAL TESTS TO DETERMINE WHETHER | HAVE BEEN EXPOSED TO
TOLUENE?

Toluene and its breakdown products (metabolites) can be measured in blood and urine. However, the
detection of toluene or its metabolites cannot predict the kind of health effects that might develop from
that exposure. Because toluene and its metabolites leave the body fairly rapidly, the tests need to be

conducted within days after exposure.

For more information on the different substances formed by toluene breakdown and on tests to detect

these substances in the body, see Chapters 3 and 7.

WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT
HUMAN HEALTH?

The federal government develops regulations and recommendations to protect public health. Regulations
can be enforced by law. Federal agencies that develop regulations for toxic substances include the
Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA),
and the Food and Drug Administration (FDA). Recommendations provide valuable guidelines to protect
public health but are not enforceable by law. Federal organizations that develop recommendations for
toxic substances include the Agency for Toxic Substances and Disease Registry (ATSDR) and the
National Institute for Occupational Safety and Health (NIOSH).

Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic
substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect
animals; levels are then adjusted to help protect humans. Sometimes these not-to-exceed levels differ
among federal organizations. Different organizations use different exposure times (e.g., an 8-hour
workday or a 24-hour day), different animal studies, or emphasize some factors over others, depending on

their mission.

Recommendations and regulations are also updated periodically as more information becomes available.
For the most current information, check with the federal agency or organization that issued the regulation

or recommendation.

The EPA has recommended a drinking water guideline value of 1 mg/L for toluene. OSHA has set a legal

limit for workers of 200 ppm for toluene in air averaged over an 8-hour workday. NIOSH has set a
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recommended limit of 100 ppm for toluene in air averaged over a 10-hour workday. ACGIH

recommends that toluene in workplace air not exceed 20 ppm (average levels over 8 hours).

More information on federal and state government regulations and guidelines for toluene in air and water

can be found in Chapter 8.

WHERE CAN | GET MORE INFORMATION?

If you have any questions or concerns, please contact your community or state health or environmental
quality department, or contact ATSDR at the address and phone number below. You may also contact
your doctor if experiencing adverse health effects or for medical concerns or questions. ATSDR can also
provide publicly available information regarding medical specialists with expertise and experience

recognizing, evaluating, treating, and managing patients exposed to hazardous substances.

e (all the toll-free information and technical assistance number at
1-800-CDCINFO (1-800-232-4636) or

e  Write to:
Agency for Toxic Substances and Disease Registry
Division of Toxicology and Human Health Sciences
1600 Clifton Road NE
Mailstop F-57
Atlanta, GA 30329-4027

Toxicological profiles and other information are available on ATSDR’s web site:

http://www.atsdr.cdc.gov.
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2.1 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO TOLUENE IN THE UNITED
STATES

Toluene is a clear colorless liquid possessing high vapor pressure and low to moderate water solubility. It
is used as a solvent and as an additive in gasolines to improve octane ratings. It is also frequently used to

produce other chemicals such as benzene and toluene diisocyanate.

Given its vapor pressure, toluene tends to partition to the atmosphere. Automobile emissions are the
principal source of toluene in ambient air, with levels fluctuating in proportion to automobile traffic.
Toluene can also be a common indoor contaminant, and indoor air concentrations are often several times
higher than outside air. This is likely due to release of toluene from common household products (paints,

paint thinners, adhesives, and nail polish in which it is used as a solvent) and from cigarette smoke.

In the atmosphere, toluene is principally degraded by reaction with photochemically generated hydroxyl
radicals, but may also degrade through reaction with nitrate radicals and ozone. When released to water
surfaces, toluene is expected to volatilize quickly. It may also be biodegraded under aerobic and
anaerobic conditions, but hydrolysis is not an important environmental fate process. Toluene does not
bioconcentrate or bioaccumulate significantly in aquatic organisms. If released to soil, toluene is
expected to volatilize quickly. In the case of a large spill, some toluene may leach into groundwater
because it possesses high mobility in soils. Biodegradation in soils may also occur with half-lives ranging

from a few hours to several days depending upon the environmental conditions.

The general population is primarily exposed to toluene through the inhalation of ambient air. Ingestion of
toluene from contaminated water and food is possible; however, this is a less likely exposure route since
toluene is not frequently detected in drinking water and food. Dermal exposure from gasoline or solvents
that contain toluene is also possible. Occupational exposure to toluene is expected to be greater than
general population exposure for persons employed in heavy traffic occupations (e.g., toll attendants,

automobile workers etc.) and persons who frequently use solvents or other products that contain toluene.

2.2 SUMMARY OF HEALTH EFFECTS

Death. Case studies that reported on deaths in humans due to exposure to toluene have generally not

provided information on dose. In one instance, ingestion of approximately 625 mg/kg resulted in death
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within 30 minutes. The cause of death appeared to be profound disruption of central nervous system

function.

An acute 7-hour inhalation LCso value of 5,320 ppm has been reported for mice and acute oral LDs
values in adult rats ranged from 5,500 to 7,400 mg/kg. In 13-week gavage studies, all rats and mice that
received 5,000 mg/kg died within the first week. Mortality was also high for groups receiving

2,500 mg/kg, with 8/10 male rats, 1/10 female rats, and 4/10 male and female mice dying before the end
of the study. A dose of 1,250 mg/kg/day was lethal in 1/10 female mice, but no deaths occurred in male

mice or in rats of either sex.

Systemic Effects.

Respiratory Effects. The primary effect of toluene on the respiratory tract following inhalation is
irritation. Studies with volunteers and exposed workers have demonstrated that toluene is a mild-to-
moderate respiratory irritant. Early animal studies reported respiratory irritation and pulmonary lesions in
rats exposed to high concentrations of toluene. These findings are supported by more recent observations
of nasal lesions (including metaplasia of olfactory epithelium and degeneration of respiratory epithelium)
in rats exposed to concentrations ranging from 600 to 1,200 ppm, 6.5 hours/day, 5 days/week for 2 years.
Mice exposed by the same exposure protocol to a similar range of concentrations, however, did not
display upper or lower respiratory tract lesions. In shorter duration studies, reversible nasal olfactory
degeneration was observed in mice exposed to 1,000 ppm, 5 hours/day, 5 days/week for 4 weeks and
inflammatory cell infiltration in peribronchial and alveolar regions, alveolar edema, and interstitial

fibrosis and necrosis was observed in rats exposed to 3,000 ppm, 8 hours/day, 6 days/week for 12 weeks.

Only limited data regarding respiratory effects following oral exposure to toluene were located.
Following lethal ingestion of approximately 625 mg/kg toluene, lung congestion and hemorrhage were
reported in an adult male. Mucosal lesions and pronounced edema were observed during a bronchoscopy
following a nonlethal ingestion of paint thinner by a 15-month-old girl. No respiratory effects were
reported in mice or rats after oral exposure to toluene at dosage levels up to 2,500 mg/kg/day for

13 weeks or 590 mg/kg/day for 6 months. No changes in lung weight or histology were reported in

female mice exposed to 600 mg/kg/day via gavage for 14 days, compared with controls.

Cardiovascular Effects. Inhalation exposure to toluene at concentrations >1,000 ppm has been

associated with alterations of the heart rhythm in both humans and animals, but exposure of rats or mice
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to concentrations as high as 12,000 ppm (3 hours/day) for intermediate durations and up to 1,200 ppm (6—
6.5 hours/day) for chronic durations produced no histological changes in heart tissue. Additionally, no
histological changes in the heart were observed in FO and F1 parental rats or F1 and F2 weanlings
exposed to 100-2,000 ppm toluene for 95 days (6 hours/day; pre-mating and mating, gestation, and
lactation) in a multigenerational study. There may be intraspecies differences in the cardiac response to
toluene that make some individuals more susceptible than others to potentially fatal arrhythmias; the

degree of hypoxia may also be important.

Cardiac effects have been noted following oral exposure to doses >1,200 mg/kg. Cardiac edema and
congestion were observed in rats given single gavage doses of 5,200 mg/kg, compared with controls.
Increased relative heart weights were noted in rats exposed to toluene at 1,250 mg/kg/day for 13 weeks
and myocardial degeneration was present in mice exposed to 5,000 mg/kg/day. All of the mice receiving
5,000 mg/kg/day died during the first weeks of exposure. No effects on the weight or gross morphology
of the heart were noted in rats receiving 590 mg/kg/day for 6 months, and no significant treatment-related
findings were observed in electrocardiograms or cardiac histology in rats given single oral doses of up to

1,000—1,200 mg/kg.

Gastrointestinal Effects. Gastric pain was reported by a man who accidently ingested 30 mL of an
organic solvent containing toluene and other chemicals. Gastrointestinal effects were not reported in

other case studies of oral exposure.

The only gastrointestinal effect reported after exposure to toluene was ulceration of the forestomach of
rats exposed to 600 and 1,200 ppm by inhalation for 2 years. Similar effects were not seen in mice
exposed under the same conditions or in rats or mice orally exposed to 2,500 mg/kg/day for 13 weeks.
Additionally, no gastrointestinal effects were observed in FO and F1 parental rats or F1 and F2 weanlings
exposed to 100-2,000 ppm toluene for 95 days (6 hours/day; pre-mating and mating; gestation, and

lactation) in a multigenerational reproductive toxicity study.

Hematological Effects. Before the mid-1950s, chronic occupational exposure to toluene was associated
with hematological effects. However, these effects are now attributed to benzene, a common contaminant
of toluene at that time. More recent studies of workers exposed to toluene or to mixed solvents
containing toluene have not found consistent evidence for abnormal hematological parameters.

Following acute exposures, no effects on leukocyte counts were observed in volunteers exposed to

800 ppm toluene for 3 hours, and two workers accidentally exposed to about 1,862 ppm for 2—-3 hours had
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normal values for hematological variables. Decreased leukocyte and white blood cell counts were
observed in dogs and rats repeatedly exposed to airborne toluene, but have not been observed consistently
in other studies of rats and mice repeatedly exposed by inhalation or by oral administration. In one study,
rats exposed to high concentrations (2,500 or 5,000 ppm) of toluene for 7 hours each day had decreased
leukocyte counts following exposure; however, the leukocyte numbers generally returned to normal by
the next day. The toxicological significance of a transitory decrease in numbers of leukocytes is not
apparent. In chronic-duration studies, rats exposed to 100 or 300 ppm toluene had significantly reduced
hematocrit levels, but no consistent effects on hematological variables were reported for mice or rats

exposed to toluene at levels up to 1,200 ppm for 15 months or 2 years.

Musculoskeletal Effects. Rhabdomyolysis (an acute disease of the skeletal muscles leading to
breakdown of muscle tissue, leading to release of myoglobin into the blood and urine) was reported in
two case studies of chronic toluene abuse: a man who had been sniffing glue containing toluene for
18 years, and a 48-year-old man who was a chronic toluene abuser who had been inhaling one tube of

toluene-containing glue per day in the month preceding admission.

No musculoskeletal effects were reported in mice or rats after inhalation exposure up to 1,200 ppm for
15 months or 2 years or oral exposure to toluene at dosage levels up to 2,500 mg/kg/day for 13 weeks.
Additionally, no musculoskeletal effects were reported in FO and F1 parental rats or F1 and F2 weanlings
exposed to 100-2,000 ppm toluene for 95 days (pre-mating and mating), gestation, and lactation in a
multigenerational study. However, bone mineral density and bone mineral content were significantly
(p<0.05) decreased in the right femoral neck of mice exposed to 300 ppm toluene 6 hours/day for

8 weeks.

Hepatic Effects. Studies of chronic toluene abusers, occupationally exposed workers, and laboratory
animals have provided little support for irreversible liver damage due to inhaled toluene. Some studies of
workers who were occupationally exposed to average concentrations between about 30 and 350 ppm
toluene reported liver effects such as increased serum levels of alkaline phosphatase (AP), but others
recorded no adverse effects on serum liver enzyme levels. Results from studies of animals exposed by
inhalation for acute, intermediate, or chronic durations indicate that daily 6—8-hour exposures to
concentrations above 300 ppm, but not below, can lead to increased liver weights and induction of hepatic
cytochrome P450 levels. There are a few reports of toluene-induced effects that may be associated with
liver damage (e.g., increased serum levels of liver enzymes in rats exposed to 2,000 ppm for 48 hours,

rats exposed to 3,000 ppm, 1 hour/day for 30 days, and rats exposed to 300 ppm, 6 hours/day for 4 weeks;
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increased hepatic fibrosis and apoptosis in rats exposed to 3,000 ppm, 1 hour/day for 30 days or

8 hours/day, 6 hours/week for 12 weeks; and increased endoplasmic reticulum in hepatocytes after
exposure of rats, mice, and rabbits to 795 ppm 8 hours/day for 7 days), but no significant
histopathological liver changes or liver weight changes were observed in well-conducted chronic-duration
studies in which rats and mice were exposed to concentrations as high as 1,200 ppm, 6.5 hours/day,

5 days/week for 2 years. Results from intermediate-duration oral studies in rats and mice support the idea
that toluene does not cause degenerative liver effects, but, at sufficiently high doses, produces liver

weight increases that are likely associated with enzyme induction.

Studies of liver effects following oral exposure in humans are limited to two case studies. The liver of an
adult male who died from toluene ingestion (625 mg/kg) was found to be enlarged on autopsy; however,
clinical chemistry did not reveal abnormal liver function in a 15-month-old girl following accidental
ingestion of paint thinner. Evidence from intermediate-duration animal studies indicates that exposure to
toluene results in increased liver weights; however, reported effective dose levels vary widely between
studies, species, and sex. Increased liver weight has been reported in male mice exposed to

105 mg/kg/day in drinking water for 28 days, but not at 5, 22, or 84 mg/kg/day. Following exposure to 0,
312, 625, 1,250, 2,500, or 5,000 mg/kg/day via gavage for 12 weeks, significant increases in liver weight
were observed in male and female rats exposed to >625 and >1,250 mg/kg/day, respectively, and male
and female mice exposed to >1,250 and >312 mg/kg/day, respectively. No treatment-related changes in
liver weight were observed in female rats exposed to 590 mg/kg/day via gavage for 6 months. No
treatment-related gross or histopathological lesions of the liver were reported in any of these intermediate-

duration oral studies in laboratory animals.

An acute oral study in rats reports that single gavage doses of 5,200 mg/kg produced slight degeneration
of hepatocytes, mononuclear cell infiltration, increased apoptosis, and increased serum levels of AST and
ALT; however, no alterations in liver weight or histology were reported in pregnant rats exposed to

1,250 mg/kg/day toluene via gavage from gestation day (GD) 16 to 19 or female mice exposed to

600 mg/kg/day toluene via gavage for 14 days. Increased hepatic cell apoptosis was also reported in rats

exposed to 650 mg/kg/day via gavage for 45 days.

Renal Effects. Studies of chronic toluene abusers, occupationally exposed workers, and laboratory
animals have provided little support for irreversible kidney damage due to inhaled toluene. Chronic abuse
of toluene can produce acidosis, but in most cases, renal dysfunction is transient, and normal function

returns when exposure ceases. Studies of workers occupationally exposed to 100-200 ppm toluene,
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which assessed changes in tests of kidney function, have not shown consistent effects across studies.
Animal studies indicate that inhalation of toluene causes concentration-dependent kidney damage in rats,

but only after repeated exposure to concentrations >600 ppm for at least 6 hours/day.

The majority of oral exposure studies in animals do not report renal effects. No treatment-related changes
in kidney weight were reported in female rats exposed to 590 mg/kg/day via gavage for 6 months, male
and female mice exposed up to 2,500 mg/kg/day via gavage for 13 weeks, male mice exposed to 5—

105 mg/kg/day in drinking water for 28 days, or female mice exposed to 600 mg/kg/day via gavage for

14 days. However, following exposure to 0, 312, 625, 1,250, 2,500, or 5,000 mg/kg/day via gavage for
12 weeks, significant increases in kidney weight were observed in male and female rats exposed to

>625 and >1,250 mg/kg/day, respectively. No changes in histopathology or renal function were reported
in any intermediate-duration study. However, evidence for renal pathology was reported in dams exposed
to 1,250 mg/kg/day toluene via gavage from GD 16 to 19. Kidneys from toluene-exposed dams
demonstrated swollen tubules, tissue adhesion to Bowman's capsule, and areas of solidification within
glomeruli that were not observed in control dams. No exposure-related changes were observed in kidney

weight.

Endocrine Effects. Current data do not provide consistent evidence of endocrine disruption in toluene-
exposed humans. Elevated plasma levels of triiodothyronine (T3), but not free thyroxine (T4) or thyroid
stimulating hormone (TSH), were observed in male printers exposed to 36 ppm toluene compared to an
unexposed referent group. No change was observed in serum prolactin levels. Studies of blood levels of
reproductive hormones in repeatedly exposed workers or acutely exposed human subjects have not

provided strong and consistent evidence of exposure-related endocrine effects.

Similarly, evidence for endocrine effects in animals following acute- or intermediate-duration inhalation
exposure to toluene is not consistent across studies and does not clearly identify toluene as an endocrine
disrupting chemical. Elevated prolactin levels were reported in rats after exposure to 80 ppm toluene

6 hours/day, 5 days/week for 4 weeks or 80—1,000 ppm 6 hours/day for 3 days. However, no changes in
prolactin levels were found in rats after exposure to 40-320 ppm 6 hours/day, 5 days/week for 4 weeks,
500 ppm toluene 6 hours/day for 3 days, or 1,000 ppm 6 hours/day for 5 days. No statistically significant,
dose-related changes in serum levels of, luteinizing hormone (LH), follicle stimulating hormone (FSH),
corticosterone levels, growth hormone, or TSH were reported in male Sprague-Dawley rats exposed up to
3,000 ppm toluene 6 hours/day for 3 days or 1,000 ppm 6 hours/day for 5 days. Increased serum

adrenocorticotropic hormone (ACTH) and corticosterone levels, along with increased adrenal weight and
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adrenocortical cell size, were observed in male rats exposed to 1,500 ppm 4 hours/day for 7 days. This
exposure scenario was shown to cause, in companion studies, neuronal damage and an increase in
glucocorticoid receptor in the hippocampus, suggesting a possible disruption in the neuroendocrine axis.
However, no effects on endocrine glands (pancreas, adrenal, or thyroid) were reported in other studies of
rats exposed to 200—5,000 ppm toluene for 7 hours/day for 5 weeks, FO and F1 parental rats or F1 and F2
weanlings exposed to 100-2,000 ppm toluene for 95 days (pre-mating and mating), gestation, and
lactation, mice exposed to up to 2,500 ppm for 14 weeks, rats exposed to up to 3,000 ppm for 15 weeks,

or mice and rats exposed to up to 1,200 ppm for 2 years.

Limited data are available regarding endocrine effects following oral exposure. Serum corticosterone and
ACTH levels were significantly elevated in male mice exposed to 105 mg/kg/day toluene in drinking
water for 28 days, compared with controls. Levels were not significantly elevated following exposure to
5 or 22 mg/kg/day. Microscopic examination revealed no effects on the adrenal or thyroid glands in rats

and mice administered 312-2,500 mg/kg/day toluene by gavage for 13 weeks.

Dermal Effects. Skin irritation can occur in humans and animals dermally exposed to toluene. In
humans, this may be due to the degreasing action of toluene and its removal of protective skin oils.
However, exposure to toluene vapors of 100-2,000 ppm for 95 days (pre-mating, mating, gestation, and
lactation) in a multigenerational study had no effects on the skin in FO and F1 parental rats or F1 and F2
weanlings. Repeated or continuous contact with undiluted toluene in guinea pigs and mice leads to

swelling, inflammatory cell infiltration, and increased epidermal thickness.

Ocular Effects. Humans have reported eye irritation following exposure to toluene vapors at
concentrations >100 ppm. This is probably the result of direct contact of toluene vapor with the outer
surface of the eye and thus, is not a true systemic effect. Slight to moderately severe irritation of rabbit
eyes has been reported following direct application of toluene to the conjunctiva. Reports of color vision
deficits in occupationally exposed workers have been postulated to involve toluene interference with

dopaminergic mechanisms of retinal cells or toxic demyelination of optic nerve fibers.

Body Weight Effects. Findings regarding body weight effects in animals following inhalation exposure
are inconsistent across studies. Weight loss has been reported to occur in rats following acute-duration
exposure of 1,500-2,000 ppm; and intermediate-duration exposure (3—23 weeks) to toluene
concentrations ranging from 200 to 12,000 ppm. In mice, weight loss has been reported following

intermediate-duration exposure (8—14 weeks) to toluene concentrations ranging from 100 to 12,000 ppm.
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In contrast, no exposure-related effects on body weights were observed in rats or mice following
intermediate-duration exposure (20-95 days) at concentrations ranging from 1,000 to 6,000 ppm or

chronic-duration exposure (2 years) up to 1,200 ppm.

The majority of oral exposure animal studies do not report body weight effects. No dose-related changes
in body weight were reported in male rats following single gavage administration of up to 1,000 mg/kg,
female mice exposed to 600 mg/kg/day via gavage for 14 days, male mice administered 5-105 mg/kg/day
toluene in their drinking water for 28 days, or female rats and female mice given gavage doses of up to
2,500 mg/kg/day for 13 weeks. However, body weights were 16% lower in male mice given

1,250 mg/kg/day and 19% lower in male rats given 2,500 mg/kg/day by gavage for 13 weeks. Maternal
weight gain was 24% lower in rats given 520 mg/kg/day toluene by gavage from GD 6 to 19, compared
with control rats, but there was no change in maternal body weight gain in rat dams exposed to

1,250 mg/kg/day toluene via gavage from GD 16 to 19.

Immunological and Lymphoreticular Effects. Only limited data are available on the immuno-
logical effects of toluene in humans. These studies do not identify consistent or strong evidence for
toluene effects on immune system end points such as counts of blood lymphocytes or levels of blood

immunoglobulins or development of autoimmune disorders.

In animals, there is evidence that toluene may lead to immune depression. A series of studies evaluated
immune end points in male CD-1 mice (5/group) administered toluene in their drinking water for 28 days
at concentrations of 0, 5, 22, or 105 mg/kg/day or 0, 22, or 84 mg/kg/day. In one study, significantly
decreased thymus weight and significantly depressed immune responses were observed in all in vitro
immune assays (mitogen-stimulated lymphocyte proliferation, mixed lymphocyte reaction, interleukin 2
[IL-2] production assay, and antibody plaque-forming cell [PFC] response) at 105 mg/kg/day, compared
with controls. IL-2 production and mitogen-stimulated lymphocyte proliferation were also significantly
increased at 22 mg/kg/day, compared with controls. Significantly depressed immune responses were
observed in the PFC assay and mixed lymphocyte reaction at 84 mg/kg/day. The mixed lymphocyte
reaction was also significantly depressed at 22 mg/kg/day. In another study, the IL-2 production assay
was significantly depressed at 105 mg/kg/day. Taken together, these studies consistently reported
diminished immune responses in multiple in vitro immune assays following in vivo exposure to 84—

105 mg/kg/day in drinking water for 28 days, compared with controls. A couple of immune assays were
altered at 22 mg/kg/day, but findings were not consistent between the Hsieh studies. Additionally, the
antibody PFC assay was significantly altered at 84 and 105 mg/kg/day, but not at 22 mg/kg/day. The
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PFC in vitro assay is considered the most predictive assay of impaired immune function. Collectively,
results from these studies support a no-observed-adverse-effect level (NOAEL) of 22 mg/kg/day for
immune effects. Decreased resistance to mortality from respiratory infection by Streptococcus
zooepidemicus was observed in a study of mice exposed for 3 hours to toluene concentrations as low as
2.5 ppm, but not 1 ppm. However, in an acute oral study, exposure to 600 mg/kg/day via gavage for
14 days did not diminish immune response in in vitro immune assays or decrease host resistance to
Listeria monocytogenes, Streptococcus pneumoniae, Plasmodium yoelii, B16F10 melanoma cells, or

PYBG6 fibrosarcoma in female mice, compared with controls.

No evidence for exposure-related adverse changes in weight or histology of the spleen or thymus has been
reported in animals exposed by inhalation for intermediate or chronic durations. Thymus weight was
significantly decreased in male mice exposed to 105 mg/kg/day via gavage for 28 days, but not to 5—

84 mg/kg/day. No changes in spleen weight were observed at any dose. No changes in thymus or spleen
weight were observed in female mice exposed to 600 mg/kg/day via gavage for 14 days or rats or mice
exposed up to 2,500 mg/kg/day via gavage for 13 weeks. No gross or histopathological lesions of the

spleen or thymus were reported in any oral study.

Neurological Effects. Dysfunction of the central nervous system is a critical human health concern
following acute, intermediate, or chronic inhalation exposure to toluene. Chronic toluene abuse in
humans has been associated with neurotoxic symptoms, narcosis, permanent damage to the central
nervous system, and death. Self-reported neurological symptoms, reduced ability in tests of cognitive and
neuromuscular function, and hearing and color vision loss have been observed in humans occupationally
exposed to average concentrations ranging from 35 to 200 ppm; several occupational studies identify
NOAELS for these effects in the range of 20187 ppm toluene. Performance deficits in tests of
neurobehavior have also been observed in volunteers acutely exposed to controlled concentrations

>50 ppm.

Numerous studies in animals have also reported clinical signs of neurotoxicity and neurobehavioral
alterations following acute, intermediate, or chronic inhalation exposure to toluene. Consistently reported
effects following acute exposure include overt signs of neurotoxicity (ataxia, tremors, inability to walk);
increased, followed by decreased, locomotor activity at >500 ppm; impaired learning and/or memory at
125-4,000 ppm; and impaired motor coordination and reflexes at >100 ppm. However, studies of rodents
exposed for intermediate durations to concentrations as high as 1,000 ppm have not found strong and

consistent evidence for exposure-related changes for these neurological end points. Following repeated
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abuse-like exposures (>1,000 ppm), neurobehavioral alterations have been observed in several animal

studies.

Various other neurological effects have also been reported in animal inhalation studies. Hearing loss in
animals has been observed following acute- and intermediate-duration exposure to toluene at
concentrations of 2250 ppm in guinea pigs and >1,000 ppm in rats. Observed hearing loss may not be
solely due to neurological damage, as animal studies indicate that exposure to 500-2,000 ppm damages
the cells in the inner ear (cochlea) that are responsible for amplifying incoming sound waves prior to
initiation of the nerve signal from the ear to the brain. Other effects that have been reported include
alterations in visual-evoked brain potentials (VEPs) or electroretinograms (ERGs), altered pain
perception, decreased olfactory sensitivity, altered sleep patterns, altered brain weight and volume in rats,
altered levels of glial fibrillary acidic protein (GFAP) and markers of oxidative stress, and altered levels

of neurotransmitters, precursors, and receptors.

Limited data are available regarding neurological effects following oral exposure. Neurological effects
were reported in three case reports of toluene ingestion: severe depression of central nervous system
function was the probable cause of death for a 51-year-old man who ingested approximately 60 mL

(625 mg/kg) of toluene; a man who accidently ingested 30 mL of an organic solvent containing toluene
and other chemicals was drowsy and complained of dizziness; and depressed consciousness, lethargy,
hypotonia, and nystagmus were observed in a 15-month-old girl following accidental ingestion of paint
thinner. Effects reported following acute-duration oral exposure in animals include transient increases in
motor activity in rats; decreased in the flash-evoked brain potential (FEP) wave pattern amplitudes in
male rats; and outer hair cell (OHC) loss in the cochlea of rats. However, no changes in brain weight or
histology were reported in female mice exposed to 600 mg/kg/day via gavage for 14 days, compared with
controls. Effects reported following intermediate-duration oral exposure in animals include regional
specific neurotransmitter alterations; increased relative brain weights in male and female rats and male,
but not female, mice; cellular necrosis in the hippocampus and cerebellum of male and female rats; and

overt signs of neurotoxicity.

Reproductive Effects. Current data do not provide convincing evidence that acute or repeated
inhalation exposure to toluene may cause reproductive effects in humans. Limited evidence in humans
indicates that occupational exposure to toluene (and other solvents) may lead to an increased incidence of
spontaneous abortion or decreased fecundity in female workers. One study reports increased risk of

preterm birth with increasing environmental toluene exposure; however, concurrent exposure to multiple
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pollutants limits the conclusions that can be drawn from this study. A few studies in animals exposed to
toluene via inhalation at concentrations >2,000 ppm reported effects on male and female reproductive
tissues, including abundant vacuoles, lytic areas, and mitochondrial degeneration in the antral follicles of
the ovaries of female rats and reduced sperm count, motility, and quality and altered reproductive organ
weight and histology in male rats. However, changes in sperm count and epididymis weight were not
accompanied by any change in indices of reproductive performance (e.g., fertility) in male rats exposed to
2,000 ppm for 60 days before mating. The majority of animal studies provide little evidence for toluene
reproductive toxicity. Studies in rats exposed repeatedly by inhalation to toluene, including a
2-generation reproductive toxicity study, have shown no evidence of adverse effects on mating or fertility
at tested concentrations as high as 1,200-2,000 ppm. In addition, the majority of numerous gestational

exposure studies in rodents reported no exposure-related changes in reproductive indices.

Available data from oral exposure studies in animals do not provide evidence of reproductive effects
following toluene exposure. No significant differences in the mean number of implantations per dam,
corpora lutea per dam, live fetuses per litter, total number of resorptions per dam, and/or pre- or post-
implantation loss were reported when rats and mice were exposed to toluene during gestation. Increased
relative testicular weights were reported in male mice exposed to 1,250 and 2,500 mg/kg/day by gavage
for 13 weeks. However, no effects on the weight of the prostate, testes, uterus, or ovaries were observed
in rats and female mice exposed to 312-2,500 mg/kg/day. Reproductive performance was not evaluated

in these 13-week studies.

Developmental Effects. There are a number of published reports of birth defects, similar to those
associated with fetal alcohol syndrome, that have been described in children born to women who
intentionally inhaled large quantities of toluene or other organic solvents during pregnancy. Defects
described include microcephaly, central nervous system dysfunction, growth deficiency, cranofacial and
limb abnormalities, and reversible renal tubular acidosis. Studies of women exposed during pregnancy to
much lower concentrations of toluene in the workplace are restricted to a retrospective study of 14 women
in Finland occupationally exposed to mixed solvents that suggested that solvent exposure may increase

risk for central nervous system anomalies and neural tube closure defects.

The reports of birth defects in solvent abusers suggest that high-level exposure to toluene during
pregnancy can be toxic to the developing fetus. The available human data, however, do not establish
causality between low-level or occupational exposure to toluene and birth defects, because of the small

sample size and the mixed solvent exposure experienced by the subjects, the lack of other studies of
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possible birth defects in children of occupationally exposed women, and the likelihood that the high
exposure levels experienced by pregnant solvent abusers (4,000-12,000 ppm) overwhelm maternal
protection of the developing fetus from absorbed toluene. Experiments with pregnant mice demonstrated
that 10-minute exposures to 2,000 ppm resulted in low uptake of toluene into fetal tissue and suggest that,
at lower exposure levels, absorbed toluene is preferentially distributed to maternal adipose tissue before

distribution to the developing fetus.

A number of developmental toxicity studies with rats, mice, and rabbits involving toluene exposure by
inhalation during gestation have been conducted to further describe developmentally toxic effects from
toluene and exposure-response relationships. The results indicate that toluene did not cause maternal or
developmental toxic effects in animals at exposure levels <1,000 ppm administered for 67 hours/day
during gestation. Predominant effects reported at concentrations ranging from 1,000 to 3,000 ppm
include retarded fetal growth and skeletal development and altered development of behavior in offspring;
these effects were almost always accompanied by signs of maternal toxicity. Other animal studies
reported that continuous, 24-hour/day exposure during gestation caused maternal body weight depression
and effects on fetuses including depressed body weight and delayed skeletal ossification at toluene
concentrations as low as 133-399 ppm in rats, mice, and rabbits. Impaired learning and memory,
increased malformations, and fetal death have been observed when animals were exposed during

gestation to higher concentrations modeling solvent abuse (8,000—16,000 ppm, 15-30 minutes/day).

In animal studies of oral exposure during gestation, toluene was not a developmental toxicant when
administered orally at 1,800 or 2,350 mg/kg/day to pregnant mice during the period of organogenesis in
two developmental screening studies. In a comprehensive developmental toxicity study in rats, a
statistically significant increase in the incidence of a dilated renal pelvis in the left kidney was observed in
fetuses from dams exposed to 1,250 mg/kg on GDs 1619 via gavage, compared with controls. No
changes were observed in any other developmental end point. In other studies, exposure of pregnant rats
to gavage doses of 650 mg/kg/day toluene in corn oil on GDs 6—19 produced offspring with decreased
body weights, delayed ossification, smaller brain volumes, decreased forebrain myelination per cell, and

decreased cortical cell proliferation and migration, compared with controls.

Performance deficits in a few neurobehavioral tests were observed in one study in offspring of pregnant
mouse dams exposed by inhalation to 2,000 ppm, but not 200 or 400 ppm, for 60 minutes 3 times/day on
GDs 12—17. Performance deficits were not observed in offspring of pregnant rat dams exposed by

inhalation to up to 2,000 ppm for 6 hours/day during gestation. Drinking water exposure during gestation
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and lactation at doses of 106 mg/kg/day resulted in changes in postweaning open-field locomotor activity

in rat offspring.

Cancer. Human and animal studies generally do not support a concern for the carcinogenicity of
toluene. Numerous human epidemiology studies were located that assessed toluene exposure as a
possible risk factor for cancer. Five of the studies examined workers exposed predominantly to toluene,
whereas the remainder of the human studies primarily involved subjects exposed to mixtures of solvents
including toluene. Cancers of most sites were not significantly associated with toluene exposure, and
there was weak consistency in the findings of those studies that did find association of a particular cancer
type with toluene exposure. The information from these studies is inadequate to assess the carcinogenic
potential of toluene, predominantly because of the lack of consistent findings across the studies and the
likelihood that many of the studied groups were exposed to multiple chemicals. The validated animal
inhalation bioassays were negative; however, one available oral study showed a nondose-related increase
in a variety of tumors. Dermally administered toluene markedly inhibits skin tumorigenesis in the two-
stage mouse model utilizing phorbol-12-myristate-13-acetate (PMA) as a promoter. The reduction in
tumorigenesis was observed in mice initiated with dermal applications of benzo(a)pyrene or
7,12-dimethylbenz(a)anthracene. Thus, the data do not support a firm conclusion regarding the
carcinogenicity of toluene. As such, the EPA determined that there is inadequate information to assess
the carcinogenic potential of toluene, IARC determined that toluene is not classifiable as to its
carcinogenicity in humans (Group 3), and ACGIH determined that toluene is not classifiable as a human

carcinogen (A4). The NTP has not considered the carcinogenic potential of toluene.

Major health effects of toluene inhalation in humans and animals and ingestion in animals and the lowest
concentrations at which these effects have been observed are shown in Figures 2-1 and 2-2. An estimate
of exposure levels posing minimal risk to humans (MRL) are also presented in these figures. An MRL is
an estimate of the daily human exposure that is likely to be safe over a certain period of exposure. MRLs
are not intended to define clean-up or action levels, but are intended only to serve as a screening tool to
help public health professionals decide where to look more closely. Therefore, MRLs are set at levels

well below those where effects have been observed.
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Figure 2-1. Health Effects of Breathing Toluene
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Figure 2-2. Health Effects of Ingesting Toluene
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cAltered measures of visual electrophysiology
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2.3 MINIMAL RISK LEVELS (MRLS)

Estimates of exposure levels posing minimal risk to humans (MRLs) have been established for toluene.
An MRL is defined as an estimate of daily human exposure to a substance that is likely to be without an
appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure. MRLs are
derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive
health effect(s) for a specific duration within a given route of exposure. MRLs are based on
noncancerous health effects only and do not consider carcinogenic effects. MRLs can be derived for
acute, intermediate, and chronic duration exposures for inhalation and oral routes. Appropriate

methodology does not exist to develop MRLs for dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990),
uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges additional
uncertainties inherent in the application of the procedures to derive less than lifetime MRLs. As an
example, acute inhalation MRLs may not be protective for health effects that are delayed in development
or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic
bronchitis. As these kinds of health effects data become available and methods to assess levels of

significant human exposure improve, these MRLs will be revised.

Adverse effects on the nervous system are critical effects of concern from acute, intermediate, or chronic
exposure to toluene. Acute exposure is associated with reversible neurological symptoms progressing
from fatigue, headaches, and decreased manual dexterity to narcosis with increasing exposure levels.
Reversible neurological impairment from acute exposure likely involves the direct interaction of toluene
with nervous system membranes. Degenerative changes in white matter regions of the brain have been
correlated with the severity of persistent neurological impairment in individuals who abused solvents and
have repeatedly inhaled toluene at high exposure levels (4,000-12,000 ppm). Results from studies of
groups of occupationally exposed workers suggest that chronic exposure to toluene at lower exposure
levels (from about 50 to 200 ppm) can produce subtle changes in neurological functions including
cognitive and neuromuscular performance, hearing, and color discrimination. Supporting data come from
studies of toluene-exposed animals showing changes in behavior, hearing loss, and subtle changes in

brain structure, electrophysiology, and levels of neurotransmitters.

Other effects of concern include immune system effects, liver effects, kidney effects, and developmental

effects. Evidence from a few animal studies suggests that repeated exposure to toluene can suppress the
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immune system, although current data from human studies are limited and inconclusive. Various reports
indicate hepatic and renal effects following inhalation and oral exposure to toluene; however, there is
little support for irreversible damage to the liver or kidney. Case reports of birth defects in children of
mothers who abused toluene during pregnancy suggest that exposure to high levels of toluene may be
toxic to the developing fetus. Results from animal studies indicate that toluene is not a teratogenic agent,
but can retard fetal growth and skeletal development, and adversely influence behavior of offspring at

exposure levels that produce maternal toxicity.

Available evidence does not support adverse effects on reproductive performance as a noncancer health

effect of concern from toluene exposure.

Issues relevant to children are explicitly discussed in Section 3.7, Children’s Susceptibility and

Section 6.6, Exposures of Children.

Inhalation MRLs

e An MRL of 2 ppm (7.6 mg/m?) has been derived for acute-duration (14 days or less) inhalation
exposure to toluene.

This MRL is based on a study by Little et al. (1999) in which the effects of toluene on human subjects
with a history of solvent exposure and adverse reactions to toluene (i.e., clinically sensitive to toluene)
were assessed in a battery of neuropsychological tests prior to and after a 20-minute exposure to 15 ppm
toluene (see Appendix A). The battery of tests included immediate and delayed prose memory, reaction
time, letter cancellations, digit symbol, focal length, and STROOP color and color-word tasks.
Statistically significant (p<<0.05) impairments were measured in immediate and delayed prose memory
(number of items recalled decreased 31%), the digit symbol test (number of correct items decreased
11%), and the letter cancellation test (percent correct decreased 5%) following a 15-minute exposure to
15 ppm toluene, compared with pre-exposure scores. A near-significant 15% increase in reaction time
was also observed (p=0.06). No significant difference between pre- and post-exposure values was found
for focal length or the STROOP tests. The minimally adverse lowest-observed-adverse-effect level
(LOAEL) of 15 ppm was divided by an uncertainty factor of 9 (3 for use of a minimally adverse LOAEL
and 3 to account for human variability [a full uncertainty factor of 10 is not necessary as the observed
effects were noted in a susceptible/sensitive group of individuals]) to derive the MRL of 2 ppm. More

details of the development of this MRL can be found in Appendix A.
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e No MRL has been derived for intermediate-duration (15-364 days) inhalation exposure to
toluene.

No data were considered suitable for use in deriving an intermediate-duration MRL for inhalation
exposures. ATSDR believes that the chronic inhalation MRL would also be protective for intermediate-

duration exposures.

e An MRL of 1 ppm (3.8 mg/m?) was derived for chronic-duration (365 days or more) inhalation
exposure to toluene.

The chronic inhalation MRL is based on a NOAEL of 45 ppm toluene for neurological effects based on a
series of studies by the same group of investigators assessing subjective neurological symptoms,
performance on psychomotor tasks, color vision, and hearing in groups of German photogravure printers
employed for an average duration of 13.5 years (Schéper et al. 2003, 2004, 2008; Seeber et al. 2004,
2005; Zupanic et al. 2002). These studies compared neurological end points in high-exposure printers
(n=106-181) and low-exposure tend-processors (n=86—152). Current toluene air exposure levels for
printers and end-processors were 24.6-26 and 3-3.5 ppm, respectively (measured twice yearly from 1996
to 2001). Historical exposure levels for printers prior to 1995 and prior to 1975 were 40 and 140 ppm,
respectively. Historical exposure levels for end-processors prior to 1995 and prior to 1975 were 5 and

40 ppm, respectively. Using job history and current exposure and historical exposure levels, individual
time-weighted average (TWA) exposure levels were calculated. The average TWA levels for printers and
end-processors were calculated to be 45 and 10 ppm for subjects included in analyses by Schéper et al.
(2003, 2008), 45 and 9 ppm for subjects included in analyses by Seeber et al. (2004, 2005) and Zupanic et
al. (2002), and 43 and 9 ppm for subjects included in analyses by Schéper et al. (2004). Schiper et al.
(2003, 2008) did not find any statistically significant differences in audiometric readings from four
readings over 5 years in 181 printers, compared with 152 end-processors; Schiper et al. (2004) did not
find any differences in color vision assessed 4 times over 5 years in 154 printers, compared with 124 end-
processors; and Seeber et al. (2004, 2005) and Zupanic et al. (2002) did not find any increase in
subjective neurological complaints or decreased performance in psychomotor tasks in 106—154 printers,
compared with 86—124 end-processors. The NOAEL of 45 ppm was adjusted for continuous exposure
(45 ppm x 5 days/7 days x 8 hours/24 hours = 10.7 ppm) and was divided by an uncertainty factor of

10 to account for human variability to derive the MRL of 1 ppm.

Most of the data on health effects in humans chronically exposed to toluene come from occupational

studies or medical reports of solvent abusers. In both situations, concurrent exposure to other chemicals
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can limit the usefulness of the data for development of guidelines or standards. In addition, there are
other confounding variables, especially in the occupational setting, such as alcohol consumption patterns,
employment history, diet, use of medications, noise, and fluctuations in atmospheric toluene levels during
different portions of the day, all of which complicate evaluation of dose-response patterns. These
complexities were considered in selecting the studies for derivation of the MRL (see Appendix A for

more details).

EPA (2005a) has recommended a similar chronic RfC of 5 mg/m? (1.33 ppm) based on the arithmetic
mean (34 ppm) of the NOAELSs from a subset of the highest quality studies investigating neurological
effects in workers occupationally exposed predominantly to toluene (Abbate et al. 1993; Boey et al. 1997;
Cavalleri et al. 2000; Eller et al. 1999; Foo et al. 1990; Murata et al. 1993; Nakatsuka et al. 1992; Neubert
et al. 2001; Vrca et al. 1995; Zavalic et al. 1998a). ACGIH (2007) has recommended a Threshold Limit
Value (TLV) of 20 ppm toluene based on subclinical changes in blue-yellow color vision and the
potential for spontaneous abortion in female workers (Campagna et al. 2001; Cavalleri et al. 2000; Ng et
al. 1992b). This value is designed to be protective for healthy adult workers exposed 8 hours/day,

5 days/week for up to 45 years. Adjusting the value for a continuous exposure lasting up to 70 years
yields a value of 4 ppm (25 ppm x 5 days/7 days x 8 hours/24 hours x 45 years/70 years = 4 ppm). This
figure is slightly higher than the current chronic-duration MRL, but does not include an uncertainty factor
to protect susceptible populations. Use of an uncertainty factor of 10 (10 for human variability) would

arrive at a value to 0.4 ppm, which is slightly lower than the current MRL.

Oral MRLs

e An MRL of 0.8 mg/kg has been derived for acute (14 days or less) oral exposure to toluene.

This MRL was based on a LOAEL of 250 mg/kg from a study of FEP wave forms in male Long-Evans
rats administered doses of 0, 250, 500, or 1,000 mg/kg toluene by gavage (Dyer et al. 1988). FEP tests
were administered 45 minutes later as a test of the ability of the nervous system to process visual
information. The amplitude of the N3 peak of the FEP was decreased by toluene exposure at all doses
(p<0.0001). This decrease in peak amplitude was not dose-related. Dyer et al. (1988) also carried out a
time-course study in which toluene was administered to male Long-Evans rats (16 per group) at doses of
0 and 500 mg/kg by gavage, and FEP tests were performed 4, 8, 16, and 30 hours later. In the time course
study, 500 mg/kg also decreased the amplitude of the FEP; at this dose, little change in magnitude of peak

N3 depression had occurred 8 hours posttreatment; by 16 hours, recovery was complete. The LOAEL of
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250 mg/kg was divided by an uncertainty factor of 300 (3 for use of a minimally adverse LOAEL, 10 for
interspecies extrapolation, and 10 for intraspecies variability) to derive the MRL of 0.8 mg/kg. More

details of the development of this MRL can be found in Appendix A.

e An MRL of 0.2 mg/kg/day has been derived for intermediate-duration (15-364 days) oral
exposure to toluene.

This MRL was based on a NOAEL of 22 mg/kg/day from a series of studies evaluating immune end
points in male CD-1 mice administered toluene in their drinking water for 28 days at concentrations of 0,
5,22, or 105 mg/kg/day (Hsieh et al. 1989, 1991) or 0, 22, or 84 mg/kg/day (Hsieh et al. 1990a). In
Hsieh et al. (1989, 1990a), rats were weighed, sacrificed, and examined for gross pathological lesions at
28 days. Spleen and thymus were weighed and hematology was performed. Spleens were assessed for
cellularity, and splenocytes were used in in vitro immune assays (mitogen-stimulated lymphocyte
proliferation, mixed lymphocyte reaction, IL-2 production assay, and antibody PFC response). Hsieh et
al. (1990a) also measured the in vitro cell-mediated cytolysis response. In Hsieh et al. (1991), immune
function was only assessed using the IL-2 assay in cultured splenocytes. In Hsieh et al. (1989),
significantly decreased thymus weight and significantly depressed immune responses were observed in all
in vitro immune assays at 105 mg/kg/day, compared with controls. IL-2 production and mitogen-
stimulated lymphocyte proliferation were also significantly increased at 22 mg/kg/day compared with
controls. In Hsieh et al. (1990a), significantly depressed immune responses were observed in the PFC
assay and mixed lymphocyte reaction at 84 mg/kg/day. The mixed lymphocyte reaction was also
significantly depressed at 22 mg/kg/day. In Hsieh et al. (1991), the IL-2 production assay was
significantly depressed at 105 mg/kg/day. Taken together, these studies consistently reported diminished
immune responses in multiple in vitro immune assays following in vivo exposure to 84—105 mg/kg/day in
drinking water for 28 days, compared with controls. A couple of immune assays were altered at

22 mg/kg/day, but findings were not consistent between the three Hsieh studies. Additionally, the
antibody PFC assay was significantly altered at 84 and 105 mg/kg/day, but not at 22 mg/kg/day (Hsieh et
al. 1989, 1990a). The PFC in vitro assay is considered the most predictive assay of impaired immune
function (Luster et al. 1992). Collectively, results from these studies support a NOAEL of 22 mg/kg/day
for immune depression. The NOAEL of 22 mg/kg/day was divided by an uncertainty factor of

100 (10 for interspecies extrapolation and 10 for intraspecies variability) to derive the MRL of

0.2 mg/kg/day. More details of the development of this MRL (including consideration of other effects as

bases of the intermediate-duration oral MRL) can be found in Appendix A.
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e No MRL was derived for chronic-duration (365 days or more) oral exposures because there were

no suitable data for toluene.

EPA (2005a) has recommended a chronic oral reference dose (RfD) of 0.08 mg/kg/day based on a
benchmark dose limit (BMDL) of 238 mg/kg/day for increased kidney weight in male rats from the
13-week NTP (1990) study. The derivation included an uncertainty factor of 3,000 (10 for interspecies
extrapolation, 10 for intraspecies variability, 10 for use of a subchronic study, and 3 for database
uncertainties). If the UF for subchronic to chronic is removed, the value is 0.8 mg/kg/day, which is well

within an order of magnitude of the derived intermediate MRL of 0.2 mg/kg/day.
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3.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and
other interested individuals and groups with an overall perspective on the toxicology of toluene. It
contains descriptions and evaluations of toxicological studies and epidemiological investigations and

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health.

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile.

3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals and others address the needs of persons living or working near
hazardous waste sites, the information in this section is organized first by route of exposure (inhalation,
oral, and dermal) and then by health effect (e.g., death, systemic, immunological, neurological,
reproductive, developmental, and carcinogenic effects). These data are discussed in terms of three

exposure periods: acute (14 days or less), intermediate (15-364 days), and chronic (365 days or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in
figures. The points in the figures showing no-observed-adverse-effect levels (NOAELSs) or lowest-
observed-adverse-effect levels (LOAELSs) reflect the actual doses (levels of exposure) used in the studies.
LOAELSs have been classified into "less serious" or "serious" effects. "Serious" effects are those that
evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress
or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death,
or those whose significance to the organism is not entirely clear. ATSDR acknowledges that a
considerable amount of judgment may be required in establishing whether an end point should be
classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be
insufficient data to decide whether the effect is indicative of significant dysfunction. However, the
Agency has established guidelines and policies that are used to classify these end points. ATSDR
believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between
"less serious" and "serious" effects. The distinction between "less serious" effects and "serious" effects is
considered to be important because it helps the users of the profiles to identify levels of exposure at which

major health effects start to appear. LOAELs or NOAELSs should also help in determining whether or not
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the effects vary with dose and/or duration, and place into perspective the possible significance of these

effects to human health.

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and
figures may differ depending on the user's perspective. Public health officials and others concerned with
appropriate actions to take at hazardous waste sites may want information on levels of exposure
associated with more subtle effects in humans or animals (LOAELSs) or exposure levels below which no
adverse effects (NOAELs) have been observed. Estimates of levels posing minimal risk to humans

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike.

A User's Guide has been provided at the end of this profile (see Appendix B). This guide should aid in
the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs.

3.2.1 Inhalation Exposure

Adverse effects on the nervous system are critical effects of concern from inhalation exposure to toluene
as evidenced by results from studies of workers acutely or chronically exposed to toluene in workplace
air, studies of volunteers under controlled acute exposure conditions, and studies of chronic solvent
abusers predominantly exposed to toluene. Observed effects include reversible neurological symptoms
from acute exposure progressing from fatigue, headache, and decreased manual dexterity to narcosis with
increasing exposure level, degenerative changes in white matter in chronic solvent abusers, and subtle
changes in neurological functions including cognitive and neuromuscular performance, hearing, and color
discrimination in chronically exposed workers. Studies of toluene-exposed animals provide supporting
data showing changes in behavior, hearing loss, and subtle changes in brain structure, brain
electrophysiology, and brain chemistry. Case reports of birth defects and developmental delays in
children of mothers who abused solvents, including toluene, during pregnancy suggest that exposure to
high levels of toluene may be toxic to the developing fetus. A number of developmental toxicity studies
with rats, mice, and rabbits exposed to airborne toluene indicate that toluene was not a developmental
toxicant at levels below those inducing maternal toxicity. At doses that impaired maternal body weight
gain, developmental effects observed included retarded fetal growth and skeletal development, and altered
development of behavior in offspring. At high concentrations modeling solvent abuse, increased

malformations and fetal death were also observed.
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3.2.1.1 Death

Limited data are available on toluene-associated deaths due to solvent abuse or occupational exposure and
these studies do not indicate exposure concentrations. Paterson and Sarvesvaran (1983) reported on a
teenager who died following an episode of glue sniffing. In Virginia, 39 deaths were attributed to
inhalant abuse from 1987 to 1996 (Bowen et al. 1999). The majority of deaths (70%) occurred at

<22 years of age, and males accounted for 95% of all inhalant abuse deaths; however, only two deaths
were attributed to intentional toluene inhalation. In a case-series report from Mexico, 3/20 patients with a
history of substance abuse died due to severe acidosis and renal failure following acute toluene
intoxication (Camarra-Lemarroy et al. 2015). In Japan, a man died of cardiac arrest after painting a
bathroom using a sealer containing 65% toluene (Shibata et al. 1994) and a woman died of adrenal
hemorrhage after sniffing thinner containing 67% toluene (Kamijo et al. 1998). In Great Britain,
approximately 80 deaths per year have been associated with solvent abuse (Anderson et al. 1985).
Approximately half these cases were attributed to cardiac arrhythmias, central nervous system depression,
asphyxia, and hepatic and renal failure (Anderson et al. 1982). Among the 52 cases with a toxicological
report, 42 mentioned toluene (Anderson et al. 1982). Toxicokinetic extrapolation from blood toluene
concentration in a deceased patient was used to estimate that 1 hour of exposure to 1,800-2,000 ppm

toluene may be fatal to humans (Hobara et al. 2000a, 2000b).

There are only a few animal inhalation studies that have examined the lethality of toluene, and there is
evidence from an intermediate-duration study suggesting that mice may be more sensitive than rats. An
inhalation LCsy value (concentrations causing death in of 50% of the animals) of 5,320 ppm has been
reported for mice (Svirbely et al. 1943). In 14 to 15 week studies, exposure to 3,000 ppm toluene for
6.5 hours/day, 5 days/week, caused 80% mortality in male rats, 60% mortality in male mice, and 100%
mortality in female mice, but no deaths among female rats (NTP 1990). Death also occurred among

female mice exposed to 625 (10%), 1,250 (10%), and 2,500 (40%) ppm toluene (NTP 1990).

LOAEL values for deaths in the NTP (1990) study and the LCso from the Svirbely et al. (1943) report are
recorded in Table 3-1 and plotted in Figure 3-1.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain (Route) i
g ( ) System (ppm) (ppm) (ppm) Chemical Form Comments
ACUTE EXPOSURE
Death
1 Mouse 7 hr 5320 (LC50) Svirbely et al. 1943
(Swiss-
Webster)

Systemic
2 Human 6 hr Resp 40M 100 M (irritation of the nose) Andersen et al. 1983

Ocular 40M 100 M (irritation of the eyes)
3 Human 6.5 hr Resp 100 M (irritation of the nose and Baelum et al. 1985

(Oceup) throat)

Ocular 100 M (irritation of the eyes)
4 Human 7-8hr Resp 200 M (mild throat irritation) Carpenter et al. 1944

Ocular 200 M (eye irritation)
5 Human 40 min Endocr 200 Kobald et al. 2015 Endpoint examined:

(WB) Cortisol levels in saliva.

6 Human 2hr Resp 1862 M Meulenbelt et al. 1990 Non-fatal case report.

Cardio 1862 M (sinus tachycardia)

Hemato 1862 M

Hepatic 1862 M (liver enlargement)

Ocular 1862 M (ocular irritation)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) :
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
7 Human 3hr Resp 1862 M Meulenbelt et al. 1990 Non-fatal case report.
Cardio 1862 M (sinus bradycardia)
Hemato 1862 M
Hepatic 1862 M
Ocular 1862 M (ocular irritation)
8 Human 4.5 hr Resp 50 M (irritation of the throat) Muttray et al. 2005
9 Human 6.5 hr Renal 102 M Nielsen et al. 1985 Endpoint examined:
renal excretion rates of
albumin and
beta-2-microglobulin
examined.
10 Human 2hr Resp 48 M (mucous membrane Orbaek et al. 1998
irritation)
1 Human 2hr Resp 48 F (mucous membrane Osterberg et al. 2003

irritation)
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Chemical Form

Comments

Rahill et al. 1996

von Oettingen et al. 1942

Andersson et al. 1980

Andersson et al. 1980

TOLUENE
3. HEALTH EFFECTS
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
) ; (Route)
Figure (Strain) System (ppm) (ppm) (Ppm)
12 Human 6 hr/d Resp 100
13 Human 3 hr Resp 800
Cardio 800
Hemato 800
14 Rat 2 gr/d Endocr 500 M (increased serum
(Sprague- corticosterone)
Dawley)
15 Rat 2 Endocr 1000 M
(Sprague- r
Dawley)

No change in lung
function.

No effects of irritation
and no change in
respiratory rate, minute
volume, leukocyte
counts, blood pressure,
or pulse in 3 exposed
subjects.

Endpoints assessed:
Serum levels of
corticosterone,
prolactin, growth
hormone, FSH, and
LH.

Endpoints assessed:
Serum levels of
corticosterone,
prolactin, growth
hormone, FSH, and
LH.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species 'reauency NOAEL Less Serious Serious Reference
. : (Route) :
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
16 Rat 3d Endocr 80 M (increased serum Andersson et al. 1983a Endpoints assessed:
(Sprague- 6 hr/d prolactin) Serum corticosterone,
Dawley) prolactin, growth
hormone, FSH, and
LH.
17 RaF Zgr/d Endocr 1500 M (18% increase in adrenal Gotohda et al. 2005
(Wistar) weight and increased
adrenocortical cell size;
increased serum ACTH
and corticosterone)
Bd Wt 1500 M (8% decreased body
weight)
18 RaF Z gr/d Hepatic 3000 M (increased biochemical Gotohda et al. 2009
(Wistar) markers of liver fibrosis)
19 RaF gg;&zo Endocr 1500 F (reduced maternal Hougaard et al. 2003
(Wistar) plasma corticosterone
levels)
20 Rat 6 hrid Endocr 1000 M (signficantly increased Little et al. 1998

(Fischer- 344)30r7d

serum corticosterone)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain) (Route) S i
ystem (ppm) (ppm) (ppm) Chemical Form Comments
21 Rat 48 hr Hemato 2000 M (increased hematocrit Tahti et al. 1983
(Sprague- and blood glucose)
Dawley)
Hepatic 2000 M (increased serum ALT
and AST)
Bd Wt 2000 M (body weight decrease
10%)
22 Rat g gr/d Hepatic 795 F (increased liver weight Ungvary et al. 1982
12%, increased smooth
and rough endoplasmic
reticulum)
23 Rat 6 hr Hepatic 4000  (increased CYP2E1 and Wang et al. 1996
(Wistar) decreased CYP 2 C11in
liver)
24 Mouse g gr/d Hepatic 795F (increased liver weight Ungvary et al. 1982
11% and cytochrome
P-450 30%)
25 Dog Thr Hemato 200 500 (decreased leukocytes) Hobara et al. 1984a
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)

Exposure/ LOAEL

Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain) (Route) i

g System (ppm) (ppm) (ppm) Chemical Form Comments

26 Dog 4 hr Hemato 700 (decreased leukocytes) Hobara et al. 1984a
27 Rabbit Z&gr/d Hepatic 795 F (increased liver weight Ungvary et al. 1982

14%, cytochrome P-450-
35%, and cytochrome

b5- 25%)
Immuno/ Lymphoret
28 Rat gﬂ;&” 600 F (decreased thymus Ono et al. 1995
I(DSanL’T‘é!yU)e' weights in dams)
29 Mouse 3hr 1F 2.5 F (decreased survival Aranyi et al. 1985
(CD-1) following infection with S.
zooepidemicus)
Neurological
30 Human 6 hr 40 M 100 M (headaches, dizziness, Andersen et al. 1983
intoxication)
31 Human 6.5 hr 100 M (intoxication, dizziness, Baelum et al. 1985

(Occup) decreased manual
performance and color
perception)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) :
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
32 Human 8 hr 100  (impaired performance Dick et al. 1984
on visual-vigilance task)
33 Human 7hr 75  (dose-related impairment Echeverria et al. 1991
of performance on
recognition, pattern
memory, and one-hole
test results)
34 Human 20 min 100M 300 M (increased simple and Gamberale and Hultengren
choice reaction time) 1972
35 Human 4 hr 80 M Iregren 1986 Endpoints evaluated:
choice reaction time,
simple reaction time,
color-word vigilance, or
memory reproduction.
36 Human 40 min 200 (altered EEG; impaired Kobald et al. 2015
(WB) performance on visual

attention task)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Keyto Species Fr(%qouuig;:y NOAEL Less Serious Reference
Figure (Strain) System (ppm) (ppm) Chemical Form Comments
37 Human 4 hr 40 F Lammers et al. 2005a Endpoints evaluated:
battery of
neurobehavioral tasks,
sleep quality
questionnaire.
38 Human goh:‘nin o 110 M Lammers et al. 2005a Endpoints evaluated:
. ’ battery of
30 min off neurobehavioral tasks,
sleep quality
questionnaire.
39 Human 20 min 15  (decreased performance Little et al. 1999
on neuropsychological
tests in toluene-sensitive
subjects)
40 Human 28-41 min 332 M Muttray et al. 1999 Endpoint evaluated:
(Occup) color vision before and
after cleaning a print
machine with toluene.
41 Human 4.5 hr 50 M Muttray et al. 2005 Endpoints evaluated:

subjective symptoms,
pupillographic
sleepiness test.



3. HEALTH EFFECTS

(continued)

42

Reference
Chemical Form

Comments

TOLUENE
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/
Duration/
Key tg Species Frequency NOAEL Less Serious
) ; (Route)
Figure (Strain) System (ppm) (ppm)
42 Human 4 hr 80 M
43 Human 2hr 48 M (self-reported fatigue in
individuals with toxic
encephalopathy)
44 Human 2 hr 48 M
45 Human 2hr 48 F (self-reported fatigue in
individuals with mutliple
chemical sensitivity)
46 Human 6 hr

100 (decreased perfomance
on neuropsychological
tests)

Olson et al. 1985

Orbaek et al. 1998

Osterberg et al. 2000

Osterberg et al. 2003

Rahill et al. 1996

Endpoints evaluated:
subjective symptoms,
simple reaction time,
choice reaction time,
and
memory-reproduction.

Endpoints assessed:
subjective symptoms in
healthy subjects and
subjects with toxic
encephalopathy.

Endpoints assessed:
attention and motor
speed in healthy
subjects and subjects
with toxic
encephalopathy.

Endpoints assessed:
subjective symptoms
and attention and
motor speed in healthy
subjects and subjects
with MCS.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
47 Human 3or8hr 100 200 (drowsiness, headache, von Oettingen et al. 1942
confusion, weakness)
48 Monkey 50 min o .
1000 F 2000 F (cognitive and motor 3000 F (overt signs of Taylor and Evans 1985

(Cynomolgus) skills impaired) neurotoxicity)

49 Rat 8 hr 900 M (altered patterns of sleep Avrito et al. 1988
and wakefulness)

50 Rat 1-4 hr 1000 M (decreased F2 amplitude Boyes et al. 2007

(Long- Evans) in VEPs)
51 Rat 2 hr

110 M (d d REM sl Ghosh et al. 1989

(Fischer- 344) (W) (decrease sleep)
52 Ra_lt 2hr 110 M (changes in sleep Ghosh et al. 1990

(Fischer- 344) pattern)
53 Rat 4 hr or

(DA/HAN) 34,
3 hr/d

100 M (nystagmus and altered
opticokinetic response)

Hogie et al. 2009
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
54 Ra? 30 min 1000 M (impaired learning and Huerta-Rivas et al. 2012
(Wistar) memory, decline in
conditioned avoidance
response)
55 Rat 12 gr/d 1000 M (diminished auditory Johnson 1992
(Sprague- response)
Dawley)
56 Rat g‘é"/bvk 1000 M (diminished auditory Johnson et al. 1988
(Sprague- response)
Dawley) 16 hr/d
57 Rat 20 min 1000 (increased locomotor Kim et al. 1998
activity)
o8 RaF 4 hr 125 M (a temporary decline in Kishi et al. 1988
(Wistar) conditioned avoidance
response)
59  Rat 6 hr/d Little et al. 1998

(Fischer- 344) 3or 7.d

1000 M (decreased GFAP in
thalamus and increased
corticosterone)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
60  Rat 10d 1500 M Lund and Kristiansen 2008 Endpoints examined:
(Wistar) 6 hr/d brainstem auditory
responses, distortion
product otoacoustic
emissions.
61 Rat 4 hr . ) ; ;
810 M 1660 M (decreased lift reflex, 3100 M (overt signs of Mullin and Krivanek 1982
(CD) vertical bar placing, and neurotoxicity)
horizontal rod grasping)
62 Ra.1t 30 min 500 M (changes in flash-evoked Rebert et al. 1989b
(Fischer- 344) and somatosensory
-evoked potentials)
63 Rat 4 hr 1000 M (sleep pattern Takeuchi and Hisanaga 1977
disturbances- reduced
slow wave sleep and
increased paradoxical
phase)
64 Rat 24 hr 480 (decreased performance Wood et al. 1983
in rewarded task)
65 Mouse 30 min 250 500 (increased locomotor Bowen and Balster, 1998
CFW activity)
(ChasRiver

Swiss) albino
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) .
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
66 Mouse 30 min 1000M 2000 M (decreased anxiety) Bowen et al. 1996
(CFW)
67 Mouse 30 min 100 M (increased locomotor Bowen et al. 2010 Balb/CBYJ, C57BL/6J,
(Multiple) activity) and DBA/2J showed
effects at identified
LOAEL; Swiss Webster
mice showed similar
effects at higher
concentrations.
68 Mouse 5d .
: 100 M 1000 M (increased locomotor Bushnell et al. 1985
(C57BL/6N) 72 min/d activity)
69 Mouse 30 min 1000M 2000 M (increased locomotor Conti et al. 2012
(C57BL/6N) activity)
70 Mouse 30 min 500M 1000 M (increased nociception) Cruz et al. 2001
(Swiss-
Webster)
71 Mouse 7d

(CBA/CA; 12 hr/d
C57BL/6J)

1000 F (accelerated hearing loss
in genetically
predisposed mice)

Lietal. 1992
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain) (Route) S i
ystem (ppm) (ppm) (ppm) Chemical Form Comments

2 Mouse 30 min 1000 M (increased locomotor Lopez-Rubalcava and Cruz

(129/Sv-ter) activity) 2000
73 Mouse 8 hr 500 M Matsuoka et al 1997 Endpoints examined:

(ddy) GFAP, c-jun, and c-fos

mRNA levels in
cerebrum.

74 Mouse 30 min 500 1000  (increased nociception) Paez-Martinez et al. 2003

(Swiss-

Webster)
75 Mouse A 1000M 2000 M (increased locomotor Tomaszycki et al. 2013

(Swiss- min activity)

Webster)

M . .
oo X 300M 560 M (increased activity) Wood and Colotla 1990
w Gr.1 Pig 2 ﬁr/d 250 (transient mid- and McWilliams et al. 2000

(pigmented) high-frequency hearing

loss)
78 Other 10d i Endpoints examined:
8 or 12 hr/d 2000 Davis et al. 2002 p

auditory brainstem
responses in
chinchillas.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/
Duration/
Key 5 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
Reproductive
79 Human 3 hr 50 (altered LH secretion) Luderer et al. 1999
80 Rat Gd 6-15 . Pregnancy outcomes
(Cri:CD (SD) 6 hr/d 3000 F API 1991; Roberts et al. 2007 exa?ninedY
BR VAF/Plus)
81 Rat gﬂr?(fs 3500 F 5000 F (increased AP 1992
(Crl:CD BR post-implantation loss;
VAF/Plus) total fetal resorption in
6/9 dams)
82 Rat gd/dS-ZO 12000 F Bowen and Hannigan 2013; ~ Pregnancy outcomes
(Sprague- 12 30 mi Bowen et al. 2005, 2007, examined.
Dawley) or 5u min 2009a, 2009b
83 Rat Gd 7-20 P It
1800 F Dalgaard et al. 2001 regnancy outcomes
(Wistar) 6 hr/d 9 examined.
84 RaF ((53?1 7&20 1500 F Hougaard et al. 2003; Pregnancy outcomes
(Wistar) r Ladefoged et al. 2004 examined.
85 Rat Gd 7-17 2000 F Ono et al. 1995 Pregnancy outcomes
(Sprague- 6 hr/d examined.
Dawley)
86  Rat Gd 6-20 1500 F Saillenfait et al. 2007 Pregnancy outcomes
(Sprague- 6 hr/d examined.

Dawley)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) :
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
87 RaF ggr/d 3000 F (structural variations in Tap et al. 1996
(Wistar) antral follicles in ovary)
88  Rat Gd 9-21 1200 Thiel and Chahoud 1997 Pregnancy outcomes
(Wistar) 6 hr/d examined.
89 Mouse Gd 7-16 P t
400 F Courtney et al. 1986 regnancy outcomes
(CD-1) 7 hr/d examined.
90 Mouse Gd 12-17 2000 F Jones and Balster, 1997 Pregnancy outcomes
(CD-1) 3x/d examined.
60 min
91 Rabbit Gd 6-18 500 F Klimisch et al. 1992 Pregnancy outcomes
6 hr/d examined.
92 Rabbit Sf h7r',§0 133 F 266  (4/8 dams aborted) Ungvary and Tatrai 1985
Developmental
93 Rat Gd 6-15 400 API 1978 Endpts examined:
(CRL:COBS 6 hr/d number of implantation
CD (SD) BR) sites, live and dead

fetuses, and
resorptions; fetuses
were weighed and
examined for external
malformations.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
) : (Route) i

Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
94 Rat- gﬂr%ﬁ 1500 3000 (decreased fetal weight AP1 1991; Roberts et al. 2007

(Crl:CD (SD) and increased incidence

BR VAF/Plus) of fetuses with unossified

sternebrae)

%  Rat gﬂr%ﬁ 2000 3500 (20% decrease in fetal APl 1992

(Crl:CD BR body weight, total

VAF/Plus) absorption at higher

exposure levels)

96 Rat ggds-zo 8000 (decreased postnatal 12000 (increased number of Bowen and Hannigan 2013

(Sprague- 30 min growth) litters with malformed,

Dawley) runted, or dead pups)
o7 Rat g)gdijo 8000 (impaired negative 12000 (decreased pup body Bowen et al. 2005

(Sprague- 15 min geotaxis in offspring) weight, increased

Dawley) number of litters with

malformed, runted, or
dead pups, impaired
negative geotaxis in
offspring)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/

Key 6 Species Fr(%qouuiz)cy NOAEL Less Serious Serious Reference

Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments

98  Rat ©d 8-20 8000 12000 (decreased pup birth Bowen et al. 2007 Endpoints examined:
(Sprague- 2x/d ht- pup weight on Ppd 1

weight; decreased
Dawley) 15 min sensitivity to and 21, open-field
amphetamine-induced activity on Ppd 22, 42,
locomotion in males on and63,
Pnd 28) amphetamine-induced
locomotion on Ppd 28.
99 Rat 2G(jd8_20 8000 (decreased fetal weight 12000 (decreased fetal weight Bowen et al. 2009a
(Sprague- x/cay and length, decreased and length, d d
30 min gth, d gth, decrease
Dawley) placental weight) placental weight,
increased skeletal
malformations and soft
tissue anomalies)

100 Rat §3d8-20 8000 (altered reward-seeking Bowen et al. 2009b Endpoints examined:
(Sprague- 15 min behavior and increased standard dev't
Dawley) impulsivity in offspring) endpoints,

waiting-for-reward task
and

amphetamine-induced
locomotion on Ppd 60.

101 Rat 54520 8000 12000 (decreased birth weight; Callan et al. 2015 Endpoints examined:
(Sprague- 5 mi impaired learning and Pup welght, extemall
Dawley) min memory in offspring) malformations, spatial

(WB) learning and memory

on Pnd 28-44.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain) (Route) i
g System (ppm) (ppm) (ppm) Chemical Form Comments
102 Rat Gd 7-20 1800 M (decreased neonatal Dalgaard et al. 2001 Endpoints examined:
(Wistar) 6 hr/d weight, increased pup weight, external
apoptosis in cerebral malformations, paired
granule layer of te_stes weight and _
cerebellum at Ppd 21) histopathology, brain
weight, and brain
apoptosis.
103 Rat Gd 7-20 1500  (reduced pup birth Hougaard et al. 2003 No other
(Wistar) 6 hr/d weight) developmental
endpoints were
examined.
104 Rat Sf o 399 (increased incidence of 399 F (5/14 dams died) Hudak and Ungvary 1978
CFY fetuses with skeletal
retardation)
105 (F;itv S -1 399 (increased incidence of Hudak and Ungvary 1978

fetal skeletal anomalies)
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Chemical Form

Comments

Jarosz et al. 2008

Ladefoged et al. 2004

Ono et al. 1995

Ono et al. 1995

TOLUENE
3. HEALTH EFFECTS
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouu(i:)cy NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm)
106 Rat Sd/d8-20 8000 12000  (decreased pup birth
(Sprague- x/aay weight)
Dawley) 15 min
107 RaF gﬂ;&zo 1500 (reduced postnatal
(Wistar) growth, increased
apoptosis in the
cerebellum of offspring)
108 Rat Gd 7-17
2000
(Sprague- 6 hr/d
Dawley)
109 Rat Gd 7-17 )
600 2000 decreased pup weight
(Sprague- 6 hr/d ( pup weight)
Dawley)

Endpoints examined:
pup weight on Ppd 1
and 30, metabolism in
offspring (energy
expenditure, respiratory
quotient, body fat
content).

Endpoints examined:
pup weight (Ppd 1, 7,
23), external
malformations, spatial
learning in females
(Pnw 5); brain
apoptosis (Ppd 6, 22,
24, 27).

Dams sacrificed on Gd
20; standard
developmental
endpoints assessed.

Endpts examined: pup
weight, growth, dev't,
survival, reflex dev't
(Ppd 6-10);
neurobehavior (Pnw 4);
hemato, biochem, and
organ wt (Ppd 21 and
56).
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Fi Strai (Route) )
igure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments

110 Rat gﬂ ?&20 500 1500 (decreased fetal weight) Saillenfait et al. 2007

(Sprague- r

Dawley)
1 RaF GG?"%% 600 1000 (decreased pup weight 1200  (significantly increased ~ Thiel and Chahoud 1997 Endpoints examined:

(Wistar) and delayed vaginal postnatal/preweaning ggee‘voe;;?r?et’n fuonrlmlt\gg’eny

: ality in offsori i
opening) mortality in offspring) of reflexes.
neurobehavior, and F1
mating and fertility.

112 Mouse ?%&16 200 (increased number of Courtney et al. 1986

(CD-1) litters with fetuses with

dilated renal pelvis)

113 Mouse Sf r?-/gjs 133 (decreased fetal body 399  (maternal mortality) Hudak and Ungvary 1978

CFLP " weight)
114 Mouse g:’/d12'1 ! 400 2000  (performance deficitsin ~ Jones and Balster, 1997 Endpoints examined:

(CD-1) 60 min tests of reflexes, muscle pup weight, growth,

strength and motor reflex ontoggny,
coordination in offspring) neurobehavior.

115 Mouse SR 133 266  (decreased fetal body Ungvary and Tatrai 1985

weight and retardation of
fetal skeletal
development)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
116 Rabbit gd 6-18 .
6 hr/d 500 Klimisch et al. 1992
117 Rabbit ?f d7 -20 133 F 266 F (4/8 does aborted) Ungvary and Tatrai 1985
24 hr/d
INTERMEDIATE EXPOSURE
Death
118 Rat 15 wk '
3000 M (8/10 died NTP 1990
(Fischer- 344) 5 d/wk (8/10 died)
6.5 hr/id
119 Mouse 14 wk '
3000 M (6/10 died NTP 1990
(B6C3FT) 5 Ik (6710 died)
o 625 F (1/10 died)
Systemic
120 Human 2-14 mo Hepatic 167 F Seiji et al. 1987 Endpoint evaluated:
8 hr/d clinical chemistry.

(Occup)
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Chemical Form

Comments

API 1985; Roberts et al. 2003  Endpts evaluated in

Beasely et al. 2010

TOLUENE
3. HEALTH EFFECTS
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm)
121 Rat 95d
(D) 7 diwk Resp 2000
6 hr/d
Cardio 2000
Gastro 2000
Musc/skel 2000
Hepatic 2000
Renal 2000
Endocr 2000
Dermal 2000
Ocular 2000
Bd Wt 2000
122 Rat 42d
(Fischer- 344) 5 diwk Bd Wt 1000 M API 1997
6 hr/d
123 Rat 13 wk
(Long- Evans) 5 diwk Bd Wt 1000 M
6 hr/d
124 Rat 4 wk Bd Wt 1000 M

(Long- Evans) 5 d/wk
6 hr/d

Beasley et al. 2012

2-generation study:
body, liver, kidney, and
reproductive organ
weight and organ
histology in FO/F1
parents and F1/F2
weanlings.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
125 Rat 4 wk Ocul dpoint:
Ocul 1000 M Boyes et al. 2015 cular endpoint:
Long-Evan 5 d/wk cuar ophthalmic
6 hr/d examination.
(WB)
Bd Wt 1000 M
126 Rat 13 wk Ocul dpoint:
Ocul 1000 M Boyes et al. 2015 cular endpoint:
Long-Evan 5 d/iwk cular ophthalmic
6 hr/d examination.
(WB)
Bd Wt 1000 M
127 Rat 8 wk Resp 12000 M Bruckner and Peterson 1981b Endpoints evaluated:
(albino) 5 d/V‘{k body weight, organ
70 min/d weight and histology;
upper respiratory tract
histology not
assessed.
Cardio 12000 M
Hepatic 12000 M (11% decrease in liver
weight, elevated liver
enzymes in serum)
Renal 12000 M (27% decrease in kidney
weight)
Bd Wt 12000 M (20% reduction in body

weight gain)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/

Key 6 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference

Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments

128  Rat 4-8 wk Hepatic 3000 M Dick et al. 2014 Endpoints evaluated:
(Wistar) 3 diwk organ weight,

1 hr/d histopathology.
(WB)
Bd Wt 3000 M

129 F?/‘;"/t t ‘3"_"5"; Wk Bd Wt 3000M 10000 M (14% decrease in body Dick et al. 2015

(Wistar) 1 held weight)
(WB)

130  Rat 4 wk Endocr 320 M Hillefors-Berglund et al. 1995 ~ No change in serum
(Sprague- g g/‘/’ék prolactin levels.
Dawley) r

Bd Wt 320 M
131 (F;?/:star) 22 gr/d Hepatic 200 M lkeda et al. 1986
Bd Wt 200 M (decreased body weight
gain)

132 RaF ioh?/d Bd Wt 1500 M (body weight decrease Ishigami et al. 2005
(Wistar) 18%)

133 Rat 28d i Endpoint: ined:

Res 200 M Jain et al. 2013 ndpoints examined:
(Wistar) 5 diwk P lung histopathology,
2 hr/d lung and BAL

(N)

biochemistry.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/

Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference

Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments

134 RaF ;Zdy\\/lvkk Resp 3000 M (increased pulmonary Kanter 2011a
(Wistar) 8 hr/d inflammation, edema,

fibrosis, and necrosis)

135 RaF ézdx:\ll(k Hepatic 3000 M (enlarged hepatic Kanter 2012

(Wistar) 8 hrid sinusoids filled with blood
and minimal hepatic
fibrosis, increased
number of apoptotic liver
cells)

136  Rat 30d Hepatic 320 M Kyrklund et al. 1987 Endpoint assessed:
(Sprague- 24 hr/d liver weight.
Dawley)

Bd Wt 320 M (10% decreased body
weight)
137 Rat 13 wk Bd Wt 8000 M (23% decreased body ~ Mattsson et al. 1990

(Fischer- 344) 5 diwk

15-35 min

4-9 x/d

weight gain)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) .
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
138 Re.1t ;Z}Nkk Resp 1250 2500 (9-15% increased relative NTP 1990 Endpoints evaluated:
(Fischer- 344) Wi lung weight) body and organ weight,
6.5 hr/d organ histology,
hematology, clinical
chemistry, urinalysis.
Cardio 1250 2500 (6-11% increased relative
heart weight)
Gastro 3000
Hemato 3000 M 1250 F (decreased leukocytes)
625 F
Hepatic 625 M 1250 M (9% increase in relative
liver weight)
1250 F
2500 F (16% increase in relative
liver weight)
Renal 625 1250 (increased relative kidney
weights)
Endocr 3000
Bd Wt 1250 2500 (15% decrease in body 3000 M (25% decrease in body
weight) weight)
139 Rat 21d Ocular 600 2000 F (lacrimation) Ono et al. 1996

(Sprague- 6 hr/d
Dawley)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
140 (F;a;rague 0, Hemato 2000 M Ono et al. 1996
Dawley)
Renal 600 M 2000 M (increase in kidney
weights, necrosis of
kidney tubules)
Bd Wt 2000 M
141 Rat 4 wk Endpoint: luated:
Resp 300 Poon et al. 1994 napoints evaluatead:
(Sprague- 5 diwk organ weight and
Dawley) 6 hr/d histology, upper
respiratory tract
histology.
Hemato 300
Hepatic 30 300 (significantly increased
serum alkaline
phosphatase in males &
variation hepatocellular
size in females)
Renal 300
Endocr 300 M 30 F (mild reduction in follicle
size in thyroid)
Bd Wt 300
Rat 23 wk .
142 Fe,l her- 344 73d>l\\llvk Bd Wt 2200 M (decreased body weight Pryor 1991
(Fischer- )8hr/d gain)
60, 30, or 15

min/hr
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
143 Rat 11 wk .
(Fischer- 344) 7 dwk Bd Wt 2000 M (daeizr?)reased body weight Pryor 1991
8 hr/d 9
144 RaF ?Oh?/d Hepatic 1000 M (hepatocyte Tas et al. 2011
(Wistar) degeneration, pericentral
fibrosis, increased
markers of apoptosis)
145 RaF ?Oh?/d Hepatic 1000 M (hepatocyte Tas et al. 2013a
(Wistar) degeneration, increased
number of apoptotic liver
cells)
146  Rat 4 wk Endocr 80 (increase in serum von Euler et al. 1994

(Sprague- 5 diwk
Dawley) 6 hr/d

prolactin levels)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
R k o . : ; .
147 (Na;) g\év/wk Resp 600 (irritation of the lung) 2500  (pulmonary lesions) von Oettingen et al. 1942 Eg%g?g?;;i?’g:;gfd'
7 hr/d histology.
Hemato 600 2500 (transient decrease in
leukocytes)
Hepatic 5000
Renal 600 (renal casts)
Endocr 5000
148 Mouse 8 wks :
6 hr/d Musc/skel 300 M (decreased bone mineral Atay et al. 2005
(BALB/c) density and content in
femoral neck)
149 z\g\)’;zg gg gﬂn/d Bd Wt 6000 M Bowen and McDonald 2009

Webster)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key t6 Species Frequency NOAEL Less Serious Serious Reference
. : (Route) .
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
150  Mouse 8 wk Resp 12000 M Bruckner and Peterson 1981b Endpoints evaluated:
(ICR) 5 diwk body weight, organ
70 min/d weight and histology;
upper respiratory tract
histology not
assessed.
Cardio 12000 M
Hepatic 12000 M (decreased liver weight)
Renal 12000 M (decreased kidney
weight)
Bd Wt 12000 M (20% reduction in body
weight)
151 Mouse 8 wk Resp 4000 M Bruckner and Peterson 1981b Endpoints evaluated:
(ICR) 3 hrid body weight, organ
5 diwk weight and histology;
upper respiratory tract
histology not
assessed.
Cardio 4000 M
Hepatic 4000 M (increased relative liver
weight, elevated serum
glutamic oxaloacetic
transaminase)
Renal 4000 M
Bd Wt 4000 M (5-10% decrease in body

weight gain)



TOLUENE 65
3. HEALTH EFFECTS
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
152 Mouse 12 wk Resp 50 F Fujimaki et al. 2007 Endpoints examined:
(C3H/HeN) 5 diwk histology of nose,
6 hr/d trachea, lung.
153  Mouse goh?/d Hemato 10 M (decreased white blood Horiguchi and Inoue 1977
cells and thrombocytes)
Bd Wt 1000 M
154  Mouse g\év/i\(/vk Resp 1000 F (inflammation and Jacquot et al. 2006
(OF-1) 5 hrid decreased cell number in
olfactory epithelium)
155 Mouse gg gr/d Hepatic 150 F (increased liver weight Kjellstrand et al. 1985

[9.6%])
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
156 Mouse 14 wk . . . Endpoint: luated:
Res 1250 M 2500 M (5% increase in relative NTP 1990 ndpoints evaluatea:
(B6C3F1) 5 diwk P I(un; weight) body and organ weight,
6.5 hr/d organ histology,
hematology, clinical
100 F (12% increase in relative chemistry, urinalysis.
lung weight)
Cardio 2500 M 2500 F (14% increase in relative
heart weight)
1250 F
Gastro 2500
Hemato 2500
Hepatic 625 M 1250 M (9% increase in relative
liver weight)
100 F
625 F (6% increase in relative
liver weight)
Renal 2500 M 1250 F (7% increase in relative
kidney weight)
625 F
Endocr 2500
Bd Wt 1250 M 2500 M (12% decrease in body

weight)

100 F (13% decrease in body
weight)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments

Immuno/ Lymphoret

157 Rat 95d
(CD) 7 diwk 2000
6 hr/d
158 Rat 42d
1000 M
(Fischer- 344) 5 d/wk
6 hr/d
159 Rat 15 wk
3000
(Fischer- 344) 5 d/wk
6.5 hr/d
160 RSat 2Oh(rj/d 600 2000 M (decrease in thymus
(Da?/;?gyu)e- weights)
161 Rat 4 wk
(Sprague- 5 diwk 300
Dawley) 6 hr/d
162 Rat 5wk
(NS) 5 d/iwk 5000
7 hr/d

API 1985; Roberts et al. 2003  Endpoints evaluated:

API 1997

NTP 1990

Ono et al. 1996

Poon et al. 1994

von Oettingen et al. 1942

thymus and spleen
histology in FO/F1
parents and F1/F2
weanlings.

Endpoint evaluated:
thymus weight.

Endpoints evaluated:
spleen and thymus
weight and histology.

Endpoints evaluated:
spleen and thymus
weight and histology.

Endpoints evaluated:
spleen and thymus
weight and histology.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 5 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
163 Mouse 14 wk 2500 NTP 1990 Endpoints evaluated:
(B6C3F1) 5 diwk spleen and thymus
6.5 hr/d weight and histology.
Neurological
164  Rat 95d 2000 API 1985; Roberts et al. 2003  Endpoints evaluated in
(CD) 7 diwk 2-generation study:
6 hr/d brain weight, brain and
spinal cord histology in
FO/F1 parents and
F1/F2 weanlings.
165  Rat gzd;’ " 100 M (changes in GFAP levels 3000 M (overt signs of API 1997
(Fischer- 344) 2 O/W! i i ici
6 hrid in brain) neurotoxicity)
166 Rat g év/l\(Nk 900 M (prolonged slow-wave Avrito et al. 1988
sleep and paradoxical
8 hr/d -
sleep latencies)
167  Rat 4 or 13 wk 1000 M Beasely et al. 2010 Endpoints evaluated:
(Long- Evans) 5 diwk neurobehavioral
6 hr/d battery.
168  Rat 4 wk 1000 M Beasley et al. 2012 Endpoints evaluated:

(Long- Evans) 5 d/wk
6 hr/d

neurobehavioral
battery.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
169  Rat 184Wt|1(r/wk 40  (decreased rearing Berenguer et al. 2003
(DSa?/;?S;)e- behavior)
170 Rsat ]84WI|1(r/wk 40  (decreased rearing Berenguer et al. 2004
I(3 apvzfegyU)e- activity)
171 5;: Evan g\év/‘\(/vk 1000 M Boyes et al. 2015
9 6 hr/d
(WB)
172 Rat 13 wk . Endpoints examined:
5 diwk 100 M 1000 M (decrease in wave Boyes et al. 2015 p :
Long-Evan 6 hrid amplitudes of ERG) VEP at 2-3 weeks
r post-exposure, ERG
(WB) and photoreceptor
density at 5-6 weeks
and 1 year
post-exposure.
173 Rat g\é\l/l\(,vk 1000 M (loss of hair cells in organ Campo et al. 1997
(Long- Evans) 6 hrld of Corti)
174  Rat 30d

(Sprague- 24 hr/d
Dawley)

320 M (decreased weight of
brain and cerebral
cortex)

Kyrklund et al. 1987
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Chemical Form

Comments

Lund and Kristiansen 2008

Miyagawa et al. 1995

Pryor et al. 1984b

Rogers et al. 1999

Tahti et al. 1983

TOLUENE
3. HEALTH EFFECTS
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm)
175 Rat 90d
500 M
(Wistar) 5 diwk
6 hr/d
176 Rat 50d
600 M
(Fischer- 344) 24 hr/d
77 Rat a5k 1250 2500 (ataxia, increased NTP 1990
(Fischer- 344) 6.5 hr/d relative brain weight)
17s  Rat 16 ik 5wk 700M 1000 M (diminished auditory
(Fischer- 344) / d/W res
14 hr/d ponse)
179 Rat 4 wk 80
(Sprague- S diwk
Dawley) 6 hr/d
180 Rat 13 wk
1000 M
(Sprague- 8 hr/d
Dawley)

Endpoints examined:
brainstem auditory
responses, distortion
product otoacoustic
emissions.

Endpoint examined:
learning and memory
(radial arm maze).

Endpoints assessed:
brain weight and
histology, clinical signs.

Endpoints examined:
operant training
(appetitively-motivated
lever-press).

Endpoint examined:
motor coordination
(tilting plane test,
rotarod test).
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
181 Rat g\év/l\(,vk 80 M (decreased cortical area von Euler et al. 2000 No changes in brain
(Sprague- 6 hrld in parietal cortex, weight, overall praln
Dawley) r impaired motor volume, or cortical
coordination) thickness.
182 Rat g \év/‘\(/vk 600 2500 (overt signs of von Oettingen et al. 1942
(NS) 7 hr/d neurotoxicity)
183 Rat g é",bvk 25 M 100 M (increased escape Wiaderna and Tomas 2002
(Wistar) 6 hr/d response in hot-plate
test)
184 Rat 3 wk

(Long- Evans) 2x/wk 178 M (increased nose poking)
9 2 hrld

185 Mouse 14 wk
(B6C3F1)  Sdiwk 2500
6.5 hr/d
186 Mouse 6 wk
50 M
(C3H/HeN) 5 d/wk
6 hr/d

Wood and Cox 1995

NTP 1990

Win-Shwe et al. 2010c

Endpoints assessed:
brain weight and
histology, clinical signs.

Endpoint examined:
learning and memory
(Morris water maze).
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouu(i:)cy NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments

187 Mouse
(BALB/c)

188 Gn Pig
(pigmented)

Reproductive

189 Rat
(CD)
190 Rat
(Wistar)
191 Rat
(Wistar)
192  Rat
(Wistar)

30 min/d for 3
d,

then 1 d/wk for
4 wk

90 M

4 wk
5 d/wk
8 hr/d

95d
7 diwk
6 hr/d

2000

Gd 7 -Ppd 18

6 hr/d 1200 F

Gd 7 -Ppd 18

6 hr/d 1200 F

20d

4 hrld 1500 M

500 (transient mid- and
high-frequency hearing
loss)

Win-Shwe et al. 2010d

McWilliams et al. 2000

API 1985; Roberts et al. 2003

Dalgaard et al. 2001

Hass et al. 1999

Ishigami et al. 2005

Endpoint examined:
learning and memory
(Morris water maze).

Endpoints examined:
reproductive
performance in
2-generation study (FO
and F1 parental
animals).

Pregnancy outcomes
examined.

Pregnancy outcomes
examined.

Endpoints examined:
reproductive organ
weights,
spermatogenesis.



TOLUENE 73
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
193 Ra? ;Zdkak 3000 M (impaired Kanter 2011b
(Wistar) W spermatogenesis
8 hr/d P genesis,
decreased seminiferous
tubule diameter,
ultrastructural
abnormalites in testes)
194  Rat ;‘r’d}”kk 1250 M 2500 M (15% increase in testis NTP 1990 Endpoints evaluated:
(Fischer- 344) Wi weight) organ weight and
6.5 hr/d 3000 F histology; reproductive
function not assessed.
195  Rat 20hd/d 600 M (slightly decreased [13%] 2000 M (significantly decreased ~ Ono et al. 1996
(Sprague- T o
sperm count) [26%)] sperm count and
Dawley) decrease [15%)] in
weights of epididymides,
but no effect on indices
of fertility)
196 Rat ?;V,k ‘ 4000 M 6000 M (significantly decreased ~ Ono et al. 1999
(Sprague- w sperm count [66%)]
2 hr/d pern o],
Dawley) motility [78%], and ovum

penetration [76%])
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Fr(%qouu(i:)cy NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
197 Mouse 2\év/k ) 400 M API 1981 Endpoints examined:
(CD-1) Wi dominant lethal
6 hr/d mutations, pre- and
postimplantation losses
after mating with
unexposed females.
198  Mouse 51'>4d>Nkk 2500 NTP 1990 Endpoints evaluated:
(B6C3F1) hd organ weight and
6.5 hr/d histology; reproductive
function not assessed.
Developmental
199 Rat 2gdd;pg(é_12_120 500 2000 (reduced fetal and pup API 1985; Roberts et al. 2003 ~ 2-generation
(CD) 7 diwk body weights in F1 and reproduction study.
6 hr/d F2 generations)
200 Rat GG?WZd- Ppd 18 1200 M (decreased neonatal Dalgaard et al. 2001 Endpoints examined:
(Wistar) body weight) pup welgh_t, external
malformations,
offspring sperm
parameters at Ppd 100.
201 Rat gﬂrjd- Ppd 18 1200  (decreased neonatal Hass et al. 1999 Pregnancy outcomes
(Wistar) body weight, delayed examined.

development of reflexes
and increased locomotor
activity in offspring)
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain (Route) i
g ( ) System (ppm) (ppm) (ppm) Chemical Form Comments
202 Rat gﬂr}ém 266 (increased incidence of Hudak and Ungvary 1978
CFY fetal skeletal retardation)
208 Rat ha 128 100 (decreased growth of Slomianka et al. 1990 Endpoints examined:
(Wistar) L hippocampus) body weight, brain
histology and
hippocampal volume
on Ppd 29.
204 Ra e 500 M (reversible decrease in Slomianka et al. 1992 Endpoint examined:
(Wistar) r growth of hippocampus) hippocampal volume

CHRONIC EXPOSURE

Systemic

205 Human
206 Human
207 Human

NS
(Occup)

>3 yr

>5 yr (avg = 20

yr)
(Occup)

on Ppd 29 and 120.

Renal 93 M Askergren et al. 1981a,b Endpoints measured:
glomerular filtration
rate, albumin and
beta-2-microglobin
excretion.

Hemato 600 Banfer 1961

Resp 186  (mucosal irritation) Deschamps et al. 2001
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/
Duration/
Keyto Species Fr(%qouuig;:y NOAEL Less Serious Reference
Figure (Strain) System (ppm) (ppm) Chemical Form Comments
208  Human 20+ yr Cardio 2u M Gericke et al. 2001 Endpoints examined:
(Occup) blood pressure, clinical
chemistry, glomerular
filtration rate.
Hepatic 24 M
Renal 24 M
209  Human 40 mo Hemato 83 F Matsushita et al. 1975 Endpoints evaluated:
(avg) hematology, clinical
(Occup) chemistry.
Hepatic 83 F
210 Human 16 +/- 13 years Renal 44 Stengel et al.1998 No changes in
biomarkers of renal
damage when 17
subjects with
hypertension were
excluded.
211 Human 3-39yr Hepatic 29 M (increased levels of Svensson et al. 1992b
(Oceup) alkaline phosphatase)
212 Human >10yr Hemato (increased leukocytes) Tahti et al. 1981
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) Chemical Form Comments
213 Human NS Hemato 247 Ukai et al. 1993 Endpoints evaluated:
(Occup) hematology, clinical
chemistry.
Hepatic 24.7
214 Human 73-96 mo Hemato 46 M (significant decrease in Yin et al. 1987
(Occeup) relative number of
41 F (significant decrease in
relative number of
215 Rat ;()(S VT(k Resp 300 CIIT 1980; Gibson and Endpoints evaluated:
(Fischer- 344) Wi Hardisty 1983 body and organ weight,
6 hr/d organ histology,
hematology, clinical
chemistry, urinalysis.
Cardio 300
Hemato (decreased hematocrit)
Hepatic 300
Renal 300
Bd Wt 300
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain (Route) i
g ( ) System (ppm) (ppm) (ppm) Chemical Form Comments
216 Rat 2yr : ’ Endpoint luated:
Res 600 (nasal inflammation, NTP 1990 ndpoints evaluated.
(Fischer- 344) 5 diwk P <(:|egeneration of olfactory body and organ weight,
6.5 hr/d and nasal respiratory organ hiStOIOQY’.
epithelium) hematology, clinical
chemistry, urinalysis.
Cardio 1200
Gastro 1200
Hemato 1200
Musc/skel 1200
Hepatic 1200
Renal 600 (increased severity of
nephropathy)
Endocr 1200
Bd Wt 1200
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
217 Rat 15 mo . Endpoint luated:
Res 600  (mild-to-moderate NTP 1990 napoints evaiuated:
(Fischer- 344) g (Sj/nll;d P <(:|egeneration of the body and organ weight,
o olfactory and respiratory organ histology,
epithelium) hematology, clinical
chemistry, urinalysis.
Cardio 1200
Gastro 1200
Hemato 1200
Musc/skel 1200
Hepatic 1200
Renal 1200
Endocr 1200
Bd Wt 1200
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
218 Mouse 2yr Endpoint: luated:
R 1200 NTP 1990 ndpoints evaluated:
(B6C3F1) 5 diwk esp body and organ weight,
6.5 hr/d organ histology,
hematology, clinical
chemistry, urinalysis.
Cardio 1200
Gastro 1200
Hemato 1200
Musc/skel 1200
Hepatic 1200
Renal 1200
Endocr 1200
Bd Wt 1200
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) .
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
219 Mouse 15 mo - . Endpoints evaluated:
Resp 1200 M 1200 F (minimal hyperplasia of NTP 1990 p e
(B6C3F1)  Sdiwk the bronchial epithelium) body and organ weight,
6.5 hr/d 600 F organ histology,
hematology, clinical
chemistry, urinalysis.
Cardio 1200
Gastro 1200
Hemato 1200
Musc/skel 1200
Hepatic 1200
Renal 1200
Endocr 1200
Bd Wt 1200
Immuno/ Lymphoret
220  Human 13 yr (avg) 637 M Pelclova et al. 1990 Endpoint evaluated:
serum immunoglobulin
levels.
221 Human 16 +/-13 yr 44 Stengel et al. 1998 Endpoint evaluated:

serum IgE levels.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
222 Human 73-96 mo 46 M (significantly decreased Yin et al. 1987
(Occup) lymphocytes and
increased eosinophils)
41 F (significantly decreased
lymphocytes and
increased eosinophils)
223 Rat 2yr 1200 NTP 1990 Endpoints evaluated:
(Fischer- 344) 5 d/wk spleen and thymus
6.5 hr/d weight and histology.
224 Mouse gé; K 1200 F 120 M (increased incidence of NTP 1990 Endpoints evaluated:
(B6C3F1) hd pigmentation of the spleen and thymus
6.5 hr/d spleen) weight and histology.
Neurological
225 Human 12-14 yr 97 M (increased wave Abbate et al. 1993
(Occup) latencies for BAEPS)
226 Human 4.9 yr (avg)

90.9 (statistically significant Boey et al. 1997
performance deficits on
neurobehavioral tests)



Table 3-1 Levels of Significant Exposure to Toluene - Inhalation

3. HEALTH EFFECTS

(continued)

83

LOAEL

Less Serious

(ppm)

Reference
Chemical Form

Comments

TOLUENE
Exposure/
Duration/
a
Key to Species Fr(%qouu(ire\;: y NOAEL
Figure (Strain) System (ppm)
227 Human 0-40 yr (avg = 27
14 yr)
(Occup)
228 Human >5 yr (avg = 20 186
yr)
(Occup)
229 Human 5.7 yr
(Occup)
230 Human 20+ yr 24 M
(Occup)
231 Human 99 mo (avg) 20
(Occup)
232 Human 40 mo
(avg)
(Occup)

88 F

75

83 F

(statistically significant
performance deficits on
neurobehavioral tests)

(statistically significant
impairments in attention
and motor performance)

(abnormal tendon reflex,
decreased grasping
power and agility of
fingers, general
weakness)

Chouaniere et al. 2002

Deschamps et al. 2001

Foo et al. 1990

Gericke et al. 2001

Kang et al. 2005

Matsushita et al. 1975

Endpoints examined:
battery of psychomotor
function tasks,
self-reported neurotoxic
symptoms.

Endpoints examined:
subjective symptoms,
battery of psychomotor
tests.

Endpoints examined:
subjective symptoms,
color vision, battery of
psychomotor tests.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species F’(aqouu‘?e‘;y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
233 Human 1-25yr 122 M (hearing loss) Morata et al. 1997
(Occup)
234  Human 1-36 yr 83 M (lowered coefficient of Murata et al 1993
(Oceup) variation in
electrocardiographic R-R
intervals and maximal
motor and sensory nerve
conduction velocities in
median nerve)
235  Human NS 46 F Nakatsuka et al. 1992 Endpoint evaluated:
(Occup) color vision.
236  Human unspecified 33 75  (impaired visual Neubert et al. 2001 Endpoints evaluated:
(Occup) perception) subjective symptoms,
battery of
neurobehavioral tasks.
237 Human ?r;14e3di>gn . 140 M (increased incidence of Orbaek and Nise 1989; Initial examination was
yr) Se|f_reported neuro|ogica| NordIing Nilson et al. 2010 !n 19851 fO“OW-LIp was
symptoms [initial]; in 2005.
(Oceup) statistically significant
performance deficits on
neurobehavioral tests
[follow-up])
238 Human 13.4 yr (avg) 450 Schaper et al. 2003; 2008 Endpoint examined:

(Occup)

audiometry.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) :
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
239  Human 7 or 23 yr (avg) 43 Schaper et al. 2004 Endpoint evaluated:
(Occup) color vision.
240 Human 13.4 yr (avg) 45C Seeber et al. 2004; 2005 Endpoints examined:
(Occup) symbol digit
substitution, switching
attention, memory
span, self-reported
symptoms.
241 Human (Oceup) 36 76  (increased self-reported Ukai et al. 1993
neurological symptoms)
242 Human f;;tgxg\ég)r 50 (increased wave latency Vrca et al. 1995
9 y and amplitude of visual
(Occup) evoked potentials)
243 Human 4-30 years 50 (decrease in wave Vrca et al. 1996
amplitudes and
increased in wave
latencies of BAEP)
244 Human 3-33 years 50 (increased wave latency Vrca et al. 1997b

and decreased amplitude
of visual evoked
potentials)



TOLUENE

3. HEALTH EFFECTS

Table 3-1 Levels of Significant Exposure to Toluene - Inhalation

(continued)

86

Exposure/
Duration/
Keyto Species Fr(%qouuig;:y NOAEL Less Serious Reference
Figure (Strain) (ppm) (ppm) Chemical Form Comments
245 Human 73-96 mo 46 M (headaches, dizziness) Yin et al. 1987
(Occup)
41 F (headaches, dizziness)
246 Human 17 yr (avg) 35 (increased color Zavalic et al. 1998a, ¢
(Occup) confusion index)
247  Human 16.8 +/- 5.94 yr 120  (increased color Zavalic et al. 1998b
confusion index)
248  Human 15 yr (avg) 45 M Zupanic et al. 2002 Endpoints examined:
(Occup) subjective symptoms,
manual dexterity.
249 Rat 2yr Endpoint d:
1200 NTP 1990 ndpoints assessed:
(Fischer- 344) 5 d/wk brain weight and
6.5 hr/d histology, clinical signs.
250 Rat 15 mo 1200 NTP 1990 Endpoints assessed:
(Fischer- 344) 5 d/wk brain weight and
6.5 hr/d histology, clinical signs.
251 Mouse 2yr Endpoint: d:
1200 NTP 1990 ndpoints assessed:
(B6C3F1) g <51/\r/]v|;d brain weight and
.5 hr

histology, clinical signs.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. : (Route) .
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
252 Mouse 15 mo 1200 NTP 1990 Endpoints assessed:
(B6C3F1) 5 d/iwk brain weight and
6.5 hr/d histology, clinical signs.
Reproductive
253  Human 20+ yr 24 M Gericke et al. 2001 Endpoint examined:
(Occup) serum reproductive
hormone levels in male
workers.
254 Human ?:vg;o 83 F (dysmenorrhea) Matsushita et al. 1975
(Occup)
255 Human 6yr 88 F Ng et al. 1992a Endpoints examined:
(Occup) cycle irregularities,
extent of uterine
bleeding, and the
presence of
dysmenorrhea.
256 Human 10 yr

88 (increased incidence of Ngetal. 1992b
(Occup) spontaneous abortions

[12.4/100] compared to 2

control groups [2.9/100

and 4.5/100])
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Chemical Form

Comments

Svensson et al. 1992a

Svensson et al. 1992b

CIIT 1980; Gibson and
Hardisty 1983

TOLUENE
3. HEALTH EFFECTS
Table 3-1 Levels of Significant Exposure to Toluene - Inhalation
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuetre‘;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm)
257 Human 355}/3"7([;?(“3”) 36 M (decreased levels of LH,
i FSH, and free
(Oceup) testosterone)
258 Human 3-39 yr 20 M
(Occup)
259 Rat 106 wk
300
(Fischer- 344) 5 diwk
6 hr/d
260 Rat 2yr
1200 NTP 1990
(Fischer- 344) 5 diwk
6.5 hr/d

Increasing workplace
air concentrations were
not significantly
(p>0.05) associated
with plasma
concentrations of repro
hormones after age
adjustment.

Endpoints evaluated:
reproductive organ
weight and histology.

Endpoints evaluated:
organ weight and
histology; reproductive
function was not
assessed.
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Table 3-1 Levels of Significant Exposure to Toluene - Inhalation (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments
261 Mouse 2yr 1200 NTP 1990 Endpoints evaluated:
(B6C3F1) 5 diwk organ weight and
6.5 hr/d histology; reproductive

function not assessed.

a The number corresponds to entries in Figure 3-1.

b Used to derive an acute inhalation minimal risk level (MRL); concentration (15 ppm) divided by an uncertainty factor of 9 (3 for use of a minimal LOAEL and 3 for human variability
[observed effects were noted in a susceptible/sensitive group of individuals, therefore a full uncertainty factor of 10 for human variability is not necessary]), resulting in an MRL of 2

ppm (7.6 mg/m3).

¢ Used to derive a chronic inhalation minimal risk level (MRL) along with 5 companion studies supporting a NOAEL of 45 ppm for neurological effects; concentration was adjusted to
a continuous exposure basis (45 ppm x 5d/7d x 8hr/24hr = 10.7 ppm) and divided by an uncertainty factor of 10 for human variability, resulting in an MRL of 1 ppm (3.8 mg/m3).

ACTH = adrenocorticotropic hormone; ALT = alanine amino transferase; AST = aspartate aminotransferase; BAEP = brainstem auditory evoked potential; BAL = bronchioalveolar
lavage; Bd Wt = body weight; Cardio = cardiovascular; d = day(s); Endocr = endocrine; ERG = electroretinogram; F = Female; FSH = follicle stimulating hormone; Gastro =
gastrointestinal; Gd = gestational day; GFAP = glial fibrillary acidic protein; Gn Pig = guinea pig; Hemato = hematological; hr = hour(s); Immuno/Lymphoret =
immunological/lymphoreticular; LC50 = lethal concentration, 50% kill; LH = luteinizing hormone; LOAEL = lowest-observed-adverse-effect level; M = male; min = minute(s); MCS =
multiple chemical sensitivity; mo = month(s); Musc/skel = musculoskeletal; NOAEL = no-observed-adverse-effect level; NS = not specified; Occup = occupational; Pnd = post-natal
day; Pnw = post-natal week; Ppd = post-parturition day; REM = rapid eye movement; Resp = respiratory; VEP = visual evoked potential; wk = week(s); x = time(s); yr = year(s)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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Figure 3-1 Levels of Significant Exposure to Toluene - Inhalation (Continued)
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3.2.1.2 Systemic Effects

Data are available pertaining to respiratory, cardiovascular, hematological, musculoskeletal, hepatic,
renal, endocrine and ocular effects in humans and animals after inhalation exposure to toluene. In
addition, there are data on gastrointestinal, dermal, body weight, and other systemic effects in animals
after inhalation exposure to toluene. All systemic effects are discussed below. The highest NOAEL
values and all LOAEL values from each reliable study for systemic effects in each species and duration

category are recorded in Table 3-1 and plotted in Figure 3-1.

Respiratory Effects.

Overview. In humans, respiratory tract irritation has been reported from exposure to toluene under
controlled and occupational exposure conditions (Andersen et al. 1983; Baelum et al. 1985; Carpenter et
al. 1944; Hellquist et al. 1983; Orbaek et al. 1998; Osterberg et al. 2003; Winchester and Madjar 1986).
Limited epidemiological data suggest that exposure to benzene-toluene-ethylbenzene-xylene (BTEX)
solvents may increase the risk of acute asthma attacks in urban settings (Lemke et al. 2014). In animal
studies, evidence for histological damage to the nose or lung has been reported following intermediate-
and chronic-duration inhalation exposure to toluene, most clearly at concentrations >600 ppm 6 hours/day
(Fujimaki et al. 2007; Jacquot et al. 2006; Kanter 2011a; NTP 1990; Poon et al. 1994; von Oettingen et al.
1942).

Controlled Exposure Human Studies. Irritation of the nose and throat was reported in printers exposed
to 100 ppm toluene for 6.5 hours (Baelum et al. 1985) and in volunteers exposed to 200 ppm toluene for
7-8 hours (Carpenter et al. 1944). Exposure of volunteers to 40 ppm of toluene for 6 hours did not
produce statistically significant differences in the results of tests measuring nasal mucus flow and lung
function or in subjective evaluations of air quality, but irritation of the nose was noted at 100 ppm
(Andersen et al. 1983). Scores for throat irritation were significantly increased in 20 males during a
4.5-hour exposure to 50 ppm toluene, compared with pre-exposure scores, but no significant increases
were observed for nasal irritation or coughing (Muttray et al. 2005). Mucous membrane irritation of
progressive severity was reported by volunteers during exposure to progressively higher toluene
concentrations of 0, 3, 6, 12, 24, and 48 ppm toluene over a 90-minute period (Orbaek et al. 1998;
Osterberg et al. 2003); median maximal scores for mucous membrane irritation (scale of 0—100) at

48 ppm were about 70 for subjects with multiple chemical sensitivity diagnosis and about 30 for healthy

subjects (Osterberg et al. 2003). In other controlled-exposure studies, volunteers reported that they did
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not experience respiratory or mucous membrane irritation during exposure to 800 ppm toluene for 3 hours
(von Oettingen et al. 1942) or 1,862 ppm for 2 hours (Meulenbelt et al. 1990). No changes in lung
function were reported for volunteers exposed to 100 ppm toluene for 6 hours, 30 minutes of which were

spent exercising (Rahill et al. 1996).

Occupational Exposure Human Studies. Ten paint-sprayers exposed to 13 detected solvents (primarily
0.8—4.8 ppm toluene and isobutylacetate) and dusts had morphological changes in the nasal mucosa
(Hellquist et al. 1983). However, there was no conclusive association between duration of exposure and
mucosal abnormalities. Forty-two workers exposed to mixtures of solvents, of which toluene was
generally a major component, reported symptoms of nasal irritation, in addition to eye irritation, nausea,
skin conditions, dizziness, and headaches (Winchester and Madjar 1986). The concentrations of toluene
to which the workers were exposed ranged from 1 to 80 ppm (mean of 15 ppm). However, concurrent
exposure to a mixture of solvents and dusts in these studies precludes establishing an unequivocal causal
relationship between exposure to toluene and mucosal irritation. Eight workers from a print factory
exposed to <200 ppm toluene for >18 months had normal chest roentgenograms and did not report
breathing difficulty (Guzelian et al. 1988). In another study, increased mucosal irritation scores were
reported in 72 workers exposed to toluene for an average of 20 years, compared with 61 unexposed
referents (Deschamps et al. 2001). The toluene-exposed group consisted of 36 printer and machine
factory workers and 36 laboratory workers exposed to toluene (but no other solvent) at toluene
concentrations of 9-83 and 184-467 ppm, respectively. Since the exposed groups were analyzed together,
the LOAEL for this assessment is determined to be the average of the midpoints of the exposed ranges
(midpoint of 46 ppm for factory workers; midpoint of 325.5 ppm for laboratory workers; average of

186 ppm).

Environmental Exposure Human Studies. A single epidemiological study evaluated the potential
associations between air pollutants and acute asthma attacks in 5-89-year-old residents in Detroit,
Michigan, United States and Windsor, Ontario, Canada (Lemke et al. 2014). Air pollutants (including
summed BTEX) were measured at 100 sites during two 2-week sampling periods in 2008 and 2009.
Acute asthma attack rates in each city were calculated using emergency room visits and hospitalizations.
Using linear regression analysis, annual 2008 asthma rates were significantly correlated with total BTEX
levels in Detroit (B 6.34; 95% confidence interval [CI] 4.23—8.45), but not Windsor. Mean BTEX levels
in Detroit and Windsor during the two sampling periods were 6.6—10.3 and 3.2-5.9 pug/m?, respectively.

This study suggests that exposure to BTEX solvents may increase the risk of acute asthma attacks in
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urban settings; however, major limitations include coarse temporal resolution and multiple chemical

exposures.

Intermediate-Duration Animal Studies. Following intermediate-duration exposure of animals to
concentrations >600 ppm 6 hours/day, signs of pulmonary or nasal inflammation have been observed in a
number of studies. Rats exposed to 600 ppm for 5 weeks, 7 hours/day showed irritation of the lungs and
rats exposed to 2,500 and 5,000 ppm had pulmonary lesions (von Oettingen et al. 1942). Rats exposed to
3,000 ppm 8 hours/day 6 days/week for 12 weeks showed signs of pulmonary inflammatory responses
including inflammatory cell infiltration in peribronchial and alveolar regions, alveolar edema, and
interstitial fibrosis and necrosis (Kanter 2011a). Mice exposed to 1,000 ppm 5 hours/day, 5 days/week
for 4 weeks showed time-dependent and reversible changes in the number of cells in, and the thickness of,
the nasal olfactory epithelium that were indicative of degenerative processes followed by regenerative
processes (Jacquot et al. 2006). Significantly (p>0.05) increased relative lung weights were reported in
male and female rats and male and female mice exposed to 2,500 and 3,000 ppm (6.5 hours/day,

5 days/week for 14—15 weeks); these concentrations also induced ataxia in rats and dyspnea and increased
early mortality in mice (NTP 1990). Relative lung weights were also increased at lower exposure levels
(100, 625, and 1,250 ppm) in female mice, but the degree of change did not increase with increasing
concentration (NTP 1990). The increased lung weights observed in the NTP (1990) studies were not
accompanied with increased incidences of histological lesions in the lung, trachea, or nose in the 2500- or
3,000-ppm groups, compared with controls. No signs of respiratory distress or histological abnormalities
were observed in the lungs of mice exposed to 4,000 ppm 3 hours/day, for 8 weeks, or in rats and mice
exposed to 12,000 ppm for seven 10-minute periods per day separated by a 20-minute recovery period
(Bruckner and Peterson 1981b). Additionally, no histological abnormalities in the lung were observed in
FO0 and F1 parental rats or F1 and F2 weanlings exposed to 100-2,000 ppm toluene for 95 days (pre-
mating and mating), gestation, and lactation in a multigenerational study (API 1985; Roberts et al. 2003).
However, these studies did not include a histological examination of the upper respiratory tract and may
therefore not have observed damage to this region. In addition, the lack of pulmonary abnormalities in
Bruckner and Peterson (1981b) at higher concentrations than those in the NTP (1990) studies may be

explained by the shorter daily duration of exposure (3 hours/day versus 6 hours/day).

Following intermediate-duration to concentrations <600 ppm, histological lesions in the respiratory tract
have not been observed consistently across studies. Sprague-Dawley rats exposed to 30 or 300 ppm
toluene 6 hours/day, 5 days/week for 4 weeks showed no clear-cut evidence for exposure-related

histological lesions in the nose, trachea, or lung (Poon et al. 1994). Incidences of epithelial degeneration
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of the nasolacrimal ducts (with average severity scores in parentheses on a scale of 1=minimal, 2=mild,
3=moderate, and 4=marked) were 4/6 (0.5), 6/6 (1.50), and 3/6 (0.42) in control through high-
concentration males, respectively, and 1/6 (0.25), 5/6 (0.38), and 3/6 (0.33) in females, respectively. In
the trachea, subepithelial lymphoid proliferation was observed in 3/6 (0.15), 3/6 (0.35), and 3/6 (0.25)
male rats, respectively, and 5/6 (0.29), 3/6 (1.15), and 3/6 (0.71) female rats, respectively (Poon et al.
1994). In Wistar rats, exposure to 200 ppm toluene via nose-only inhalation 2 hours/day, 5 days/week for
28 days did not induce histopathological changes in the lung or increase markers of inflammation in the
lung or bronchoalveolar lavage (BAL) fluid; nasal passages were not evaluated (Jain et al. 2013). Ina
mouse study, no exposure-related changes were detected by light microscopy in the nose, trachea, or lung
of female C3H/HeN mice exposed to 0 or 50 ppm 6 hours/day, 5 days/week for 12 weeks, but significant
(p<0.05) changes were found in a few BAL indices of airway inflammation and a few neurotrophic
factors in exposed mice, compared with control mice (Fujimaki et al. 2007). Significant changes after

12 weeks of exposure included increased numbers of inflammatory cells and macrophages (~1.95 times
control values), but no changes in the number of lymphocytes or levels of 5/6 cytokines (tumor necrosis
factor [TNF-a], monocyte chemoattractant protein [MCP-1], macrophage inflammatory protein [MIP-1a],
interleukin-1P and interleukin-6); levels of interferon-gamma (IFN-y) were significantly lower than
control levels (~0.7 times control value). BAL fluid from exposed mice showed increased levels of
neurotrophin-3 (~1.12 times control value) and decreased levels of substance P (~0.5 times control value),
but no significant changes in nerve growth factor (NGF) levels (Fujimaki et al. 2007). The biological
adversity of the observed changes in BAL fluid end points at 50 ppm is currently uncertain, but the
histological results clearly identify 50 ppm 6 hours/day, 5 days/week for 12 weeks as a NOAEL for

histological signs of respiratory irritation in mice.

Chronic-Duration Animal Studies. Inflammation of the nasal mucosa, erosion and metaplasia of the
olfactory epithelium, and degeneration of the respiratory epithelium were reported in male and female rats
exposed to 600 or 1,200 ppm for 15 months or 2 years (6.5 hours/day, 5 days/week) (NTP 1990). At the
end of 2 years, there were significant (p<0.05) increases in the incidence of erosion of the olfactory
epithelium (males: 0/50, 3/50, and 8/49; females: 2/49, 11/50, and 10/50 at 0, 600, and 1,200 ppm,
respectively) and degeneration of the respiratory epithelium (males: 15/50, 37/50, and 31/49; females:
29/49, 45/50, and 39/50 at 0, 600, and 1,200 ppm, respectively). Exposed female rats also showed
significant increases in inflammation of the nasal mucosa (27/49, 41/50, and 41/50 at 0, 600, and

1,200 ppm, respectively) and metaplasia of the olfactory epithelium (0/49, 1/50, and 5/50 at 0, 600, and
1,200 ppm, respectively). Exposed rats showed no increased incidences of lung lesions compared with

controls (NTP 1990). Increased incidences of nasal or lung lesions were not observed in mice exposed to
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the same concentrations for 2 years, but minimal hyperplasia of the bronchial epithelium was observed in
4/10 female mice exposed to 1,200 ppm for 15 months (NTP 1990). No histopathological lesions were
observed in the upper respiratory tract or lungs of rats exposed for 2 years to 300 ppm toluene

(6 hours/day, 5 days/week) (CIT 1980; Gibson and Hardisty 1983).

Cardiovascular Effects.

Overview. Cardiac arrhythmia has been reported as a cause of death in fatal acute inhalation of solvents
containing toluene (Anderson et al. 1982; Shibata et al. 1994). Following nonfatal acute exposures to
high concentrations of toluene (>1,500 ppm), transient tachycardia and bradycardia have been reported
(Camarra-Lemarroy et al. 2015; Einav et al. 1997; Meulenbelt et al. 1990). In addition, several cases of
cardiac abnormalities associated with chronic toluene abuse have been reported (see Vural and Ogel 2006
for review). A single pregnancy cohort study suggests a weak potential association between
environmental levels of toluene and increased risk of adverse cardiovascular events during delivery
(Mannisto et al. 2015). However, repeated inhalation exposure studies in laboratory animals at
concentrations as high as 1,200 ppm do not provide convincing support for a direct effect of toluene on
the cardiovascular system (Bruckner and Peterson 1981b; CIIT 1980; NTP 1990). One study of acute
exposure of dogs to a lethal concentration of toluene (~30,000 ppm) reported the induction of arrhythmia,
but the authors suggested that this was due to a predisposing arrhythmia-producing heart abnormality
(Ikeda et al. 1990). Other studies of acute exposure have reported a nonsignificant increase in heart rate
in rats exposed to 66,276 ppm toluene for 30 minutes (Vidrio et al. 1986) and a reduction of
experimentally-induced arrhythmia in rats exposed to 6,867 ppm toluene, 10 minutes before aconitine

treatment to induce arrhythmias (Magos et al. 1990).

Human Exposure Studies. Cardiac arrhythmias were noted in two adult males who were found semi-
conscious after suffering from toluene intoxication (>7,000 mg/m?* toluene, 1,862 ppm) while removing
glue from tiles in a swimming pool (Meulenbelt et al. 1990). Response seemed to be variable between
these individuals. One man was exposed for 2 hours and exhibited a rapid heartbeat (sinus tachycardia),
while the second man, exposed for 3 hours, exhibited a slow heartbeat (bradycardia) (Meulenbelt et al.
1990). Severe sinus bradycardia was also reported in a comatose man with severe toluene intoxication
who had sniffed vapors from approximately 250 mL of thinner containing more than 50% toluene (Einav
et al. 1997). In a case-series report of patients with acute toluene intoxication, 20/20 cases exhibited
tachycardia upon admission; EKG alterations included ST segment depression (10/20), AV block (6/20),
U-waves (4/20), and prolonged QT (4/20) (Camarra-Lemarroy et al. 2015). No effects on systolic or
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diastolic blood pressure or pulse rate were reported in volunteers exposed to 800 ppm toluene for 3 hours
(von Oettingen et al. 1942), but several cases of cardiac abnormalities associated with toluene abuse have
been reported (see Vural and Ogel 2006 for review). No significant differences in prevalences of subjects
with abnormally high blood pressure were found between a group of German rotogravure printers
expected to have been exposed to toluene and a reference group of non-exposed paper industry workers

(Gericke et al. 2001).

In the Consortium on Safe Labor pregnancy cohort in the United States (n=223,502 singleton births),
environmental toluene levels 5 days prior to delivery were significantly associated with an increased risk
of adverse cardiovascular events during delivery (including ischaemic heart disease, stroke, heart failure,
cardiac arrest/failure, and other/unspecified cardiovascular event) after adjustment for hospital site,
maternal age, race/ethnicity, insurance status, smoking during pregnancy, and pre-pregnancy body mass
index (BMI) (odds ratio [OR] 1.42, 99% CI 1.02—-1.97) (Mannisto et al. 2015). Toluene exposure levels
were estimated using the Community Multiscale Air Quality Model, developed by the EPA (estimated air
levels were not reported). Toluene exposure levels on the day of delivery or 1, 2, 3, 4, 6, or 7 days prior
to delivery were not significantly associated with risk of adverse cardiovascular events during delivery.
This study provides weak evidence that toluene exposure near delivery date may increase the risk of
adverse cardiovascular events during delivery; however, concurrent exposure to multiple pollutants
(which were not controlled for in statistical analyses) limits the conclusions that can be drawn from this

study.

Animal Studies. Cardiovascular response was assessed in 25 dogs killed by rebreathing 1 L of air
containing 30,000 ppm toluene via an endotracheal tube (Ikeda et al. 1990). In most cases, death was due
to hypoxia, but four of the dogs developed transient arrhythmia and in one case, death was due to
ventricular fibrillation. The authors suggested that toluene had a direct effect on the septal and ventricular
muscles of the heart, which permitted the development of fatal arrhythmias in sensitive dogs (Ikeda et al.
1990). Inhalation by anesthetized rats of 66,276 ppm toluene for 30 minutes (35 minutes inhalation of
this concentration was fatal) produced a nonsignificant increase in heart rate and changes in
electrocardiographs indicative of depressed ventricular conduction (Vidrio et al. 1986). However, in rats
with arrhythmias induced by aconitine injection or coronary ligation, a 15-minute exposure to 6,867 ppm
toluene, 10 minutes before aconitine treatment significantly reduced the number of ventricular ectopic

beats (Magos et al. 1990).
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No histological abnormalities were observed in the hearts of mice exposed to 4,000 ppm for 3 hours/day,
for 8 weeks or to mice and rats exposed to 12,000 ppm for 70 minutes/day for 8 weeks (Bruckner and
Peterson 1981b). Additionally, no histological abnormalities in the heart were observed in FO and F1
parental rats or F1 and F2 weanlings exposed to 100-2,000 ppm toluene for 95 days (pre-mating and
mating), gestation, and lactation in a multigenerational study (API 1985; Roberts et al. 2003). There were
also no histopathological lesions of the heart that could be attributed to toluene in rats exposed to

300 ppm for 24 months (6 hours/day) (CHT 1980; Gibson and Hardisty 1983) or in rats or mice exposed
to up to 1,200 ppm for 24 months (6.5 hours/day) (NTP 1990). However, there were increased heart
weights in rats and female mice exposed to 2,500 ppm toluene for 14—15 weeks (6.5 hours/day) (NTP
1990).

Gastrointestinal Effects. No studies were located regarding gastrointestinal effects in humans after

inhalation exposure to toluene.

The incidence of ulcers of the forestomach was marginally, but not significantly, increased in male rats
exposed to concentrations of 600—1,200 ppm toluene for 2 years (NTP 1990). These effects were not
reported in mice or female rats exposed under the same conditions or in rats and mice exposed for only
15 months. There were no gastrointestinal effects in rats and mice exposed to up to 2,500-3,000 ppm
toluene for 14—15 weeks (NTP 1990). Additionally, no histological abnormalities in the gastrointestinal
tract were observed in FO and F1 parental rats or F1 and F2 weanlings exposed to 100-2,000 ppm toluene
for 95 days (pre-mating and mating), gestation, and lactation in a multigenerational study (API 1985;

Roberts et al. 2003).

Hematological Effects. Consistent evidence for hematological effects has not been reported after
inhalation exposure to toluene in the majority of recent human and animal studies. However, before the
mid-1950s, chronic occupational exposure to toluene was associated with hematological effects in some
studies (Greenburg et al. 1942; Wilson 1943). These effects are now attributed to concurrent exposure to
benzene, a common contaminant of toluene at that time (EPA 1985). More recent studies of workers
exposed to toluene or to mixed solvents containing toluene have not found consistent evidence for
abnormal hematological parameters (Banfer 1961; Matsushita et al. 1975; Tahti et al. 1981; Ukai et al.
1993; Yin et al. 1987).

Human Studies. Following acute exposures, no effects on leukocyte counts were observed in volunteers

exposed to 800 ppm toluene for 3 hours (von Oettingen et al. 1942), and two workers accidentally
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exposed to about 1,862 ppm for 2—3 hours had normal values for hematological variables (Meulenbelt et
al. 1990). White blood cell counts were below the reference range in a case-series report of 20 patients
with acute toluene intoxication (4/20); no other hematological parameters were reported (Camarra-

Lemarroy et al. 2015).

Consistent evidence for hematological effects has not been reported in workers chronically exposed to
toluene. Ukai et al. (1993) reported no hematologic effects in 452 toluene-exposed shoemakers and
printers (average exposure of 24.7 ppm) compared with unexposed controls from the same factories.
Exposure was estimated from personal monitoring data, and at least 90% of total solvent exposure was
due to toluene. No significant hematological effects were observed in workers engaged in shoemaking
(Matsushita et al. 1975) or printing (Banfer 1961) who were exposed to toluene for several years. The
studies were limited by small cohort size and a lack of historical exposure data. Shoemakers were
exposed to toluene concentrations that varied from 65 ppm (15-100 ppm) in winter to 100 ppm (10—

200 ppm) in summer and printers were exposed to atmospheric concentrations of toluene up to 600 ppm,
but individual exposure monitoring was generally not performed. As a result, the studies had only limited
power to detect adverse hematological effects in toluene-exposed workers. Workers involved in printing,
shoemaking, and audio equipment production, and exposed to toluene at 41 ppm (females) or 46 ppm
(males) had significantly decreased relative (but not absolute) lymphocyte counts when compared to
controls; leukocyte counts were not different between exposed and nonexposed workers (Yin et al. 1987).
In contrast, workers exposed for several years to toluene (benzene concentration <0.01%) in a tarpaulin
factory had increased blood leukocyte counts (Tahti et al. 1981). Toluene exposure concentrations, which
ranged from 20 to 200 ppm, were similar to those reported by Banfer (1961). However, this study is
limited by small cohort size, a lack of historical exposure monitoring, and the probability that workers
were exposed to mixtures of chemicals. Lymphocyte and leukocyte counts were not significantly
(p>0.05) different in a group of 25 nonsmoking subjects with >5 years of exposure to toluene in shoe-

repair facilities, compared with 25 nonsmokers without occupational exposure to toluene (Akbas 2004).

Animal Studies. Results of animal studies do not provide consistent evidence for hematological effects

following inhalation exposure to toluene.

Following acute inhalation exposure, increased hematocrit and blood glucose levels have been observed
in male rats exposed to 2,000 ppm toluene for 48 hours (Tahti et al. 1983). Erythrocyte membranes were
stronger and less susceptible to lysis in rats exposed to 2,000 ppm of toluene than in controls (Korpela

et al. 1983). This was demonstrated to be a reversible phenomenon since membrane strength returned to
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normal after toluene had dissipated from the system (Korpela and Tahti 1984). Other lipophilic agents
such as anesthetics, tranquilizers, narcotics, and steroids have a similar effect on membrane strength

(Magos et al. 1990).

In another acute exposure study, decreased leukocyte counts were observed in dogs exposed acutely to
>500 ppm toluene for 1 hour or 700 ppm for 4 hours (Hobara et al. 1984a), but intermediate-duration
exposure studies provide conflicting evidence for this effect. Positive reports include concentration-
related decreases in thrombocytes in mice exposed to 10—1,000 ppm for 20 days (Horiguchi and Inoue
1977), reversible decreased leukocyte counts in rats exposed to 2,500 or 5, 000 ppm for 5 weeks (von
Oettingen et al. 1942), and decreased leukocytes in female rats exposed to concentrations >1,250 ppm for
15 weeks (NTP 1990). In contrast, no hematological effects were reported for male rats exposed to up to
3,000 ppm for 15 weeks or male or female mice exposed to up to 1,200 ppm for 14 weeks (NTP 1990),
male rats exposed to 2,000 ppm 6 hours/day for 90 days (Ono et al. 1996), or rats exposed to 300 ppm

6 hours/day, 5 days/week for 4 weeks (Poon et al. 1994).

In chronic-duration studies, rats exposed to 100 or 300 ppm toluene had significantly reduced hematocrit
levels (CIIT 1980; Gibson and Hardisty 1983), but no consistent effects on hematological variables were
reported for mice or rats exposed to toluene at levels up to 1,200 ppm for 15 months or 2 years (NTP

1990).

Musculoskeletal Effects. A 29-year-old man who had been sniffing glue containing toluene
(concentration not specified) for 18 years and complained of severe muscle weakness was diagnosed with
rhabdomyolysis (an acute disease of the skeletal muscles evidenced by myoglobin in the blood and urine)
(Hong et al. 1996). Rhabdomyolysis was also diagnosed in a 48-year-old man, who was a chronic
toluene abuser and had been inhaling one tube of toluene-containing glue per day in the month preceding
admission (Karmakar and Roxburgh 2008). In a case-series report of patients with acute toluene
intoxication, 16/20 cases presented with rhabdomyolysis; 3 of these cases were fatal (Camarra-Lemarroy

et al. 2015).

No histological effects on bone were reported in mice or rats exposed to toluene at concentrations up to
1,200 ppm for 15 months or 2 years (NTP 1990). Additionally, no histological abnormalities were
observed in bone or skeletal tissue from FO and F1 parental rats or F1 and F2 weanlings exposed to 100—
2,000 ppm toluene for 95 days (pre-mating and mating), gestation, and lactation in a multigenerational

study (API 1985; Roberts et al. 2003). However, bone mineral density and bone mineral content were
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significantly (p<0.05) decreased in the right femoral neck of mice exposed to 300 ppm toluene

6 hours/day for 8 weeks (Atay et al. 2005).

Hepatic Effects.

Overview. Studies of chronic toluene abusers or occupationally-exposed humans have provided
inconsistent evidence for liver damage due to inhaled toluene. Some studies of workers who were
occupationally exposed to average concentrations between about 30 and 350 ppm toluene reported liver
effects such as increased serum levels of AP (Guzelian et al. 1988; Svensson et al. 1992b), but others
recorded no adverse effects on serum liver enzyme levels (Gericke et al. 2001; Lundberg and Hakansson
1985; Matsushita et al. 1975; Seijii et al. 1987; Ukai et al. 1993). A number of animal studies have
reported increased liver sizes or histological changes in mice or rats repeatedly exposed to concentrations
ranging from 300 ppm 6 hours/day, 5 days/week for 4 weeks to 3,000 ppm 6 hours/day for 15 weeks
(Bruckner and Peterson 1981b; Gotohda et al. 2009; Kanter 2012; Kjellstrand et al. 1985; NTP 1990;
Poon et al. 1994; Tas et al. 2011, 2013a), but other studies have recorded no effects on liver histology in
rats exposed to 320 ppm for 30 days (Kyrklund et al. 1987), rats intermittently exposed to 3,000 ppm for
4-8 weeks (Dick et al. 2014), or rats or mice exposed at concentrations up to 1,200 ppm for 2 years (CIIT
1980; Gibson and Hardisty 1983; NTP 1990).

Human Studies. Evidence for toluene-induced liver toxicity from occupational studies is limited and
inconsistent. Eight men from a printing factory employing 289 workers exposed to toluene at
concentrations of less than 200 ppm (further information on air toluene levels not reported) exceeded the
upper end of the normal range for blood levels of bilirubin, alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and alkaline phosphatase (AP), and had an ALT/AST ratio >1 (Guzelian et al.
1988). Liver biopsies showed centrilobular and periportal fat accumulation and Kupffer cell hyperplasia.
None of the men reported drinking alcohol to excess, but they may have had minimal occupational
exposure to methyl alcohol, ethyl alcohol, diethyl ether, trichloroethylene, and lacquer thinners which
could have confounded the results. Serum AP values were significantly greater than controls in a group
of 47 rotogravure workers occupationally exposed to a TWA toluene concentration of 11-47 ppm
(midpoint 29 ppm) for 3-39 years than in controls (Svensson et al. 1992b). The difference in AP values
remained significant when the data were corrected to eliminate nine workers who reported consumption
of alcoholic beverages. No significant elevations in serum liver enzymes were found in another group of
452 shoemakers and printers (exposed to average concentrations of 24.7 ppm toluene) compared with

unexposed workers from the same factories (Ukai et al. 1993). Serum ALT and AST levels were not
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altered in printers and non-printers exposed to median toluene levels of 24 and 4.1 ppm toluene for at
least 20 years, compared with unexposed referents (Gericke et al. 2001). Women working in a shoe
factory for an average of >3 years and exposed to toluene concentrations that varied from 65 ppm (15—
100 ppm) in winter to 100 ppm (10-200 ppm) in summer (average of winter and summer exposure,

83 ppm) showed no changes in several serum variables indicative of liver damage compared with a
control group of unexposed workers from the same factory (Matsushita et al. 1975). A group of

157 female shoemakers exposed for 2—14 months to toluene (7-324 ppm) had decreased serum levels of
lactate dehydrogenase (LDH) as compared to controls, but levels of eight other serum enzymes monitored
as indices of liver damage were normal (Seiji et al. 1987). These workers were also exposed to n-hexane,
cyclohexane, and methyl ethyl ketone at concentrations generally 1/10th of the toluene concentration. A
group of 47 Swedish paint industry workers exposed for >10 years to mixed organic solvents (xylene,
toluene, isobutanol, n-butanol, ethanol, ethylacetate, n-butylacetate, mineral spirits, methylacetate,
methylene chloride, methyl ethyl ketone, and isopropanol) did not have elevated serum concentrations of
liver enzymes when compared with nonexposed controls (Lundberg and Hakansson 1985). An early
study of 106 painters exposed to toluene in an airplane factory reported enlargement of the liver in 30.2%
of the exposed men, versus 7% of the control group (Greenburg et al. 1942). However, before the mid-
1950s, chronic occupational exposure to toluene was associated with exposure to benzene, a common

contaminant of toluene at that time (EPA 1985), and this is a confounding factor for this study.

Several case studies have reported effects on the liver from toluene exposure, although the exposure
concentration is generally unknown. Acute fatty liver during pregnancy was reported in a 26-year-old
woman exposed for at least 2 months to toluene in glue. A liver biopsy done 9 days postpartum showed
cytoplasmic change in the hepatocytes; however, there was no clinical or biochemical evidence of liver
disease 1 month later (Paraf et al. 1993). A painter who had been exposed to toluene for 5 years exhibited
hepatotoxicity, with fatty degeneration of hepatocytes and infiltration by lymphocytes (Shiomi et al.
1993). No effects on blood levels of bilirubin, AP activity, serum AST activity, or serum ALT activity
were reported for two workers accidentally exposed to 1,862 ppm toluene for 2—3 hours; however, the
liver was enlarged upon palpation in one man (Meulenbelt et al. 1990). In a case-series report of

20 patients with acute toluene intoxication, the average AST, AP, and gamma-glutamyl transferase
(GGT) values were above the reference range; half of the patients evaluated had a previous history of
drug abuse, including cocaine and marijuana, in addition to toluene inhalation (Camarra-Lemarroy et al.

2015).
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Animal Studies. Acute exposure to toluene has been reported to produce biochemical and ultrastructural
changes in the livers of experimental animals. Mice, rats, and rabbits exposed to 795 ppm of toluene for
7 days showed increased liver weights and cytochrome P450 levels compared to unexposed controls
(Ungvary et al. 1982). Electron microscopy revealed ultrastructural changes (increased rough or smooth
endoplasmic reticulum) in the livers of all three species (Ungvary et al. 1982). Cytochrome bs levels
were also increased in exposed rats and rabbits but were not measured in mice (Ungvary et al. 1982).
Male rats exposed to 2,000 ppm toluene for 48 hours had increased serum levels of ALT and AST (Tahti
et al. 1983). Exposure of rats to 4,000 ppm toluene for 6 hours resulted in significant increases in hepatic
levels of cytochrome P450 (CYP) 2E1, increased hepatic activities of nitrosodimethylamine demethylase
and 7-pentoxyresorufin O-depentylase and decreased levels of CYP2C11 (Wang et al. 1996). Increased
expression of markers of fibrosis (a-smooth muscle actin, collagen, glucocorticoid receptors, and leptin
receptors) was observed in livers of male rats exposed to 1,500 ppm 4 hours/day for 7 days (Gotohda et
al. 2009). Rats exposed to 1,500 ppm toluene, 4 hours/day for 7 days demonstrated increased markers of
oxidative stress, including 8-Oxo-2'-deoxyguanosine (8-OH-dG) and superoxide dismutase in the liver;
however, no significant changes in lipid peroxidase or 4-hydroxy-nonenal levels were seen (Tokunaga et

al. 2003).

Intermediate exposure of animals to inhaled toluene has been associated with changes in liver weight,
histology, or biochemistry in some, but not all, studies. Increased liver weights were reported for male
mice exposed to 4,000 ppm toluene, 3 hours/day, 5 days/week for 8 weeks (Bruckner and Peterson
1981b), female mice exposed to 150 ppm continuously for 30 days (Kjellstrand et al. 1985), rats exposed
to >1,200 ppm (males) or >2,500 ppm (females), or mice exposed to >625 ppm for 14 or 15 weeks (NTP
1990). In other studies, male rats and mice exposed to 12,000 ppm toluene for 8 weeks (seven 10-minute
exposures separated by 20-minute recovery periods) had decreased liver weights (Bruckner and Peterson
1981b), and no change in liver weight was observed in rats or mice exposed continuously to 150—

400 ppm (Ikeda et al. 1986; Kjellstrand et al. 1985; Kyrklund et al. 1987) or rats exposed to 30 or

300 ppm toluene 6 hours/day, 5 days/week for 4 weeks (Poon et al. 1994). No effect on the liver was
reported for rats exposed to 200—5,000 ppm toluene for 7 hours/day for 5 weeks (von Oettingen et al.
1942) or rats exposed to 3,000 ppm toluene 1 hour/day, 3 days/week, for 4-8 weeks (Dick et al. 2014).
Several other studies have reported histological or biochemical changes associated with liver damage in
animals after intermediate-duration inhalation exposure to toluene. These effects include: increased
serum AP activity in male rats exposed to 300 ppm for 6 hours/day, 5 days/week for 4 weeks (Poon et al.
1994); centrilobular hepatocellular hypertrophy in male mice exposed to 2,500-3,000 ppm 6.5 hours/day,
5 days/week for 14 weeks (NTP 1990); enlarged hepatic sinusoids filled with blood, minimal hepatic
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fibrosis (mean severity score of 0.78 on a scale of 0 for no fibrosis through 4 for complete cirrhosis), and
increased apoptotic cells in livers in male rats exposed to 3,000 ppm 8 hours/day, 6 days/week for

12 weeks (Kanter 2012); and increased serum activities of ALT and AST (but not AP), hepatocyte
degeneration, mild pericentral fibrosis, and increased levels of Bax protein (a marker of apoptosis) and
apoptotic cells in livers of male rats exposed to 3,000 ppm 1 hour/day for 30 days (Tas et al. 2011,
2013a). No weight changes or histological abnormalities in the liver were observed in FO and F1 parental
rats or F1 and F2 weanlings exposed to 100-2,000 ppm toluene for 95 days (pre-mating and mating),
gestation, and lactation in a multigenerational study (API 1985; Roberts et al. 2003).

In chronic studies, no exposure-related increased incidences of gross or histopathological liver lesions or
changes in liver weight were found in rats exposed to toluene at 300 ppm 6 hours/day, 5 days/week for

2 years (CIIT 1980; Gibson and Hardisty 1983) or rats or mice exposed to up to 1,200 ppm 6.5 hours/day,
5 days/week for 15 months or 2 years (NTP 1990).

Renal Effects.

Overview. Studies of chronic toluene abusers, occupationally exposed workers, and laboratory animals
have provided little support for irreversible kidney damage due to inhaled toluene. Chronic abuse of
toluene can produce acidosis, but in most cases, renal dysfunction was transient, and normal function
returned when exposure ceased (Baskerville et al. 2001; Camarra-Lemarroy et al. 2015; Dickson and
Luks 2009; Goodwin 1988; Kamijo et al. 1998; Meulenbelt et al. 1990; Patel and Benjamin 1986; Tang et
al. 2005). Studies of workers occupationally exposed to 100—200 ppm toluene, which assessed changes
in tests of kidney function, have not shown consistent effects across studies (Askergren et al. 1981a,
1981b; Gericke et al. 2001; Gonzalez-Yerba et al. 2006; Nielsen et al. 1985; Stengel et al. 1998). Animal
studies indicate that inhalation of toluene caused concentration-dependent kidney damage in rats, but only
after repeated exposure to concentrations >600 ppm for at least 6 hours/day (Bruckner and Peterson

1981b; CIIT 1980; Gibson and Hardisty 1983; NTP 1990; Ono et al. 1996; von Oettingen et al. 1942).

Human Studies. Numerous cases have been reported where toluene abuse was associated with acidosis
(Baskerville et al. 2001; Camarra-Lemarroy et al. 2015; Dickson and Luks 2009; Gerkin and LoVecchio
1998; Goodwin 1988; Jone and Wu 1988; Kamijima et al. 1994; Kamijo et al. 1998; Kaneko et al. 1992;
Meulenbelt et al. 1990; Patel and Benjamin 1986; Tang et al. 2005; Tsao et al. 2011). Acidosis generally
reflects the inability of the kidneys to maintain the pH balance of the blood due either to saturation of

kidney transport of hydrogen ions or a defect in tubular function. Associated changes with toluene-
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induced acidosis and renal tubular dysfunction are low serum levels of potassium (hypokaelemia) and
phosphate (hypophostaemia) (Baskerville et al. 2001; Camarra-Lemarroy et al. 2015; Tang et al. 2005;
Tsao et al. 2011). Oliguric renal failure was observed in 3/20 patients who died in a case-series report of
acute toluene intoxication hospitalizations; rhabdomyolysis was considered a key factor in renal failure
(Camarra-Lemarroy et al. 2015). Severe renal tubular acidosis was observed in five pregnant women who
were chronic abusers of paints containing toluene (Goodwin 1988). When paint-sniffing ended, normal
acid-base balance returned within 72 hours, indicating that permanent damage to the tubules had not
occurred. Recovery of normal acid-base balance after abuse was stopped also was reported in several
other cases (e.g., Baskerville et al. 2001; Dickson and Luks 2009; Tsao et al. 2011). However, one
19-year-old male chronic solvent abuser was found, through a renal biopsy, to have severe tubular
interstitial nephritis and focal tubular necrosis indicative of prolonged irritation of the kidney (Taverner

et al. 1988). This patient required hemodialysis to correct hematuria and oliguria which was present at
the time of his hospital admission. Hemodialysis was also required for a 22-year-old male chronic
solvent abuser with acidosis and hypokalemia (Gerkin and LoVecchio 1998). A 22-year-old woman, who
had sniffed approximately 6 L of toluene during the previous month, was found to have metabolic
acidosis and histological evidence of tubular injury. The acidosis normalized, but both proximal and
distal tubular dysfunction persisted (Kamijima et al. 1994). Proteinuria, hematuria, and urinary calculi
were reported in three solvent abuse case studies (Kaneko et al. 1992); the abused product was primarily
toluene in one case. An autopsy of a 19-year-old woman, who had sniffed thinner containing 67%

toluene for 5 years, revealed severe renal tubular degeneration and necrosis (Kamijo et al. 1998).

A group of 43 printing trade workers exposed to inks containing toluene, alcohols, and ethyl acetate for
9-25 years were experimentally exposed to 382 mg/m? (102 ppm) of toluene for 6.5 hours (Nielsen et al.
1985). No significant differences in excretion of albumin and B-2-microglobulin were observed either
before or after exposure when the workers were compared to controls matched by age, educational level,

and smoking habits (Nielsen et al. 1985).

In a longitudinal study of 92 printers exposed to 97-232 mg/m* (26-62 ppm) toluene, markers of early
renal damage (microalbumin, N-acetyl-b-D-glucosaminidase, and alanine-aminopeptidase) were not
significantly elevated in urine, but creatinine clearance was higher among exposed workers than

74 unexposed control subjects (Stengel et al. 1998). Multiple regression analysis indicated a slight
increase in N-acetyl-B-D-glucosaminidase urinary levels with increasing cumulative toluene exposure
(+2% per 100 ppm x years), but this relationship was not apparent when 17 subjects with hypertension

were excluded from the analysis.
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Albumin excretion levels were significantly increased in a group of 134 workers exposed to 5-23 ppm
styrene (52 plastic boat manufacturers), 80—106 ppm toluene (42 printers), or unspecified levels of xylene
and toluene (40 paint manufacturers), compared with 48 unexposed referents (Askergren et al. 1981a).
However, when the solvent-specific subgroups were analyzed separately, only the styrene-exposed
workers varied significantly from control. B-2-microglobulin excretion levels where not significantly
altered compared with controls when workers were analyzed together or by solvent-specific exposure
group (Askergren et al. 1981a). Similarly, no significant changes in glomerular filtration rate between a
group of 107 workers exposed to styrene (33 plastic boat manufacturers), toluene (34 printers), and
xylene and toluene (40 paint manufacturers), compared with 48 unexposed referents (Askergren et al.
1981b). For the studies by Askergren et al. (1981a), a NOAEL for renal function in this assessment was
determined to be the midpoint of the toluene exposure range in printers (93 ppm). Glomerular filtration
rate and serum creatinine levels were also not altered in printers and non-printers exposed to median
toluene levels of 24 and 4.1 ppm toluene for at least 20 years, compared with unexposed referents

(Gericke et al. 2001).

An increased (p<0.05) prevalence of abnormally high urinary activities of N-acetyl--D-glucosaminidase
(NAG) was observed in a group of 50 toluene-exposed shoe workers (exposure level unspecified),
compared with 25 control subjects (26/50 versus 4/25; Gonzalez-Yerba et al. 2006). However, the
prevalences of abnormally high urinary albumin excretion, another indicator of renal damage, were not

significantly different between the exposed and control groups.

Animal Studies. The only renal effects reported in an acute-duration study were increased markers of
oxidative stress, including 8-OH-dG and superoxide dismutase, in the kidneys of rats exposed to

1,500 ppm toluene, 4 hours/day for 7 days; however, no significant changes in lipid peroxidase or
4-hydroxy-nonenal levels were seen (Tokunaga et al. 2003). In intermediate-duration animal studies,
histological changes in the kidney have not been observed consistently across studies. Reports of toluene-
induced renal histological changes include renal casts in rats exposed to 600— 5,000 ppm 7 hours/day for
5 weeks (von Oettingen et al. 1942) and slight to mild necrosis of kidney tubules (5/8 versus 0/8 in
controls) with increased kidney weights in male rats exposed to 2,000 ppm toluene (but not 600 ppm),

6 hours/day for 90 days (Ono et al. 1996). No exposure-related renal histological changes were observed
in mice exposed to 4,000 ppm 3 hours/day for 8 weeks showing decreased absolute, but not relative,
kidney weight (Bruckner and Peterson 1981b); mice and rats showing decreased absolute kidney weights

following exposure to 12,000 ppm for 70 minutes/day, 5 days/week for 8 weeks (Bruckner and Peterson
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1981b); female mice showing increased relative kidney weight following exposure to 1,250 ppm

6.5 hours/day, 5 days/week for 14 weeks (NTP 1990); male or female rats showing increased relative
kidney weight after exposure to concentrations between 1,250 to 3,000 ppm 6.5 hours/day, 5 days/week
for 15 weeks (NTP 1990); male or female rats exposed to 30 or 300 ppm 6 hours/day, 5 days/week for

4 weeks (Poon et al. 1994); or FO and F1 parental rats or F1 and F2 weanlings exposed to 100-2,000 ppm
toluene for 95 days (pre-mating and mating), gestation, and lactation in a multigenerational study (API

1985; Roberts et al. 2003).

In chronic-duration animal inhalation studies, evidence for exposure-related renal histological changes is
not consistent across studies. No exposure-related renal histological lesions were found in rats exposed to
300 ppm 6 hours/day, 5 days/week for 2 years (CIIT 1980; Gibson and Hardisty 1983) or mice exposed to
up to 1,200 ppm 6.5 hours/day, 5 days/week for up to 2 years (NTP 1990). In male and female rats in the
2-year NTP (1990) study, nearly all control and exposed rats showed nephropathy at sacrifice, but the
mean severity score for nephropathy was statistically significantly (p<0.05) increased in the high-
exposure group (1,200 ppm), compared with the controls (3.2 versus 2.8 in males and 2.7 versus 2.4 in
females). In addition, the incidence of renal tubule casts increased with increasing exposure level in male

rats: 1/50 in controls; 2/50 at 600 ppm; and 5/50 at 1,200 ppm (NTP 1990).

Endocrine Effects.

Human Studies. Evidence for endocrine effects in humans exposed to toluene is not consistent across

studies and does not clearly identify toluene as an endocrine-disrupting chemical.

Serum levels of T3 were significantly increased in printers exposed to toluene for an average of 25 years
(current median exposure level, 36 ppm), compared with unexposed controls (Svensson et al. 1992a).
Serum levels of T4, TSH, and prolactin were not altered between exposed and referent groups; however,
TSH levels were significantly inversely related with cumulative toluene exposure. Serum levels of
prolactin were not changed in workers exposed to median toluene levels of 29 ppm for 3-39 years,
compared with control subjects (Svensson et al. 1992b). Hypothyroidism was diagnosed in a 29-year-old
man who had been sniffing glue containing toluene (concentration not specified) for 18 years (Hong et al.

1996).

An autopsy of a 19-year-old woman who had been sniffing thinner (67% toluene) for 5 years revealed

histological evidence of massive bilateral adrenal hemorrhage with severe degeneration and necrosis of
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the adrenal cortex (Kamijo et al. 1998). However, no exposure-related changes in salivary cortisol levels
were observed in volunteers exposed to a peak exposure of 200 ppm (measured pre- and postexposure);
the peak exposure condition was obtained by slowly flooding the exposure chamber with toluene starting
at a concentration of 0 ppm until the peak exposure of 200 ppm was obtained at 25 minutes and held

constant for an additional 15 minutes (40-minute exposure) (Kobald et al. 2015).

Several studies of blood levels of reproductive hormones in repeatedly exposed workers or acutely
exposed human subjects have not provided strong and consistent evidence of exposure-related effects.

These studies are discussed in Section 3.2.1.5, Reproductive effects.

Workers exposed to a mixture of styrene (0-5.9 ppm), toluene (0-2.02 ppm), and xylene (0-32.65 ppm)
demonstrated an increase in fasting insulin and glucose levels compared with unexposed controls (Won et
al. 2011). A homeostasis model assessment of insulin resistance levels (HOMA-IR) was significantly
higher in the exposed group. After adjustment for age, smoking, alcohol consumption, waist and hip
circumference, weight, and regular exercise, fasting glucose levels were still significantly higher in the
exposed group, but HOMA-IR was no longer significant. Adjusted analysis was not reported for fasting
insulin levels. The results of this study are confounded by mixed exposure and its significance is

therefore uncertain.

Animal Studies. Evidence for endocrine effects in animals following acute- or intermediate-duration
inhalation exposure to toluene is not consistent across studies and does not clearly identify toluene as an

endocrine-disrupting chemical.

Serum prolactin levels were significantly (p<0.05) increased (by 62% compared with control values) in
male Sprague-Dawley rats, 17 days after exposure to 80 ppm toluene 6 hours/day, 5 days/week for

4 weeks (Von Euler et al. 1994). A companion study found no significant changes in serum prolactin
levels in rats 29-40 days after exposure to 40, 80, 160, or 320 ppm by the same exposure protocol
(Hillefors-Berglund et al. 1995).

Significant (p<0.05) decreases (28 or 47%) in rat brain glial fibrillary acidic protein (GFAP) induced by
exposure to 1,000 ppm toluene, 6 hours/day for 3 or 7 days was associated with significantly increased
serum levels of corticosterone (about 393 or 600% increased, compared with control) (Little et al. 1998).
Thymus and adrenal weights in exposed rats were not significantly different from nonexposed control

values.



TOLUENE 118

3. HEALTH EFFECTS

Male rats exposed to 1,500 ppm 4 hours/day for 7 days showed significantly (p<0.05) increased adrenal
weight (118.2% of control) and adrenocortical cell size (150.7% of control), but not adrenocortical cell
number; increased serum levels of ACTH (151.5% of control) and corticosterone (176.1% of control);
increased adrenal gland levels of mRNA for a steroid metabolism enzyme, cytochrome P450 side-chain
cleavage (P450scc; 131.5% of control); and decreased body weight (92.1% of control) (Gotohda et al.
2005). This exposure scenario was shown to cause, in companion studies, neuronal damage and an
increase in glucocorticoid receptor in the hippocampus, suggesting a possible link between the elevated
serum levels of ACTH and corticosterone and elevated hippocampal glucocorticoid receptor mRNA

(Gotohda et al. 2000a, 2000b, 2002).

No statistically significant (p<0.05) changes in serum levels of prolactin, LH, or FSH were reported in
male Sprague-Dawley rats exposed to 500 ppm toluene 6 hours/day for 3 days or to 1,000 ppm

6 hours/day for 5 days, compared with values in nonexposed controls (Andersson et al. 1980). Mean
serum level of corticosterone was significantly increased (162% of control value) in rats exposed to
500 ppm, but the mean level in rats exposed to 1,000 ppm rats (79% of control value) was not

significantly different from the control mean (Andersson et al. 1980).

No statistically significant (p>0.05) trends for changed levels of FSH, LH, corticosterone, growth
hormone, or TSH with increasing exposure level were found in male Sprague-Dawley rats exposed to 80,
500, 1,500, or 3,000 ppm toluene 6 hours/day for 3 days (Andersson et al. 1983b). A significant (p<0.01)
trend for increased serum prolactin levels with increasing exposure level was found. The mean prolactin
level in rats exposed to 3,000 ppm rats was about 250% of the control value, whereas means in rats

exposed to 80, 500 and 1,500 ppm were about 180, 150, and 160% of the control mean, respectively.

In pregnant Wistar rats exposed to 0 or 1,500 ppm 6 hours/day on GDs 7-20, significantly (p<0.05)
depressed serum levels of corticosterone were found in exposed dams when measured on GD 14 (88% of
control) and GD 18 (60% of control) (Hougaard et al. 2003). Other endocrine end points were not

measured in this study.

Female, but not male, rats exposed to 30 or 300 ppm toluene for 6 hours/day, 5 days/week for 4 weeks

showed a treatment-related reduction in follicle size of the thyroid (Poon et al. 1994).
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No effect on the adrenal glands was reported for rats exposed to 200—5,000 ppm toluene for 7 hours/day
for 5 weeks (Von Oettingen et al. 1942). In a multigenerational study, no histological abnormalities on
the pancreas, adrenal, or thyroid glands were observed in FO and F1 parental rats or F1 and F2 weanlings
exposed to 100-2,000 ppm toluene for 95 days (pre-mating and mating), gestation, and lactation (API
1985; Roberts et al. 2003). Mice exposed to up to 2,500 ppm for 14 weeks (NTP 1990), rats exposed to
up to 3,000 ppm for 15 weeks, and mice and rats exposed to up to 1,200 ppm for 2 years (NTP 1990)

showed no histological abnormalities in the pancreas, adrenal, or thyroid glands.

Dermal Effects. No studies were located regarding dermal effects in humans after inhalation

exposure to toluene.

In a multigenerational study, no effects on the skin were observed in FO and F1 parental rats or F1 and
F2 weanlings exposed to 100-2,000 ppm toluene for 95 days (pre-mating and mating), gestation, and
lactation (API 1985; Roberts et al. 2003).

Ocular Effects. Humans exposed for 6-8 hours to toluene concentrations of >100 ppm developed
irritation of the eyes (Andersen et al. 1983; Baelum et al. 1985; Carpenter et al. 1944; Meulenbelt et al.
1990). No irritation was reported with 6 hours of exposure to 40 ppm toluene (Andersen et al. 1983).
Reports of color vision deficits in occupationally exposed workers have linked increased color confusion
with chronic exposure to toluene (Campagna et al. 2001; Cavalleri et al. 2000; Muttray et al. 1997, 1999;
Zavalic et al. 1998a, 1998b, 1998c). These studies are discussed in the Section 3.2.1.4, Neurological
Effects.

Pregnant rats exposed to 2,000 ppm 6 hours/day for 21 days showed lacrimation (Ono et al. 1996), but no
lacrimation or discharge was reported for male, female, or pregnant female rats exposed to 100—

2,000 ppm, 6 hours/day for 95 days (API 1985; Roberts et al. 2003). No exposure-related lesions were
observed in rats exposed at concentrations up to 1,000 ppm 6 hours/day, 5 days/week for 4 or 13 weeks
during ophthalmic examinations conducted 2—6 weeks or 1 year postexposure (Boyes et al. 2016).
Results from studies of visual impairment in rats after acute or intermediate inhalation exposure to

toluene are discussed in Section 3.2.1.4, Neurological Effects.

Body Weight Effects. No studies were located regarding body weight effects in humans after

inhalation exposure to toluene.
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Findings regarding body weight effects in animals are inconsistent. Body weights in rats decreased
compared with controls following inhalation exposure to toluene concentrations of 2,000 ppm for

48 hours (Tahti et al. 1983); 1,500 ppm, 4 hours/day for 7 or 20 days (Gotohda et al. 2005; Ishigami et al.
2005); 2,000 ppm, 8 hours/day, 7 days/week for 11 or 23 weeks (Pryor 1991); 320 ppm, 24 hours/day for
30 days (Kyrklund et al. 1987); 8,000 ppm 2-2.5 hours/day, 5 days/week for 13 weeks (Mattsson et al.
1990); 10,000 ppm 1 hour/day, 3 days/week for 4 weeks (Dick et al. 2015); 12,000 ppm 70 minutes/day,
5 days/week for 8 weeks (Bruckner and Peterson 1981b); and 2,500 ppm, 6.5 hours/day for 15 weeks
(NTP 1990). Significantly decreased body weight gain was observed in male rats continuously exposed
to 200 or 400 ppm for 30 days (Ikeda et al. 1986). Decreased body weights were seen in female and male
mice exposed 6.5 hours/day for 14 weeks to concentrations >100 and 2,500 ppm, respectively (NTP
1990), and in male mice exposed to 4,000 ppm, 3 hours/day or 12,000 ppm 70 minutes/day for 8 weeks
(Bruckner and Peterson 1981b). In contrast, no exposure-related effects on body weights were observed
in rats or mice exposed to 1,000 ppm toluene for 6 hours/day, 5 days/week, for 3—13 weeks (API 1997;
Beasely et al. 2010, 2012; Boyes et al. 2016; Horiguchi and Inoue 1977), mice exposed to up to

6,000 ppm toluene 30 minutes/day for 40 days (Bowen and McDonald 2009), rats exposed to 3,000 ppm
toluene 1 hour/day, 3 days/week for 4-8 weeks (Dick et al. 2014), rats exposed to up to 2,000 ppm
toluene 6 hours/day for 90 or 95 days (API 1985; Ono et al. 1996; Roberts et al. 2003), or rats or mice
exposed to up to 1,200 ppm toluene 6—6.5 hours/day for 15 months or 2 years (CIIT 1980; Gibson and
Hardisty 1983; NTP 1990); mean body weights in exposed animals were within 10% of control means.

Other Systemic Effects. No studies were located regarding other systemic effects in humans or

animals after inhalation exposure to toluene.

3.2.1.3 Immunological and Lymphoreticular Effects

Overview. Human studies of immunological end points in toluene-exposed subjects do not identify
consistent or strong evidence for toluene effects on immune system end points such as counts of blood
lymphocytes or levels of blood immunoglobulins (Little et al. 1999; Pelclova et al. 1990; Stengel et al.
1998; Yin et al. 1987). Human studies also provide conflicting evidence regarding the potential role of
occupational exposure to toluene and development of autoimmune disorders (Diot et al. 2002; Chaigne et
al. 2015; Marie et al. 2014). In animal studies, evidence for toluene effects on the immune system
includes the finding of decreased survival following respiratory infection by S. zooepidemicus in a study
of mice exposed for 3 hours to toluene concentrations as low as 2.5 ppm, but not 1 ppm (Aranyi et al.

1985). No evidence for exposure-related adverse changes in weight or histology of the spleen or thymus
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has been reported in animals exposed by inhalation for intermediate (NTP 1990; Poon et al. 1994; von
Oettingen et al. 1942) or chronic durations (NTP 1990). In a series of studies from a single laboratory,
intermediate-duration inhalation exposures of normal or allergy-challenged [ovalbumin (OVA)-
immunized and challenged] mice to toluene concentrations <100 ppm have been reported to modulate
immune system end points, but mechanistic understanding of the observed changes is insufficient to
determine their biological adversity (Fujimaki et al. 2009a, 2009b, 2010, 2011; Liu et al. 2010; Takeda et
al. 2013; Win-Shwe et al. 2007a, 2010a, 2010b, 2012a, 2012b; Yamamoto et al. 2009).

Occupational Human Exposure Studies. No differences in serum IgG, IgA, or IgM values were noted
between a group of 42 rotogravure printers exposed to concentrations of 104—1,170 ppm (midpoint,

637 ppm) for an average of 13 years and a group of 16 office and technical workers exposed to toluene
concentrations ranging from 2.1 to 4.3 ppm at the same facility (Pelclova et al. 1990). Blood IgE levels in
92 printers exposed to 97-232 mg/m? (26-62 ppm) toluene for an average of 16 years were not
significantly elevated compared to unexposed controls, but a dose-response relationship was observed
between cumulative toluene exposure and IgE levels (Stengel et al. 1998). Relative lymphocyte counts in
blood (but not absolute counts) were significantly decreased in a group of workers who were involved in
shoemaking, printing, or audio equipment production and were predominately exposed to toluene (Yin

et al. 1987). Mean toluene exposures were 41 ppm for females and 46 ppm for males over an average of

82 months.

A number of other studies have examined immune-related end points in toluene exposed workers, but the
results of these studies are confounded by mixed exposure to other solvents. A decrease in the

T lymphocyte count of workers occupationally exposed to a mixture of benzene (0—116 ppm), toluene (0—
160 ppm), and xylene (085 ppm) was observed (Moszczynsky and Lisiewicz 1984). However, no signs
of diminished immunological function or disturbances in immune skin reactions against such antigens as
tuberculin or distreptase were observed in the subjects studied. The reduction of T lymphocytes may
have been the result of the depressive effect of benzene on the lymphocyte system. Workers exposed to a
mixture of 0.8—40 ppm toluene (0.003-0.16 mg/L), 56-940 ppm benzene (0.18-3.0 mg/L), and 40—

609 ppm xylene (0.18-3.0 mg/L) had significantly lower serum IgG and IgA levels than unexposed
controls (Lange et al. 1973). Leukocyte agglutinins for autologous leukocytes and increased
leukoagglutination titer in human sera after incubation with the solvents were also observed (Lange et al.
1973). No effects on natural killer cell activity or serum levels of IL-2 or y-IFN were observed in shoe
factory workers, compared with a control group of workers not exposed to solvents (Yucesoy et al. 1999).

Mean 8-hour TWA breathing zone concentrations of solvents in shoe workplaces were about 58 ppm for
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n-hexane, 27 ppm for toluene, and 11 ppm for methyl ethyl ketone. Mean concentrations of hippuric acid
and 2.5-hexadione in exposed workers were about 2- and 3-fold higher than concentrations in nonexposed
controls (Yucesoy et al. 1999). Multiple linear regression analysis showed significantly (p<0.05)
decreased production of TNF, but not IL-10 or IL-12, in cultured peripheral blood mononuclear cells
from a high accumulated exposure group of paint factory workers, compared with a low-exposure group
(Haro-Garcia et al. 2012). Mean 8-hour TWA concentrations of solvents in the factory were about

12 mg/m? for benzene, 28 mg/m’ (7 ppm) for toluene, and 19.5 mg/m’ for xylene. Mean urinary
concentrations of S-phenylmercapturic acid were about 3.4 and 2.4 pymol/mol creatinine in the high- and
low-exposure groups, respectively (Haro-Garcia 2012). Workers exposed to a mixture of styrene (0—

5.9 ppm), toluene (0-2.02 ppm), and xylene (0-32.65 ppm) demonstrated a significant increase in serum
TNFa compared with unexposed controls (Won et al. 2011). No change was observed in IL-15 or IL-6.
However, alterations in serum TNFa were significantly associated with urinary phenylglyoxylic acid
levels, not urinary hippuric acid levels, indicating that alterations are associated with styrene exposure

rather than toluene exposure (Won et al. 2011).

A few case-control studies have evaluated potential occupational risk factors for autoimmune diseases
using retrospective exposure analysis based on work history and job-exposure matrices. Chaigne et al.
(2015) reported a significantly increased risk of the autoimmune disorder primary Sjégren’s syndrome
(175 cases, 250 controls) with history of occupational toluene exposure (OR 4.18, 95% CI 1.41-12.43).
The risk was also significantly increased using final toluene exposure scores, calculated based on the
probability and intensity of exposure (estimated from a job-exposure matrix) and the reported duration of
exposure (OR 4.69, 95% CI 1.42-15.45). Diot et al. (2002) similarly reported a significantly increased
risk of systemic sclerosis (80 patients, 160 controls) with history of occupational toluene exposure (OR
3.44, 95% CI 1.09-10.90). However, the risk was not significantly increased with a “high” final
cumulative toluene exposure score (>1), calculated based on the probability, intensity, and frequency of
exposure (estimated from a job-exposure matrix) and the reported duration of exposure (OR 6.19, 95% CI
0.63—60.53). In another case-control study of systemic sclerosis (100 cases, 300 controls), the risk of
systemic sclerosis was not increased with a history of any occupational exposure to toluene (OR 2.04,
95% C1 0.41-11.06) or a high cumulative toluene exposure score (OR 4.59; 95% CI 0.52-55.61) (Marie
etal. 2014).

Controlled Exposure Human Studies. Serum levels of T-cell proteins specific for a benzoic acid-human
serum albumin antigen were elevated following a 20-minute exposure to 15 ppm in a group of 20 subjects

who were clinically sensitive to toluene, compared with a group of 16 subjects who were not sensitive to
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toluene (Little et al. 1999). No significant differences in levels of IgG specific to the antigen were found
between the groups following exposure to toluene. These findings may indicate sensitization to benzoic

acid, a metabolite of toluene.

Animal Studies. Single 3-hour exposures of mice to 2.5, 10, 25, 50, 100, 250 or 500 ppm toluene,
immediately before inhalation exposure to aerosols of S. zooepidemicus, significantly (p<0.05) decreased
the ability to survive the respiratory infection (Aranyi et al. 1985). For example, the respective mortality
percentages in exposed and control groups were: 500 ppm, 56.8 and 20.7%; 50 ppm, 25.0 and 6.4%; and
2.5 ppm, 26.1 and 12.6%. A 3-hour exposure to 1.0 ppm toluene once or for 5 or 20 consecutive days did
not significantly change the number of animals that died following experimental exposure to

S. zooepidemicus, compared with control mice exposed only to aerosols of S. zooepidemicus. In another
assay, mice were exposed to varying concentrations (0,1, 2.5, 5, 10, 25, 50, 100, 250, or 500 ppm) of
toluene for 3 hours, followed immediately by inhalation exposure to aerosols of ¥*S-labeled Klebsiella
pneumonia and determination of the percent of bacteria killed in the lungs 3 hours later (Aranyi et al.
1985). Exposure before infection to toluene at all concentrations except 5 and 50 ppm significantly
(p<0.05) decreased pulmonary bactericidal activity, but no clear dose-response relationship was apparent.
For example, the percentages of bacteria killed in 3 hours in respective exposed and control groups were:
500 ppm, 85.9 and 71.9%; 100 ppm, 87.3 and 73.4%; 50 ppm, 82.3 and 84.1%; and 2.5 ppm, 84.6 and
79.2%. A 3-hour exposure to 1.0 ppm toluene once or for 5 or 20 consecutive days before infection did
not consistently produce significant (p<<0.05) changes in pulmonary bactericidal activities against

K. pneumonia. The results show most clearly that acute exposure to toluene concentrations >2.5 ppm

decreased the ability to survive following respiratory infection with S. zooepidemicus.

No changes in weight or histology of the spleen were recorded for rats exposed to 30-5,000 ppm toluene,
6—7 hours/day for 4-5 weeks (Poon et al. 1994; von Oettingen et al. 1942) or for rats and mice exposed to
toluene concentrations up to 3,000 ppm for 14—15 weeks (NTP 1990). In rats and mice exposed to
concentrations of toluene up to 1,200 ppm, 6.5 hours/day for 2 years, an increased incidence of

pigmentation of the spleen was observed in male mice exposed to concentrations >120 ppm (NTP 1990).

Decreased thymus weights were observed in male rats exposed to 2,000 ppm 6 hours/day for 90 days
(Ono et al. 1996) and in dams exposed to 600 ppm 6 hours/day during GDs 7-17 (Ono et al. 1995).
However, no effects on the thymus were reported in rats and mice exposed 6 hours/day to up to

1,200 ppm for 2 years or up to 3,000 ppm toluene for 14—15 weeks (NTP 1990) or in male rats exposed to
1,000 ppm toluene for 6 hours/day for up to 42 days (API 1997).
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In a multigenerational study, no histological abnormalities were observed the thymus or spleen from FO
and F1 parental rats or F1 and F2 weanlings exposed to 100—2,000 ppm toluene for 95 days (pre-mating
and mating), gestation, and lactation (API 1985; Roberts et al. 2003).

The highest NOAEL values and all LOAEL values for each reliable study for immunological effects in

each species and duration category are recorded in Table 3-1 and plotted in Figure 3-1.

In a series of studies from a single laboratory, intermediate-duration inhalation exposures of normal or
allergy-challenged (OVA-immunized and challenged) adult mice to toluene concentrations <100 ppm
have been reported to modulate a number of immune system end points (Fujimaki et al. 2009a, 2009b,
2010, 2011; Liu et al. 2010; Takeda et al. 2013; Win-Shwe et al. 2007a, 2010a). Examined end points
included BAL fluid cell counts, mRNA or protein levels for inflammatory cytokines, anti-microbial
peptides, neurotrophins, neurotrophin receptors or other immune regulatory transcription factors in lung,
BAL fluid or hippocampus, and plasma levels of antibodies. Another series of studies from the same
laboratory examined immune system end points in postnatal day (PND) 21 male BALB/c mice exposed to
0, 5, or 50 ppm toluene 6 hours/day on GD 14 through 21 (Yamamoto et al. 2009) or on GDs 14-18,
PNDs 2-6, or PNDs 8-12 (Win-Shwe et al. 2010b, 2012a, 2012b). Examined end points included brain,
thymus, or spleen weights, plasma levels of antibodies, and mRNA levels for cytokines and transcription
factors in the spleen or hippocampus. Current mechanistic understanding of the observed findings in
these studies, which include evidence for non-monotonic dose-related changes in several end points
(described in more detail in the following paragraphs), is insufficient to determine their possible
biological adversity, and NOAEL or LOAELSs from these studies are not included in Table 3-1 or

Figure 3-1.

In allergy-challenged male C3H/HeN mice exposed nose-only to 0, 9, or 90 ppm 30-minutes on days 0, 1,
2,7,14,21, and 28, significantly (p<0.05) changed numbers of macrophages were found in BAL fluid
samples from mice exposed to 9 ppm (~50% increased over non-exposed control) and 90 ppm (~25%
decreased over control) (Win-Shwe et al. 2007a). Significantly increased numbers of macrophages also
were found in BAL fluid in normal C3H/HeN mice exposed to 9 ppm (~130% increased) and 90 ppm
(~260% increased). No significant exposure-related changes were found in other cellular end points in
BAL fluid from exposed normal or allergy-challenged mice: numbers of total inflammatory cells,
neutrophils, lymphocytes, or eosinophils. Levels of mRNAs for certain cytokines in lungs of allergy-

challenged mice were significantly changed at 9 ppm (IL-5, ~100% increased) and 90 ppm (IFN-y, ~70%
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decreased), but no exposure-related changes were noted in mRNAs for IL-4 or IL-12. In allergy-
challenged mice, significant (p<0.05) changes were found in plasma levels of total IgE at 90 ppm (~100%
increased), anti-OVA IgE at 9 ppm (~500% increased), total IgG, at 9 and 90 ppm (~75% increased at
each concentration), and anti-OVA IgGj at 9 ppm (~90% increased); no significant changes were found in
plasma levels of total IgG; and anti-OV A IgG2. In allergy-challenged mice, toluene exposure led to
several significant biochemical changes in the lungs, including increased plasma NGF at 9 ppm (~200%
increased) and decreased lung levels of mRNA for brain-derived nerve factor (BDNF, ~40% decreased)
and tropomyosin-related kinase A (Trk A, ~50% decreased) at 9 and 90 ppm; no significant exposure-
related changes were found in lung levels of mRNAs for NGF, neurotrophin-3 (NT-3), or Trk B. The
neurotrophins were measured in these studies to investigate a hypothesis that low-level toluene exposure
may aggravate airway inflammation responses in allergy-challenged mice by modulating signaling

pathways in neurological and immune systems (i.e., modulating neuroimmune cross talk).

In another study with allergy-challenged male C3H/HeN mice exposed nose-only to 0 or 9 ppm for

30 minutes on days 0, 1, 2, 7, 14, 21, and 28, significantly (p<0.05) increased total cell and macrophage
counts (both ~200% increased) were found in BAL fluid from mice exposed to 9 ppm, compared with
controls (Fujimaki et al. 2009a). No significant exposure-related changes were found in numbers of
polymorphonuclear leukocytes and lymphocytes. Levels of BDNF in BAL fluid from mice exposed to

9 ppm were also significantly increased (~130%). Levels of NGF in BAL fluid were not increased in
exposed mice, but plasma levels of NGF were significantly increased by about 120% above levels in non-
exposed mice. Exposure-related effects were diminished by treatment with anti-CD4 antibody. The latter
result suggests that the observed toluene-induced effects may involve CD4+ cells, which have been

reported to produce BDNF and NGF.

In allergy-challenged male C3H/HeN mice exposed nose-only to 0, 9, or 90 ppm 30 minutes/day on

days 0, 1, 2, 7, 14, 21, 28, 35, 42, 49, and 56, significant (p<0.05) exposure-related changes were found in
lung levels of mRNAs for NGF (~70% increased over nonexposed controls), the NGF receptor, Trk A
(~100% increased), CCL2 (~140% increased), and CCL3 (~90% increased) at 9 ppm, but not at 90 ppm
(Fujimaki et al. 2009b). No significant exposure-related changes were found in lung levels of mRNA for
p75 neurotrophin receptor (p75SNTR). Light microscopy of lungs from allergy-challenged mice exposed
to 9 ppm showed peribronchial inflammation with eosinophil infiltration, but incidences of mice with this
condition were not reported by the study authors. In mice that were not allergy challenged
(“unchallenged” mice), exposure to 9 ppm led to slight hyperplasia of bronchial epithelia without

accumulation of macrophages and neutrophils. Immunohistological examination for NGF-positive cells
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showed a “few” NGF-positive bronchial epithelial cells in unchallenged mice exposed to 9 ppm toluene
and “marked increase” in allergy-challenged mice exposed to 9 ppm toluene. The study report did not

mention histological findings for unchallenged or allergy-challenged mice exposed to 90 ppm.

Similarly, C3H/HeN mice exposed nose-only to 0 or 9 ppm for 30 minutes/day on days 0, 1, 2, 7, and

14 ordays 0, 1,2, 7, 14, 21, 28, 35, 42, and 49 demonstrated qualitative damage to the tracheal epithelial
structure in exposed groups with >50% of the epithelial cells in the trachea being “remarkably damaged”
in mice exposed up to day 49 (Takeda et al. 2013). Again, incidences of mice with these findings were
not reported by the study authors. The allergy-challenged group did not differ from the toluene-only
group. No damage was observed with a single 30-minute exposure to 9 ppm, and no lymphocyte
infiltration was observed in any group. This study also examined protein expression of biophylaxis
factors in the lungs, including toll-like receptor 2 (TLR2), a defensin (NP-3), and B defensins (BD 1-4).
BD-2 was significantly decreased with exposure until day 14 or 49 (~10 and 50%, respectively) while
BD-4 was significantly increased (~80%) with the shorter exposure group, but significantly decreased
(~35%) with longer exposure. No changes were observed in NP-3, BD-1, BD-3, or TLR2 levels. Protein

expressions in allergy-challenge mice were not reported.

Thymus cells, but not spleen cells, from normal male C3H/HeN mice exposed to 50 ppm 6 hours/day,

5 days/week for 3 weeks (in inhalation chambers) showed enhanced proliferation in culture (measured by
rate of thymidine incorporation into DNA) by concanavalin A (Con A), compared with cells from
nonexposed mice (Liu et al. 2010). Thymocytes from toluene-exposed mice also showed increased levels
of the cytokine, IL-2, in response to Con A, and enhanced DNA-binding activities of transcription factors
involved in IL-2 production (NF-xB, STATS, and NF-AT), compared with thymocytes from non-exposed
mice (Liu et al. 2010).

Cultured spleen cells from male B10.BR mice exposed to 50 ppm toluene 6 hours/day, 5 days/week for
6 weeks in inhalation chambers showed significantly enhanced LPS-stimulated proliferation in normal
mice and decreased LPS-stimulated proliferation in allergy-challenged, compared with spleen cells from
B10.BR mice exposed to 0 or 5 ppm toluene (Fujimaki et al. 2010). In contrast, cultured spleen cells
from normal or allergy-challenged male C57B1/10 mice exposed to 0, 5, or 50 ppm by the same protocol
for 6 weeks showed no significant (p>0.05) difference in Con A- or LPS-stimulated proliferation.
Spleens from allergy-challenged B10.BR mice exposed to 5 ppm showed significantly increased mRNA

levels, compared with controls, for transcription factors Foxp3, STATS, and STAT6, but no changes in



TOLUENE 127

3. HEALTH EFFECTS

these transcription factors were apparent in spleens from normal or allergy-challenged B10.BR mice

exposed to 50 ppm or in normal or allergy-challenged C57B1/10 mice (Fujimaki et al. 2010).

Levels of hippocampal mRNAs for two neurotrophins and their receptors (NGF, Trk A, BDNF, and

Trk B) were significantly (p<0.05) increased in normal male C3H/HeN mice exposed to 500 ppm

6 hours/day, 5 days/week for 6 weeks in inhalation chambers, but not after exposure to 5 or 50 ppm (Win-
Shwe et al. 2010a). In allergy-challenged male C3H/HeN mice, hippocampal mRNA levels for NGF
were significantly increased at 50 ppm, but not at 5 or 500 ppm. Exposure of normal male BALB/c and
C57BL/10 mice by the same protocol to 5, 50, or 500 ppm did not produce significant (p>0.05) changes
in these end points, except for increased mRNA for BDNF in normal BALB/c mice exposed to 500 ppm.
The results demonstrate differences among mouse strains in responsiveness of these end points to toluene

exposure.

Significantly (p<0.05) increased number of total cells in BAL fluid samples (~50% increased over the
non-exposed control value) was observed in allergy-challenged male C3H/HeN mice exposed to 50 ppm
toluene 6 hours/day, 5 days/week for 6 weeks, but no significant changes were observed in allergy-
challenged mice exposed to 5 or 500 ppm, or to allergy-challenged mice after 3 weeks of exposure to any
of the three tested concentrations (5, 50, or 500 ppm; Fujimaki et al. 2011). No significant changes were
found in numbers of other cell types found in BAL fluid (macrophages, lymphocytes, neutrophils,
eosinophils) at any of the three tested concentrations in allergy-challenged mice after 3 or 6 weeks of
exposure. No significant (p>0.05) exposure-related changes in BAL fluid cell counts were noted in
normal mice (not allergy-challenged) exposed to 5, 50, or 500 ppm, compared with normal controls.
Other effects reported in allergy-challenged mice exposed to 50 ppm included increased hypertrophy and
hyperplasia in bronchial epithelium and mucus secretion in lungs without accumulation of alveolar
inflammatory cells (incidence data not reported by the study authors) and significantly increased lung
levels of fibronectin (35% increased compared with allergy-challenged mice without toluene exposure).
These findings were not observed in normal mice exposed to 50 ppm, compared with normal controls.
The report did not mention histological findings in lungs of normal or allergy-challenged mice exposed to
5 or 500 ppm. Significantly (p<0.05) increased splenic mRNA levels for immune regulatory transcription
factors (STAT3, STAT4, STATS, STAT6, GATA3, Foxp3, IL-4, and IL-12) were measured in allergy-
challenged mice exposed to 50 ppm; mRNA levels for most of these transcription factors in spleens were
not significantly different in allergy-challenged mice exposed to 5 or 500 ppm, compared with allergy-
challenged mice without toluene exposure. The only significant (p<0.05) change in levels of plasma

immunoglobins in exposed allergy-challenged mice was for increased total 1gG; at 50 ppm (~90%
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increased); no significant exposure-related changes were found in levels of total IgE, IgGaa, or antigen-
specific antibodies (anti-OVA IgE, anti-OVA IgGj, anti-OVA 1gGz.). The authors concluded that
although exposure to 50 ppm toluene increased the expression of transcription factors in the spleen and
plasma levels of total IgGy, the overall results “did not show a strong correlation between toluene

exposure and exacerbation of allergic responses.”

Yamamoto et al. (2009) examined spleen weight, plasma antibody levels, and splenic mRNA levels for
cytokines and transcription factors in PND 21 male mice exposed to 0, 5, or 50 ppm 6 hours/day on
GD 14 through PND 21 with or without exposure to peptidoglycan (PGN, a putative suppressor of type 2
humoral allergic responses). Findings for PND 21 mice exposed to toluene without peptidoglycan
exposure were:

e increased absolute (29% increased) and relative (24% increase) spleen weight at 50 ppm,

compared with mice exposed to 0 or 5 ppm (see Table 3-2);

o significantly decreased plasma levels of IgE and IgG2a antibodies at 50 ppm and significantly
increased levels of IgG1 antibodies at 5 and 50 ppm; and

o significantly decreased splenic mRNA levels for transcription factors T-bet, GATA-3, and Foxp,
but no exposure-related changes in splenic mRNA levels of cytokines IFN-y, IL-12, IL-4, or IL-5.

When the dams and offspring were exposed to PGN several times during gestation and through PND 21,
a different pattern of findings emerged in PND 21 male offspring:

e increased absolute (>32% increase) and relative (>35% increase) spleen weights in all
PGN+toluene groups, compared with 0-ppm toluene alone controls, but no significant differences
among the PGN+toluene groups (see Table 3-2);

¢ 1o significant differences in IgE levels among PGN+ toluene groups; significantly decreased
plasma levels of IgG1 at PGN+50 ppm and IgG2a at PGN+5 ppm and PGN+50 ppm, compared
with PGN+0 ppm controls;

e significantly decreased splenic mRNA levels for Foxp3 at PGN+5 ppm and PGN+50 ppm,
compared with PGN+0 ppm, but no exposure-related changes in splenic mRNA levels of
cytokines [FN-y, IL-12, IL-4, IL-5, T-bet or GATA-3 among PGN-+toluene groups.

This study found toluene-induced increased spleen weight in offspring exposed to 50 ppm toluene alone,
but no apparent response of spleen weight to toluene with co-exposure to PGN, a suppressor of type 2
humoral allergic responses. Mechanistic understanding is insufficient to determine the biological
adversity of the observed pattern of changes in plasma immunoglobulins and splenic mRNA levels for

transcription factors related to type 1 and type 2 immune responses in the spleen.
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Table 3-2. Mean Spleen Weight (SE) for PND 21 Mice (n=6/Group) Exposed to
Toluene 6 Hours/Day on GD 14 Through PND 21 With and Without Exposure

to PGN
Exposure group Spleen weight (mg)  Relative spleen weight (% spleen: body weight)
0 ppm 74.73 (3.63) 0.81 (0.043)
5 ppm 68.75 (3.10) 0.71 (0.028)
50 ppm 96.40 (5.84)2 1.01 (0.054)
0 ppm + PGN 105.03 (5.39)° 1.16 (0.055)°
5 ppm + PGN 105.68 (3.65)? 1.15 (0.037)?
50 ppm + PGN 98.62 (5.31) 1.09 (0.058)

ap<0.01, compared with 5-ppm toluene group, as reported by study authors.
bp<0.01, compared with 0-ppm toluene group, as reported by study authors.

GD = gestation day; PGN = peptidoglycan; PND = postnatal day; SE = standard error

Source: Yamamoto et al. 2009
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Win-Shwe et al. (2010b) examined weights of brain, lung, thymus, and spleen, and hippocampal mRNA
levels for neurotrophic factors, inflammatory cytokines, astrocyte marker GFAP, microglia marker Ibal,
and several other transcription factors in PND 21 male mice exposed to 0, 5, or 50 ppm 6 hours/day on
GDs 14-18, PNDs 2-6, or PNDs 8—12. No significant (p>0.05) exposure-related changes were found in
body weight or weights of brain, lung, thymus, or spleen. Statistically significant changes (compared
with nonexposed controls) were reported in hippocampal mRNA levels for the following neuroimmune
factors in PND 21 male mice:

e increased NGF at 50 ppm with PND 2—6 exposure and at 5 ppm (but not 50 ppm) with PND 8-12

exposure;

e increased BDNF at 5 and 50 ppm with PND 8-12 exposure;

e increased CCL3 at 5 ppm with PND 8-12 exposure;

o increased TNF-a at 50 ppm with PND 2—6 exposure, and at 5 ppm with PND 8-12 exposure;

o increased GFAP at 5 ppm with PND 8-12 exposure;

e increased Ibal at 50 ppm with GD 14-18 exposure, and at 5 ppm with PND 8-12 exposure;

e increased HO-1 at 50 ppm with PND 2-6, and 5 ppm with PND 8-12;

o increased TLR4 at 5 ppm with PND 8-12 exposure; and

e increased NF-xB at 50 ppm with PND 2-6, and at 5 and 50 ppm with PND 8-12 exposure.

Most of the examined neuroimmune factors were upregulated at 5 ppm (but not 50 ppm) with PND 8—12
exposure. Of the 10 factors examined, only one (CCL2) was not upregulated. It is unclear why exposure
to 50 ppm in this period did not upregulate most of the factors upregulated by 5 ppm with PND 8-12
exposure. Exposure during GDs 14—18 upregulated only GFAP at 5 ppm and Ibal at 50 ppm, whereas
exposure during PNDs 2—6 upregulated only NGF, TNF-a, HO-1, and NF-«kB at 50 ppm.

Win-Shwe et al. (2012a) examined lung, spleen, and thymus weights, plasma levels of antibodies,
percentage distribution of splenic T lymphocytes, and splenic mRNA levels for inflammatory cytokines
and transcription factors in PND 21 male mice exposed to 0, 5, or 50 ppm 6 hours/day on GDs 14-18,
PNDs 2-6, or PNDs 8—12. The only significant (p<0.05) exposure-related changes found in body weight
or weights of thymus, left lung, or spleen were decreased weight of thymus and spleen at 5 ppm (but not
50 ppm) with PND 8-12 exposure. The magnitudes of these decreases were not reported. Statistically
significant changes (p<0.05, compared with nonexposed controls) reported in blood and splenic immune

system end points in PND 21 male mice included:
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e decreased plasma levels of total IgG2a antibodies at 5 ppm (but not 50 ppm) with PND 2-6
exposure, and increased levels at 5 ppm (but not 50 ppm) with PND 8-12 exposure;

e decreased plasma levels of total IgG1 antibody at 5 and 50 ppm with GDs 14—-18 and PND 8-12
exposure, and at 50 ppm with PND 2—6 exposure;

e decreased percentage CD+4 splenic T lymphocytes at 50 ppm with PND 2—6 and 8—12 exposure;
e decreased percentage CD8+ T lymphocytes at 50 ppm with PND 8-12 exposure;
e decreased IL-12 mRNA levels in spleen at 5 and 50 ppm with PNDs 2—6 and 8—12 exposure; and

e decreased T-bet and Foxp3 mRNA levels in spleen at 5 and 50 ppm with PND 2—6 and 812
exposure.

No significant exposure-related changes were found in IFN-y or GATA3 mRNA levels in spleen.

Exposure during PNDs 8—12 produced changes in a greater number of examined end points in PND 21
mice than exposure during GDs 14—18 (decreased plasma total IgG1 at 5 and 50 ppm) or PNDs 2—6
(decreased IgGG2a antibodies, [gG1 antibodies, and percentage of CD+4 lymphocytes in spleen at 5 ppm,
and decreased splenic IL-12, T-bet, and Foxp3 mRNA at 5 and 50 ppm) (Win-Shwe et al. 2012a). End
points modulated with PND 8—12 exposure were:

e decreased thymus and spleen weight at 5 ppm;
e increased IgG2a antibodies at 5 ppm;

e decreased plasma IgG1 antibodies and decreased splenic mRNA levels for IL-12, T-bet, and
Foxp3 at 5 and 50 ppm; and

e decreased percentage of CD+4 and CD8+ lymphocytes in the spleen at 50 ppm.

Following the same gestational and postnatal exposure protocol, mRNA levels of neurotrophic factors
(NGF, BDNF), pro-inflammatory cytokines (CCL2, CCL3, TNF-a), NGF transcription factor NF-kB,
neurogenesis modulator toll-like receptor 4 (TLR4), oxidative stress marker HO-1, astrocyte marker
GFAP, and microglia marker Iba-1 were determined in the hippocampus of offspring on PND 21 (Win-
Shwe et al. 2012b). Significantly increased mRNA levels (~133-600%) were reported for NGF, BDNF,
TNF-a, CCL3, NF-kB, TLR4, GFAP, Iba-1, and HO-1 in the 5 ppm group exposed from PND 8 to 12,
NGF, TNF-0, NF-kB, and HO-1 in the 50 ppm group exposed from PND 2 to 6, and NF-kB in the

50 ppm group exposed from PND 8 to 12. No mRNA alterations were observed with exposure from
GD 14 to 18, compared with controls. No changes were found in neonatal body weight or relative organ

weights of the brain, thymus, lung, or spleen at any exposure in this study.



TOLUENE 132

3. HEALTH EFFECTS

3.2.1.4 Neurological Effects

Overview. Dysfunction of the central nervous system is a critical human health concern following acute,
intermediate, or chronic inhalation exposure to toluene. Chronic toluene abuse in humans has been
associated with neurotoxic symptoms, narcosis, permanent damage to the central nervous system, and
death (Aydin et al. 2002, 2003; Byrne et al. 1991; Caldemeyer et al. 1996; Camarra-Lemarroy et al. 2015;
Capron and Logan 2009; Deleu and Hanssens 2000; Devathasan et al. 1984; Filley et al. 1990; Ryu et al.
1998; Gupta et al. 2011; Hormes et al. 1986; Hunnewell and Miller 1998; Ikeda and Tsukagoshi 1990;
Kamran and Bakshi 1998; King et al. 1981; Kiyokawa et al. 1999; Kucuk et al. 2000; Maas et al. 1991;
Maruff et al. 1998; Meulenbelt et al. 1990; Miyagi et al. 1999; Nomura et al. 2016; Papageorgiou et al.
2009; Poblano et al. 1996; Rosenberg et al. 1988a, 1988b, 2002; Ryu et al. 1998; Suzuki et al. 1983;
Uchino et al. 2002; Yamanouchi et al. 1995). Self-reported neurological symptoms, reduced ability in
tests of cognitive and neuromuscular function, and hearing and color vision loss have been observed in
humans occupationally exposed to average concentrations of toluene ranging from 35 to 200 ppm (Abbate
et al. 1993; Boey et al. 1997; Campagna et al. 2001; Cavalleri et al. 2000; Eller et al. 1999; Foo et al.
1990; Guzelian et al. 1988; Kang et al. 2005; Matsushita et al. 1975; Orbaek and Nise 1989; Ukai et al.
1993; Yin et al. 1987; Vrca et al. 1995, 1996, 1997a, 1997b; Zavalic et al. 1998a, 1998b, 1998c¢); several
occupational studies identify NOAELSs for these effects in the range of 20—187 ppm toluene (Deschamps
et al. 2001; Gericke et al. 2001; Kang et al. 2005; Nakatsuka et al. 1992; Neubert et al. 2001; Schiper et
al. 2003, 2004, 2008; Seeber et al. 2004, 2005; Zupanic et al. 2002). Performance deficits in tests of
neurobehavior have also been observed in volunteers acutely exposed to controlled concentrations

>50 ppm (Andersen et al. 1983; Baelum et al. 1985; Dick et al. 1984; Echeverria et al. 1991; Kobald et al.
2015; Rahill et al. 1996; von Oettingen et al. 1942).

Numerous studies in animals have also reported clinical signs of neurotoxicity and neurobehavioral
alterations following acute exposure >100 ppm (Bowen and Balster 1998; Bushnell et al. 1985; Conti et
al. 2012; Hogie et al. 2009; Huerta-Rivas et al. 2012; Kim et al. 1998; Kishi et al. 1988;Lopez-Rubalcava
and Cruz 2000; Mullin and Krivanek 1982; Paez-Martinez et al. 2003, 2008; Taylor and Evans 1985;
Tomaszycki et al. 2013; Wood and Colotla 1990; Wood et al. 1983); however, studies of rodents exposed
for intermediate durations to concentrations as high as 1,000 ppm have not found strong and consistent
evidence for exposure-related changes for these neurological end points (API 1997; Beasely et al. 2010,
2012; Miyagawa et al. 1995; NTP 1990; Rogers et al. 1999; Tahti et al. 1983; von Euler et al. 2000; von
Oettingen et al.1942; Win-Shwe et al. 2010c, 2010d; Wood and Cox 1995). Following repeated abuse-
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like exposures (>1,000 ppm), neurobehavioral alterations have been observed in several animal studies
(Baydas et al. 2005; Bikashvili et al. 2012; Bowen et al. 2007; Castilla-Serna et al. 1991; Dashiniani et al.
2014; Duncan et al. 2012; Lorenzana-Jimenez and Salas 1990; Mattsson et al. 1990; Miyagawa et al.
1998; Oshiro et al. 2007; Pryor 1991; Pryor and Rebert 1992). Hearing loss has also been reported in
laboratory animals exposed to 250-2,000 ppm toluene (Campo et al. 1997, 1998; Davis et al. 2002;
Johnson 1992; Johnson and Canlon 1994; Johnson et al. 1988; Lataye and Campo 1997; McWilliams et
al. 2000; Pryor and Rebert 1992; Pryor et al. 1984a, 1984b, 1991; Waniusiow et al. 2008, 2009).

Controlled Human Exposures

Overview. Acute exposure of healthy human subjects to toluene concentrations <50 ppm did not result in
adverse neurological effects in a number of studies (Andersen et al. 1983; Lammers et al. 2005a; Muttray
et al. 2005; Osterberg et al. 2000, 2003), and concentrations >75 ppm resulted in subtle neurological
impairments in most studies (Andersen et al. 1983; Baelum et al. 1985; Dick et al. 1984; Echeverria et al.
1991; Gamberale and Hultengren 1972; Kobald et al. 2015; Rahill et al. 1996; von Oettingen et al. 1942).
In contrast, studies examining individuals who were clinically sensitive to toluene (e.g., multiple chemical
sensitivities) found minor neurological deficits at concentrations as low as 12—48 ppm (Little et al. 1999;

Orbaek et al. 1998; Osterberg et al. 2003).

Healthy Volunteers. No significant, dose-related increases in subjective complaints of neurological
effects and/or altered performance on neurobehavioral tasks were observed in a number of studies of
healthy volunteers following exposure to toluene concentrations of 10—50 ppm for 2—6 hours (Andersen et
al. 1983; Muttray et al. 2005; Osterberg et al. 2000, 2003). Similarly, 11 males exposed to 40 ppm
toluene for 4 hours did not attain impaired scores on six neurobehavioral measures designed to assess
mood, cognitive and motor functions, compared with pre-exposure scores (Lammers et al. 2005a).
However, blood toluene levels, measured at 60, 120, 240, and 360 minutes after onset of exposure, were
significantly associated with impaired performance on one motor performance test (finger tapping with
alternating hands). Similar results were observed when the same 11 males were exposed to 110 ppm for
four 30-minute exposures over 4 hours, 1 week later (Lammers et al. 2005a). Since blood toluene levels
were only correlated with 1/6 neurobehavioral measures, and there were no significant differences
between pre- and post-exposure scores, 40 ppm for 4 hours and 110 ppm for four 30-minute exposures are
considered NOAELSs for neurological effects. In other studies, volunteers exposed to 80 ppm toluene for
4 hours did not demonstrate impairments in choice reaction time, simple reaction time, color-word

vigilance, or memory reproduction (Iregren et al. 1986; Olson et al. 1985).
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In repeat-measure experiments, increased subjective complaints and deficits in neurological effects were
observed between 75 and 200 ppm after exposure for 7-8 hours (Andersen et al. 1983; Echeverria et al.
1991; von Oettingen et al. 1942) and 300 ppm toluene after exposure for 20 minutes (Gamberale and
Hultengren 1972). Concentration-related impairments were observed during the digit span, pattern
recognition, pattern memory, and one-hole tests in 42 volunteers exposed to 0, 75, and 150 ppm toluene
for 7 hours on sequential days, compared with their own pre-exposure measures (Echeverria et al. 1991).
There were no exposure-related changes in the results on simple reaction time, mood (profile on mood
scale), visual memory, hand-eye coordination, verbal short-term memory, finger tapping, reaction time,
continuous performance test, or critical tracking test (Echeverria et al. 1991). Sixteen volunteers exposed
to 0, 10, 40, and 100 ppm toluene for 6 hours on sequential days reported a statistically significant
increase in the occurrence of headache, dizziness, and feeling of intoxication during the 100 ppm
exposure, but not during the other concentrations (Andersen et al. 1983). Statistically significant
exposure-related deficits were not observed in any of the eight performance tests designed to assess
concentration, vigilance, motor coordination, visual perception, and cognitive function. However, for
three of the tests (screw-plate [motor coordination], Landolt’s ring [visual perception], and
multiplication), there was a borderline significant deficit associated with toluene exposure (p=0.05-0.1),
and the subjects felt that the tests were more difficult and strenuous during the 100 ppm exposure
(Andersen et al. 1983). Following acute exposures to toluene at concentrations of 0, 50, 100, 200, 400,
and 600 ppm for 8 hours and 800 ppm for 3 hours on subsequent days, three volunteers reported
drowsiness and headache at 200 ppm that became more severe with exposure duration and at higher
concentrations, characterized by impaired intellectual, psychomotor, and neuromuscular effects (von
Oettingen et al. 1942). Concentration-dependent increases in simple and choice reaction times were
measured in 12 volunteers exposed to increasing concentrations of toluene at 0, 100, 300, 500, and

700 ppm for 20-minute intervals (Gamberale and Hultengren 1972). Compared with 0 ppm values, these
increases were significant at 300 ppm. Perception speed was also impaired, but not significantly different

from 0 ppm values until exposure to concentrations of 700 ppm (Gamberale and Hultengren 1972).

Single-measure studies consistently report impaired performance on neurobehavioral tasks following
exposure to 100 ppm for 6—8 hours (Baelum et al. 1985; Dick et al. 1984; Rahill et al. 1996). Forty-three
solvent-exposed printers and 43 referents without history of exposure were exposed to 0 or 100 ppm
toluene for 6.5 hours (Baelum et al. 1985). Within each group (printers and referents), about half of
subjects were exposed to 100 ppm and the other half were exposed to normal air. Both printers and

referents exposed to 100 ppm had increased complaints of fatigue, sleepiness, and feelings of
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intoxication, compared with mean values for unexposed control subjects. Both exposed groups also
showed significant decreases in manual dexterity (peg-board task), visual perception (Landolt’s ring test),
and color discrimination, compared with control values. No consistent differences were observed in
neurobehavioral performance between exposed printers and exposed referents (Baclum et al. 1985). Six
volunteers exposed to 100 ppm toluene for 6 hours, followed by exercise, showed significantly lower
results on neuropsychological tests than volunteers exposed to clean air only (Rabhill et al. 1996).
Additionally, exposure to 100 ppm for 8 hours led to impaired performance on the visual-vigilance task,

but not choice-reaction time or pattern recognition, compared with unexposed controls (Dick et al. 1984).

Additionally, volunteers exposed to a peak exposure of 200 ppm showed impaired performance in a
visual attention task when an irrelevant distractor was given (compared with pre-exposure performance);
the peak exposure condition was obtained by slowly flooding the exposure chamber with toluene starting
at a concentration of 0 ppm until the peak exposure of 200 ppm was obtained at 25 minutes and held
constant for an additional 15 minutes (40-minute exposure) (Kobald et al. 2015). This visual attention
deficit was accompanied by a significant decrease in the N1 component of the event-related potential

(ERP) measured in the parieto-occipital lobe via EEG (Kobald et al. 2015).

Susceptible Populations. Individuals with multiple chemical sensitivity or toxic encephalopathy had
significantly higher self-reported scores of fatigue (headache, drowsiness, decreased concentration)
during exposure to increasing toluene concentrations over 2 hours (0 ppm [20 minutes], 3 ppm

[10 minutes], 6 ppm [10 minutes], 12 ppm [20 minutes], 24 ppm [10 minutes], 48 ppm [20 minutes], and
0 ppm [10 minutes]), compared with healthy referents (Orbaek et al. 1998; Osterberg et al. 2003). During
these studies, psychomotor tests were performed before exposure and during the 12- and 48-ppm
exposure periods. Both healthy referents and individuals with multiple chemical sensitivity showed
increased response time in the reaction-time test (visual stimuli) following exposure, compared with pre-
exposure scores (Osterberg et al. 2003). However, the increase was not dose-related in healthy
individuals, and exposure-related impairments were not observed in the reaction time-inhibition test (with
auditory alarm) or digit symbol test in either group (Osterberg et al. 2003). In a companion study, there
were no observed psychomotor impairments in exposed individuals with toxic encephalopathy or healthy
referents using the same protocol (Osterberg et al. 2000). A LOAEL of 48 ppm for the studies conducted
by Orbacek et al. (1998) and Osterberg et al. (2003) was determined for susceptible individuals based on
increased self-reported fatigue. A NOAEL could not be determined, as fatigue scores were not reported

at individual exposure concentrations.
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Little et al. (1999) reported that 20 subjects who were clinically sensitive to toluene showed statistically
significant impairments in immediate and delayed prose memory (number of items recalled decreased
31%), the digit symbol test (number of correct items decreased 11%), and the letter cancellation test
(percent correct decreased 5%) following a 15-minute exposure to 15 ppm toluene, compared with their
pre-exposure scores. A near-significant 15% increase in reaction time was also observed (p=0.06). No
significant differences between pre- and post-exposure values were found for focal length or the STROOP
tests. An acute inhalation MRL of 2 ppm was calculated as described in the footnote in Table 3-1 and
Appendix A, based on the minimally adverse LOAEL (15 ppm) for neurological effects in susceptible
populations from the study by Little et al. (1999).

The highest NOAEL values and all LOAEL values for each reliable controlled human exposure study for

neurological effects are recorded in Table 3-1 and plotted in Figure 3-1.

Occupational Exposure Human Studies

Overview. Several studies of workers repeatedly exposed predominantly to toluene in workplace air at
concentrations ranging from 35 to 200 ppm have found evidence for increased incidence of self-reported
neurological symptoms (Guzelian et al. 1988; Matsushita et al. 1975; Orbaek and Nise 1989; Ukai et al.
1993; Yin et al. 1987); performance deficits in neurobehavioral tests (Boey et al. 1997; Eller et al. 1999;
Foo et al. 1990; Kang et al. 2005; Matsushita et al. 1975; Orbaek and Nise 1989); hearing loss (Morata et
al. 1997); changes in auditory-evoked potentials and/or VEPs (Abbate et al. 1993; Vrca et al. 1995, 1996,
1997a, 1997b), and color vision loss (Campagna et al. 2001; Cavalleri et al. 2000; Zavalic et al. 1998a,
1998b, 1998c). Several occupational studies identify NOAELS for these effects in the range of 20—

187 ppm toluene (Deschamps et al. 2001; Gericke et al. 2001; Kang et al. 2005; Nakatsuka et al. 1992;
Neubert et al. 2001; Schéper et al. 2003, 2004, 2008; Seeber et al. 2004, 2005; Zupanic et al. 2002). A
series of studies investigating a number of neurological end points in German rotogravure printers support
a NOAEL of 45 ppm (Schéper et al. 2003, 2004, 2008; Seeber et al. 2004, 2005; Zupanic et al. 2002), and
served as the basis for the chronic-duration inhalation MRL of 1 ppm for toluene (see footnote of

Table 3-1, Section 2.3 and Appendix A).

Neurobehavioral Effects and Self-Reported Neurological Symptoms. The majority of studies show that
workers (e.g., rotogravure printers) with long-term occupational exposure to toluene at concentrations
<50 ppm did not report increased neurological symptoms or show impaired overall performance on

neuropsychological or psychomotor tests (Eller et al. 1999; Gericke et al. 2001; Kang et al. 2005; Neubert
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et al. 2001; Seeber et al. 2004, 2005; Zupanic et al. 2002). One study of 89 rotogravure and offset
printers exposed to toluene for an average of 14 years reported a statistically significant correlation
between current exposure levels (0—27 ppm) and impaired performance for the digit span memory test
after adjustment for sex, age, synonym score, history of central nervous system diseases, alcohol
consumption, psycho-active drug consumption in the last day, concentration in performing tests, and
computer experiments (Chouaniére et al. 2002). However, no significant association was observed
between current exposure levels and scores for three other memory tasks (associate learning, associate
recall, pattern memory), simple reaction time tests, symbol digit substitution tests, or self-reported
neurotoxic symptoms. Using work history and historical exposure levels (0—179 ppm), a cumulative
exposure index for toluene exposure was calculated for each individual (0-2,353 ppm-years [mean

392 ppm-years]). There were no significant correlations between cumulative exposure indices and
performance on any psychomotor task or self-reported neurotoxic symptoms (Chouaniére et al.

2002). Since current exposure levels were only correlated with 1/6 neurobehavioral measures, and there
were no correlations between cumulative exposure indices and performance in any of the tests, 27 ppm is

considered an occupational NOAEL for neurological effects.

In contrast, the majority of studies with average exposure estimates in the range of 70—100 ppm reported
subtle, but statistically significant, performance deficits in neurobehavioral and psychomotor tests (Boey
et al. 1997; Eller et al. 1999; Foo et al. 1990; Kang et al. 2005). Twenty workers from oil refinery,
gravure printing, and rubber boat manufacturing exposed to 70—-80 ppm toluene had significant
impairments on the finger tapping and selective attention tests and nonsignificant impairments in the digit
span backward test, compared with 21 referent workers with exposure <10 ppm (Kang et al. 2005).
However, 30 workers exposed to 10-30 ppm toluene did not differ from the referent group (Kang et al.
2005). Based on these findings, NOAEL and LOAEL levels were estimated at 20 and 75 ppm,
respectively. Abnormal tendon reflexes, decreased grasping power and agility of fingers, and generalized
weakness were significantly decreased in 38 female shoemakers who were exposed to toluene
concentrations that varied from 65 ppm (15-100 ppm) in winter to 100 ppm (10200 ppm) in summer for
an average of 40 months, compared with 16 controls (Matsushita et al. 1975). The LOAEL for
neurological effects is estimated at 83 ppm (the average between summer and winter exposures). A
strong correlation between impaired neurobehavioral performance and toluene exposure was seen in

30 female workers exposed to 88 ppm toluene, compared with 30 workers in the same facility exposed to
only 13 ppm (Foo et al. 1990). The higher exposure group received poorer test scores in tests of visual
retention, visual reproduction, trail making, grooved peg board, digit span, and digit symbol, but not on

tests of simple reaction time and finger tapping. Another group of 29 exposed workers in Singapore
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(average TWA toluene exposure of 90.9 ppm) showed performance deficits on eight neurobehavioral
tests, compared with a control group (average TWA exposure of 12.2 ppm). The exposed group showed
significantly impaired verbal and nonverbal memory, compared with controls, as measured by the digit
span and visual reproduction tests (Boey et al. 1997). Similarly, statistically significant impairments in
tests for visuospatial function, number learning, and word recognition were observed in 49 rotogravure
workers exposed to <20 ppm for 12 years plus >100 ppm for 4-27 years, compared with 19 referents
(Eller et al. 1999). Thirty workers in the same plant only exposed to <20 ppm for 1-12 years did not
differ from the referent group. Reported exposure level information was inadequate to determine

NOAEL/LOAEL levels.

Increased self-reporting of neurological symptoms has also been associated with occupational toluene
exposure at concentrations >40 ppm (Guzelian et al. 1988; Orbaek and Nise 1989; Ukai et al. 1993; Yin et
al. 1997). Forty-four men and 57 women exposed to TWA concentrations of 46 and 41 ppm toluene,
respectively, during shoemaking, printing, and audio equipment production had increased complaints of
headaches, dizziness, and sleep difficulties, compared with 127 control subjects (Yin et al. 1987).
Increased subjective complaints of neurological symptoms both during and after work was reported in a
group of 452 workers exposed predominantly to toluene (geometric mean 24.7 ppm) compared with

517 unexposed referents (Ukai et al. 1993). Statistically (p<<0.01) increased complaints during work
included headache and floating sensation, and statistically increased complaints regarding symptoms
outside work over the past 3 months included inability to concentrate, hearing loss, speech difficulties,
anosmia, and reduced strength. When exposed workers were analyzed by toluene exposure levels (1-20,
21-50, 51-100, and >100 ppm), workers exposed to >100 and >50 ppm demonstrated significantly
increased subjective complaints during and after work, respectively, compared with workers exposed to
1-20 ppm (Ukai et al. 1993). No increase in complaints was observed between the groups exposed to 1—
20 and 21-50 ppm. The NOAEL and LOAEL values for increased self-reported neurological symptoms
were determined to be 36 and 75 ppm for this assessment, based on the midpoints of the 21-50 and 51—
100 ppm group (Ukai et al. 1993). Workers in a printing factory (exposed to <200 ppm toluene) returning
to work after a 4-day vacation reported a feeling of mild intoxication to which they became tolerant

within 1 or 2 days (Guzelian et al. 1988).

Complaints of fatigue, recent short-term memory problems, concentration difficulties, and mood lability
were significantly (p<0.05) increased in 30 rotogravure printers exposed to 11.6-453 ppm toluene for 4—
43 years in two plants; taking the midpoints in the ranges of concentration estimates, a representative

exposure concentration of 140 ppm was determined (Orbaek and Nise 1989). However, no significant
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impairments were found between printers and controls in a battery of psychometric tests. In a 20-year
follow-up of 12 printers and 19 controls from the cohort, there was no longer any significant (p>0.05)
differences in incidences of reported subjective neurological symptoms (Nordling Nilson et al. 2010). In
follow-up psychometric testing, the general performance deteriorated in 10/11 tests measured in both
groups, compared with the initial assessments. In two measures (reasoning and associative learning), the
deterioration in the exposed group was significantly greater than the referents. When the results of the
20-year follow-up were compared between the groups, the exposed group performed significantly worse
on 2/11 tests (verbal memory and sustained attention). Taken together, these two studies indicate a
LOAEL of 140 ppm for increased incidence of self-reported neurological symptoms in the initial
assessment and statistically significant performance deficits on neurobehavioral tests during the 20-year

follow-up study.

Consistent with the data presented above, a meta-analysis of the findings from studies of workers
predominantly exposed to toluene concluded that occupational toluene exposure has a negative impact on
neurobehavior at exposure concentrations >89 ppm (Meyer-Baron 2005). However, one study included
in the meta-analysis reported no alterations in subjective neurological complaints or performance in
neurobehavioral tests in 26 printer factory workers, 10 machine factory workers, and 36 laboratory
workers who were exposed exclusively to toluene for at least 5 years (average 19.9 years), compared with
61 unexposed workers (Deschamps et al. 2001). Toluene air concentrations, measured by personal air
monitoring over an entire work-shift, ranged from 9 to 83 ppm in the factories and from 184 to 467 ppm
in the laboratories; however, the two groups were combined for analysis. Since neurological evaluations
were conducted after 2 days without exposure (toluene in expired air <0.3 ppm), the lack of observed
effects may indicate that impaired neurological effects do not persist after the solvent is eliminated from
the body. Since the exposed groups were analyzed together, the NOAEL for this assessment is
determined to be the average of the midpoints of the exposed ranges (midpoint factory, 46 ppm; midpoint

laboratory, 325.5 ppm; average, 186 ppm).

A number of studies of humans chronically exposed to mixtures of solvents containing toluene provide
supporting evidence for toluene-mediated general neurological and neurobehavioral effects, but
concurrent exposure to other solvents limits the conclusions that can be drawn from the results. Impaired
performance on multiple tasks measuring visual intelligence, cognition, memory, and perception were
observed in 100 car painters exposed to mixed solvents including toluene, xylene, and various aliphatic
hydrocarbons, alcohols, esters, ketones, and terpenes for 1-40 years, compared with 101 unexposed

railway workers (Hanninen et al. 1976). In a group of 325 paint factory workers exposed to benzene,



TOLUENE 140

3. HEALTH EFFECTS

toluene, xylene, n-hexane, methyl iso-butyl ketone, n-butyl acetate, and acetone for an average of 5 years,
reduced ability in pattern comparison and memory tasks was correlated with combined solvent exposure
(Tsai et al. 1997). A significant reduction in the Santa Ana dexterity test and a nonsignificant reduction in
visual retention were observed in 40 female shoemakers exposed to toluene, methyl ethyl ketone,
n-hexane, cyclohexane, dichloroethylene, trichloroethylene, benzene, and xylene, compared with

28 unexposed referents (Lee et al. 1998a). Self-reported neurological symptoms (headache, sweating,
palpitation, lethargy, fatigue, nausea, vomiting, etc.) were increased in 92 paint manufacturers from two
factories in eastern Thailand exposed to xylene (0.1-13.1 ppm) and toluene (0.5—48.7 ppm), compared
with a referent group of 100 frozen food factory workers (Thetkathuek et al. 2015). Self-reported
neurological symptoms were also increased in lacquer-ware manufacturers exposed to toluene, butyl-
acetate, and ethyl-acetate, compared with nine unexposed referents (Tanaka et al. 2003). Similarly,
increased self-reported neurological symptoms were significantly associated with a “solvent summation
index” in 637 printers exposed to one or more of the following solvents: toluene (0-90.9 ppm), n-hexane
(0.12-94.5 ppm), benzene (0—8.8 ppm), and isopropyl alcohol (0—374 ppm), compared with

125 unexposed referents (Yu et al. 2004). However, self-reported neurological symptoms in a furniture
factory were not increased in painters/varnishers exposed to toluene, benzene, and xylene compared to
unexposed referents (Mandiracioglu et al. 2011). A case-study of a worker exposed to paint thinner
(containing 60% toluene; other solvents present included xylene, ethyl acetate, and butyl acetate) for

5 years in an unventilated workspace reports chronic headache, encephalitis, and white matter lesions;
however, no neurological deficits were observed during a clinical exam (Kobayashi 2014). Another
neurological effect reported with occupational mixed solvent exposure is increased postural sway in U.S.

Air Force workers exposed to jet fuel (mean cumulative exposure 23.8 ppm toluene) (Smith et al. 1997).

Auditory System Effects

Overview. The limited number of occupational studies assessing hearing loss suggest that effects may
occur at exposure concentrations >50 ppm, consistent with findings for other neurological end points.
One occupational study indicated that exposure to an average of 122 ppm toluene may lead to hearing
deficits (Morata et al. 1997), and altered brainstem auditory-evoked potential (BAEP) have also been
reported following occupational exposure to 50-100 ppm (Abbate et al. 1993; Vrca et al. 1996, 1997a).
However, no evidence for hearing loss was found in workers exposed to 45 ppm (Schéper et al. 2003,
2008). Hearing loss produced by toluene exposure may not be due solely to neurological damage, as
animal studies indicate that solvent exposure damaged the OHCs in the cochlea that are responsible for

amplifying incoming sound waves prior to signal transduction (Campo et al. 1997, 1998; Johnson and



TOLUENE 141

3. HEALTH EFFECTS

Canlon 1994; Lataye and Campo 1997; Lataye et al. 1999; Waniusiow et al. 2008). However, a battery of
audiological tests performed for a case-series report indicated that hearing loss observed in seven workers

exposed to toluene and/or xylene was due to retrocochlear or central abnormalities, rather than cochlear

damage (Gopal 2008).

Hearing Loss. In a cross-sectional examination of 124 Brazilian workers exposed to various levels of
noise and a variety of organic solvents, including toluene at TWA concentrations ranging from 0.037 to
244 ppm, (midpoint=122 ppm), 49% of workers experienced hearing loss (Morata et al. 1997). Toluene
exposure (and exposure to a number of other solvents including ethanol and ethyl acetate) was estimated
by personal monitoring and measurement of hippuric acid in urine samples. Confidence in the study is
limited because of exposure to multiple solvents and possible confounding from noise exposure.
However, logistic regression analysis showed hippuric acid concentration to be significantly associated
with hearing loss and the OR estimates for hearing loss were 1.76 times greater for each gram of hippuric

acid per gram creatinine (95% CI 1.00-2.98).

Schéper et al. (2003, 2008) found no evidence of hearing loss in a longitudinal 5-year study in
rotogravure printers exposed to TWA levels of 45 ppm (n=181), compared with a low-exposure group of
end-process workers exposed to TWA levels of 10 ppm (n=152). Both groups had average noise
exposure levels of 82 dB(A). Additionally, a stepwise regression analysis of a subgroup of 80 workers
with toluene exposure ranging from 1 to 69 ppm for 3—38 years did not find a correlation between hearing
loss and toluene exposure levels, urinary hippuric acid concentration, or length of employment (Schiper

et al. 2003, 2008).

Multiple studies of humans chronically exposed to mixtures of solvents containing toluene provide
supporting evidence for toluene-mediated hearing loss, but concurrent exposure to other solvents limits
the conclusions that can be drawn about toluene toxicity. Reduced upper limit of hearing was observed in
workers currently exposed to styrene, toluene, and methanol for at least 5 years during the production of
plastic buttons or bathtubs (Morioka et al. 1999). In a large study of 1,319 aluminum workers,
multivariate analysis identified exposure to solvents (toluene, xylene, and methyl ethyl ketone) as a risk
factor for high-frequency hearing loss (Rabinowitz et al. 2008). High-frequency hearing loss was also
associated with cumulative total solvent exposure in paint and varnish workers exposed to ethylbenzene,
xylene, trimethylbenzene, and toluene (Sulkowski et al. 2002). Similarly, paint and lacquer workers
exposed to solvent mixtures including toluene had increased incidences of hearing loss, compared to

unexposed controls (Juarez-Pérez et al. 2014; Zamyslowska-Szmythke et al. 2011). Workers from
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various industries exposed to a mixture of n-hexane and toluene and noise demonstrated increased mean
hearing thresholds, compared with workers exposed to noise-only and unexposed referents (Sliwinska-
Kowalska et al. 2005). Further analysis showed that workers exposed to the mixture of n-hexane and
toluene and noise had a 5.3-fold increased risk of developing hearing loss (single hearing threshold in
either ear exceeding 25 dB HL) compared with unexposed referents, after adjusting for age, gender, and
noise exposure. A group of workers exposed to mixed solvents (white spirits, thinner, toluene, and
xylene) who were admitted to the hospital due to suspicion of solvent-induced chronic toxic
encephalopathy had reduced scores in tests of distorted speech and cortical response audiometry

compared to unexposed controls (Niklasson et al. 1998).

BAEPs. Studies reporting altered BAEP following occupational exposure provide supporting evidence
that toluene exposure may lead to hearing loss. Occupational exposure to an average of 97 ppm toluene
for 12—14 years had an apparent effect on hearing in 40 rotogravure workers when BAEP results were
compared to a group of 40 workers who were of comparable age but were not exposed to toluene (Abbate
et al. 1993). Workers were carefully screened to eliminate slight hearing abnormalities or exposure to
other chemicals. Two series of stimuli were used, one with 11 repetitions/second and one with

90 repetitions/second. In both cases the intensity was 80 dB/nHL. Mean latencies were significantly
higher for the exposed group than the control group for each BAEP wave evaluated (I, III, and V).
Discernment mean values for the exposed and control groups were distributed homogeneously with very
little overlap of exposed and control responses for both the 11-repetition and 90-repetition cycles. Wave |
showed the most pronounced increase in latency. According to the authors, the effects on Wave I could
be due to either a change in the membrane of the peripheral receptor, a modification of the structure of the

junction, or a change in the stimulus transduction mechanism.

In another study, BAEPs in 49 printers exposed to toluene for an average 20 years were found to be
affected, with a significant decrease in all wave amplitudes and a significant increase in all wave
latencies, compared with 59 unexposed referents (Vrca et al. 1996). Average toluene blood levels in
printers and controls were 0.036 and 0.00096 mg/L, respectively. Based on blood levels, companion
studies estimated averaged toluene exposure levels to be between 40 and 60 ppm (Vrca et al. 1995,
1997a). In the 49 exposed printers, increased wave latencies were significantly correlated with increased

duration of exposure, except for the P2 wave (Vrca et al. 1997a).

Additionally, BAEPs in 77 paint factory workers exposed to a mixture of 14 solvents (including toluene)

for an average of 10 years were found to be affected, with differences observed between right and left ear
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mean latencies in waves I, III, and V and intervals I-V, I-11I, and I1I-V, compared with 84 unexposed
referents (Juarez-Pérez et al. 2014). Multiple linear regression models for waves and interpeak interval
latencies for both ears showed a significant increase in latencies in the exposed group. The TWA median
toluene exposure was 3.5 ppm and industrial noise was <85 dBA; however, concurrent exposure to other

solvents limits the conclusions that can be drawn about toluene toxicity from this study.

Visual System Effects

Overview. Occupational studies indicate that long-term exposure to toluene may result in color vision
loss (Campagna et al. 2001; Cavalleri et al. 2000; Muttray et al. 1997; Zavalic et al. 1998a, 1998b, 1998c)
and altered VEPs (Vrca et al. 1995, 1997a, 1997b). However, it is not clear whether the impairment of
color vision produced by toluene exposure is due solely to neurological damage or also involves damage
to other parts of the eye. Toluene exposure causes eye irritation in humans (Andersen et al. 1983; Baelum
1990; Carpenter et al. 1944; Meulenbelt et al. 1990) and animals (Ono et al. 1996, 1999), but no studies

examining the eyes for structural damage following chronic toluene exposure were located.

Color Vision. Multiple studies indicate that long-term occupational exposure to toluene can cause color
vision loss. The color confusion index (CCI) was statistically significantly increased by 14% in

32 printers exposed to geometric mean toluene concentrations of 156 ppm, compared with 83 unexposed
controls on Monday morning prior to their work shift (Zavalic et al. 1998a). The CCI in 41 shoemakers
exposed to geometric mean toluene concentrations of 35 ppm was not significantly elevated when
compared with controls. When alcohol consumers were excluded, the CCI in 27 shoemakers and

10 printers was significantly increased by 4 and 11%, respectively, compared with 36 controls. When
adjusted for age and alcohol consumption, CCIs were significantly higher in both shoemakers and printers
(adjusted mean CCI values were not reported). Individual adjusted CCls were significantly correlated
with individual exposure estimates (air, blood, or urine) in printers, but not shoemakers. Further analysis
of color vision loss in these groups of workers demonstrated that total dychromatopsia (combined
incidence of blue-yellow and red-green color confusion [dyschromatopsia type II] and just blue-yellow
color confusion [dyschromatopsia III]) was significantly increased in printers, but not shoemakers,
compared with unexposed workers, (Zavalic et al. 1998c). Dyschromatopsia type I (red-green color
confusion only) was not observed in any exposed or unexposed workers. Taken together, these studies
indicate a clear LOAEL of 156 ppm for color vision loss in printers, based on increased CCls
significantly associated with individual estimates of toluene exposure and increased prevalence of

dyschromatopsia. A NOAEL of 35 ppm was identified, as it is unclear if the statistically significant
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findings for increased CCI in the small sample of non-alcohol consuming workers or adjusted CCls in all
workers represents an adverse effect, especially since the magnitude of change was small and individual

CClIs in this group were not associated with toluene exposure estimates in the air, blood, or urine.

Statistically significant increases in color confusion and total confusion indices were also reported in
33 toluene-exposed rubber workers, compared with 16 unexposed controls of similar age (Cavalleri et al.
2000). The indices were positively correlated with cumulative toluene exposure indices calculated from

urinary toluene levels and duration of employment; however, air concentration levels were not reported.

Additional studies indicate that observed color vision impairments result from chronic, rather than acute,
exposure. Color vision was assessed on Monday and Wednesday mornings in 45 male printers exposed
to mean concentrations of ~120 ppm toluene (Zavalic et al. 1998b). Compared with unexposed controls,
printers demonstrated a statistically significant increase in CCI, but results did not differ between
examinations on Monday and Wednesday. Similarly, in 59 male rotogravure workers occupationally
exposed to unspecified levels of toluene for periods of 1 month to 36 years (mean of 10 years), results of
color vision testing did not differ between the beginning and the end of the workweek (Muttray et al.
1995). A second study compared color vision in eight printers (occupationally exposed to toluene) and
eight workers previously unexposed to toluene, before and after cleaning a print machine with toluene
(Muttray et al. 1999). The task took 28—41 minutes and involved exposure to 300-362 ppm toluene
(1,115-1,358 mg/m*). No impairment in color vision was recorded for either group. However, a
comparison of the precleaning performance of the printers with that of a group of matched controls
showed a nonsignificant decrease in color vision for the printers, which may indicate a chronic effect of

toluene exposure on color vision (Muttray et al. 1999).

In contrast, no alterations were observed in red/green or blue/yellow color vision in 74 workers who were
exposed to solvents (primarily [>90%] toluene: 46 ppm geometric mean), compared with 120 age-
matched controls from clerical sections of the same factories (Nakatsuka et al. 1992). Likewise, a 5-year
longitudinal study in 333 rotogravure workers exposed to “high” or “low” TWA toluene levels of 43 or

9 ppm, respectively, did not find an increase in CCI associated with toluene exposure levels or duration
using multiple regression analysis (Schéper et al. 2004). The analysis was adjusted for exposure level and

duration, age, eye (right/left), occupational qualification, and examination year.

Color vision impairment has also been reported in humans chronically exposed to mixtures of solvents

containing toluene, but concurrent exposure to other solvents limits the conclusions that can be drawn
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concerning toluene toxicity in these particular studies. Campagna et al. (2001) reported statistically
significant increased incidence of dyschromatopsia and increased CCI in 72 printers (high-exposure) and
34 non-printers (ambient exposure) in a French photogravure plant for an average of 18—19 years,
compared with 19 unexposed bookbinding workers of similar age from the same town. Geometric means
of current toluene exposure levels, past cumulative toluene exposure, and past cumulative hydrocarbon
exposure (e.g., toluene, xylene) were 136 mg/m?® (36 ppm), 1,299 mg/m® x years, and 1,793 mg/m? x
years in printers and 32 mg/m’ (8.5 ppm), 299 mg/m’ x years, and 534 mg/m® x years in non-printers,
respectively. After adjusting for age and alcohol consumption, CCIs were significantly correlated
(p<0.05) with current toluene exposure, past cumulative toluene exposure, and past cumulative
hydrocarbon exposure (Campagna et al. 2001). Therefore, the significant effects observed may not be
attributable specifically to toluene exposure, especially in the ambient-exposure group in which toluene
exposure only accounted for 56% of past cumulative hydrocarbon exposure. Similarly, workers exposed
to mixed solvents (including toluene, xylene, ethyl benzene, propyl benzene, ethyl toluene, methyl ethyl
ketone, methyl isobutyl ketone, and perchloroethylene) during a spraying process showed a significant
impairment of color vision with errors of the blue-yellow type, compared with unexposed referents

similar in age, consumption of alcohol, and smoking habits (Muttray et al. 1997).

VEPs. Occupational exposure to toluene may also affect VEPs. A series of studies evaluated VEPs
(P300, N75, N145, and P100 waves) in printers occupationally exposed to average concentrations of

50 ppm toluene for an average of 20 years and unexposed controls (Vrca et al. 1995, 1997b). There was a
significant increase in the number of exposed individuals displaying reduced amplitude of P300R waves
and prolonged latency of the accompanying spontaneous wave P300F (Vrca et al. 1997b). The
amplitudes of the N75, P100, and N145 waves (Vrca et al. 1995) and the latency of the P100 wave were
significantly increased in exposed subjects compared with controls (Vrca et al. 1995). In the exposed

printers, wave amplitudes decreased significantly with the duration of exposure (Vrca et al. 1997a).

Visual Perception. Toluene exposure may also alter visual perception; however, the available evidence is
limited to one study. The frequency at which individual flickers of light appeared to be a steady light
source (flicker fusion frequency) was assessed in a large cohort of 1,290 printers occupationally exposed
to toluene for an undefined number of years (Neubert et al. 2001). In a subgroup of 47 workers exposed
to toluene concentrations of 70-80 ppm, 4 and 5% decreases in flicker fusion frequency before and after
their 6-hour work shift, respectively, were found, compared with 200 unexposed referents. This small
decrease was only statistically significant after the acute work-shift exposure. There was no change in

flicker fusion frequency in the remaining workers exposed to 4—70 ppm, compared with unexposed
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referents. From these findings, NOAEL and LOAEL values for impaired visual perception were
estimated at 33 and 75 ppm, respectively, based on the midpoint of the exposure ranges for the high- and

low-exposure groups.

Nerve Conduction Impairment. There is limited evidence that occupational exposure to toluene may
alter nerve conduction in the peripheral and autonomic nervous systems. Murata et al. (1993) compared
cardiac autonomic function in printers exposed to 83 ppm airborne toluene for 1-36 years with matched
controls. Autonomic function was evaluated from measurements of heart rate, the coefficient of variation
in electrocardiographic R-R intervals, the distribution of nerve conduction velocities, and the maximal
motor and sensory nerve conduction velocities in the median nerve. Some printers reported subjective
symptoms such as fatigue, headache, and irritation. Heart rate was not significantly different in exposed
individuals and controls. However, there were statistically significant reductions in electrocardiographic
R-R intervals, indicating possible dysfunction of the autonomic nervous system. There was a significant
decrease in the motor and sensory conduction velocity in the palm segment of the median nerve in
toluene-exposed workers, but there was no significant difference in the distribution of the nerve

conductance velocities between exposed and control subjects (Murata et al. 1993).

In support, altered nerve conduction has been observed in workers exposed to solvent mixtures.
Compared with unexposed referents, bone glue factory workers exposed to an undefined solvent mixture
had an increased incidence of paresthesia and abnormal electromyography readings (Al-Batanony et al.
2012), and paint and lacquer workers exposed to white spirit, toluene, butyl acetate, ethyl acetate, and

xylene had altered peripheral nerve conduction (Jovanovic et al. 2004).

The highest NOAEL values and all LOAEL values for each reliable human occupational exposure for
neurological effects following exposure predominantly to toluene are recorded in Table 3-1 and plotted in
Figure 3-1. Supporting studies reporting neurological effects following exposures to solvent mixtures are

not included in Table 3-1.

Accidental and Intentional High-Dose Human Exposure

Humans exposed to high levels of toluene as a result of solvent abuse or industrial accidents have
displayed serious central nervous system dysfunction. Accurate exposure data are not available for these
individuals, but the concentrations inhaled by chronic abusers have been estimated to range from 4,000 to

12,000 ppm (Gospe et al. 1994). In some cases, the degree of central nervous system depression was
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sufficient to result in death. Prolonged abuse has been reported to cause permanent damage resulting in
abnormal electroencephalogram (EEG) activity, ataxia, tremors, muscle weakness, temporal lobe
epilepsy, paranoid psychosis, personality changes, hallucinations, nystagmus (involuntary eye
movement), altered brain chemistry and impaired speech, intelligence, hearing, and vision (Aydin et al.
2003; Byrne et al. 1991; Camarra-Lemarroy et al. 2015; Capron and Logan 2009; Devathasan et al. 1984;
Gupta et al. 2011; Hunnewell and Miller 1998; King et al. 1981; Kiyokawa et al. 1999; Maas et al. 1991;
Maruff et al. 1998; Meulenbelt et al. 1990; Miyagi et al. 1999; Papageorgiou et al. 2009; Peralta and
Chang 2012; Poblano et al. 1996; Ryu et al. 1998; Suzuki et al. 1983; Uchino et al. 2002).

Results from case studies of toluene abusers suggest that some of the neurological symptoms associated
with chronic toluene abuse may be the result of permanent structural changes in the brain. Evaluation of
chronic toluene abusers by magnetic resonance imaging (MRI) and single photon emission computed
tomography (SPECT) has shown an increase in the white matter signal, a loss of gray and white matter
differentiation, and decreased perfusion in the cerebral cortex, basal ganglia, and thalami (Aydin et al.
2002, 2003; Caldemeyer et al. 1996; Filley et al. 1990; Ikeda and Tsukagoshi 1990; Kamran and Bakshi
1998; Kucuk et al. 2000; Nomura et al. 2016; Rosenberg et al. 1988a, 2002; Ryu et al. 1998; Uchino et al.
2002; Yamanouchi et al. 1995). Cerebral, cerebellar, and brainstem atrophy were also present (Deleu and
Hanssens 2000; Ryu et al. 1998; Gupta et al. 2011; Kamran and Bakshi 1998; Papageorgiou et al. 2009;
Rosenberg et al. 1988b). Correlations between clinical signs of neurological impairment and damage
visible in MRI images have also been reported (Caldemeyer et al. 1996; Hormes et al. 1986; Kiyokawa et
al. 1999; Rosenberg et al. 1988b, 2002; Uchino et al. 2002). Abnormalities in MRI and brainstem
auditory-evoked response (BAER) results were still present in chronic abusers who had refrained from

toluene exposure for two to nine months (Rosenberg et al. 1988b).
Animal Studies

Neurobehavior

Overview. Numerous studies have evaluated neurobehavior in animals following toluene exposure using
tests to evaluate locomotor activity, exploratory behavior, learning and memory, and anxiety-like
behaviors. Acute-duration studies consistently demonstrated increased, followed by decreased, locomotor
activity at exposure levels >500 ppm, cognitive deficits have been reported at concentrations as low as
125 ppm, and anti-anxiety-like effects at higher concentrations (=2,000 ppm). In contrast, studies of
rodents exposed for intermediate durations to concentrations as high as 1,000 ppm have not found strong

and consistent evidence for exposure-related changes in neurobehavioral end points.
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Acute-Duration Studies. Most acute exposure studies have reported a biphasic response with low-
concentration stimulation and high-concentration depression of locomotor activity. Single or repeated
exposure to toluene exposure for 30—72 minutes at concentrations of 500—3,000 ppm produced increased
locomotor activity in mice; however, initial increases in locomotion were followed by a decrease in
activity at concentrations of 3,000—10,000 ppm or repeated exposure to lower concentrations (Bowen and
Balster 1998; Bowen et al. 2010; Bushnell et al. 1985; Conti et al. 2012; Kim et al. 1998; Lopez-
Rubalcava and Cruz 2000; Tomaszycki et al. 2013; Wood and Colotla 1990). In adolescent and young
adult rats exposed to 0, 1,000, 2,000, 4,000, or 6,000 ppm for 30 minutes, increased locomotor activity
compared with controls was found only at concentrations >4,000 ppm, although exploratory behavior was
significantly reduced in the 6,000 ppm group (Huerta-Rivas et al. 2012). Exploratory behavior during the
conditioned defensive burying task was increased in mice exposed to 4,000 or 6,000 ppm, but not 500—

2,000 ppm (Paez-Martinez et al. 2003).

In several animal studies, acute exposure to toluene also diminished cognitive ability, but the lowest
exposure levels required to impair learning and/or memory ranged from 125 to 4,000 ppm, depending
upon the species, task, and duration of exposure. Monkeys exposed to concentrations of 0, 100, 200, 500,
1,000, 2,000, 3,000, or 4,500 ppm toluene (head only) for 50 minutes on 2 days separated by 3 days
without exposure showed significantly increased response time and decreased accuracy on a test of
conditioned response to a reward stimulus for concentrations >2,000 ppm, compared with controls
(Taylor and Evans 1985). Exposure of rats to 125, 250, or 500 ppm toluene for 4 hours caused a decline
in lever-press shock avoidance performance 20 minutes after exposure, compared with pre-exposure
performance, but recovery was complete 2 hours later (Kishi et al. 1988). Exposure to >480 ppm toluene
for 4 hours decreased the ability of trained rats to perform a sequence of lever press actions associated
with a reward (milk) (Wood et al. 1983). Statistically significant impaired learning and memory in the
object recognition task and a decline in the conditioned step-through inhibition avoidance response were
found in adolescent and young adult rats exposed to 1,000, 2,000, 4,000, or 6,000 ppm for 30 minutes,
compared with unexposed controls (Huerta-Rivas et al. 2012). These effects were also present in
adolescent and young adult rats exposed to 6,000 ppm for 30 minutes 2 times/day for 10 days (lower
exposure levels were not evaluated). Similarly, impaired learning coupled with decreased anxiety-like
behavior during the conditioned defensive burying task were reported in mice exposed to 4,000 or

6,000 ppm for 30 minutes, compared with unexposed controls, but not in mice exposed to 500, 1,000, or

2,000 ppm (Paez-Martinez et al. 2003). Decreased anxiety was also observed during the elevated-plus
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maze in male mice exposed to >2,000 ppm for 30 minutes, compared with unexposed controls, but not in

mice exposed to 1,000 ppm (Bowen et al. 1996).

Intermediate-Duration studies. Studies of rodents exposed for intermediate durations to concentrations
as high as 1,000 ppm have not found strong and consistent evidence for exposure-related changes in
neurobehavioral end points. In rats exposed to 0, 10, 100, or 1,000 ppm 6 hours/day 5 days/week for

4 weeks, statistically significant decreased accuracy was observed in a signal detection task in 1,000-ppm
rats, but no exposure-related changes were found in motor activity, anxiety-like behavior, or acquisition
of a visual discrimination task or lever-press response at any exposure level (Beasley et al. 2012). In
contrast, rats similarly exposed for 13 weeks were delayed in their acquisition of the lever-press response
at 1,000 ppm, compared with unexposed controls, but no impairments were observed in a signal detection
task, motor activity, anxiety-like behavior, acquisition of a visual discrimination task, or fear conditioning
(Beasley et al. 2010). When rats exposed to 100—1,000 ppm toluene for 13 weeks were challenged with
acute exposures of 1,200-2,400 ppm toluene 33—42 weeks later, previous exposure did not alter
performance in the signal detection task (Beasely et al. 2010). In another study, prior exposure to 80 ppm
for 4 weeks (5 days/week, 6 hours/day) did not influence the performance of rats 2 weeks later in a lever-
press task following acute challenges to 20 daily “trigger” exposures of 10 ppm toluene for 1 hour
(Rogers et al. 1999). Trigger-exposed animals, with or without prior exposure, showed statistically
significant (p<0.05) increased lever presses and increased incorrect lever presses during training,
compared with unexposed rats, indicating that these effects are mediated by the acute 10-ppm triggers
rather than prior 80-ppm exposures. Similarly, no adverse effects were observed in spatial learning, open-
field activity, and/or passive or active avoidance tasks in mice exposed to 0 or 50 ppm for 6 weeks (Win-
Shwe et al. 2010c), mice exposed to 0, 9, or 90 ppm toluene for 4 weeks (Win-Shwe et al. 2010d), rats
exposed to 0, 25, 100, or 250 for 4 weeks (Wiaderna and Tomas 2002), rats exposed to 0 or 80 ppm for

4 weeks (von Euler et al. 2000), or young rats exposed to 0 or 600 ppm toluene for 50 days (Miyagawa et
al. 1995). No statistically significant changes in general locomotor activity were observed in rats exposed
to 40 ppm toluene for 16 weeks, compared with controls; however, there was a statistically significant
decrease in rearing behavior (Berenguer et al. 2003, 2004). Nose-poking exploratory behavior was
increased in rats exposed to 178, 300, or 560 ppm toluene for 3 weeks (2 times/week, 2 hours/day),

compared with their pre-exposure behavior (Wood and Cox 1995).
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Impaired Motor Coordination and Reflexes

Overview. Impaired motor coordination and decreased reflexes have been observed in animals following
acute- and intermediate-duration exposures to toluene; however, acute-duration studies are limited and

findings from intermediate-duration studies are inconsistent.

Acute-Duration Studies. Acute exposure in monkeys and rats to concentrations >3,000 ppm caused overt
signs of neurological motor impairments such as ataxia, tremors, and inability to walk (Mullin and
Krivanek 1982; Taylor and Evans 1985). Concentration-related impairments in motor coordination and
reflexes were observed in rats following a single 4-hour exposure to concentrations of 0, 810, 1,660,
3,100, or 6,250 ppm, resulting in decreased lift and pinna reflexes and impaired performance during
vertical bar placing and horizontal rod grasping (Mullin and Krivanek 1982). The impairment observed at
810 ppm was borderline, but the majority of rats in the 1,600 group failed reflex testing. Overt signs of
neurotoxicity, including ataxia, tremors, and inability to walk, were observed at >3,100 ppm (Mullin and
Krivanek 1982). A few rats failed reflex testing and demonstrated tremors in the 810 ppm group.
Impaired motor coordination on the rotarod was found in mice exposed to 6,000 ppm toluene for

30 minutes, compared with unexposed controls, but lower exposures (500—-4,000 ppm) did not change
motor coordination (Paez-Martinez et al. 2003). In another study, no exposure-related impairment of
rotarod test performance was reported for mice exposed to toluene at concentrations up to 8,000 ppm for

30 minutes (Cruz et al. 2001).

Rats exposed to 100 ppm for 4 hours or 3 hours/day for 5 days exhibited an altered opticokinetic
response, displaying slower and more irregular eye movements while tracking a moving object, compared
with pre-exposure values (Hogie et al. 2009). Following exposure, rats also demonstrated unsteady eye
positions at rest (nystagmus). These findings indicate potential disturbances in the vestibular and opto-

oculomotor systems, suggesting that the cerebellum may be a target site for toluene.

Intermediate-Duration Studies. Overt signs of neurological motor impairments, such as ataxia, tremors,
and inability to walk, were observed in rats, but not in mice, exposed to >2,500 ppm for 5-15 weeks,
compared with unexposed controls (API 1997; NTP 1990; von Oettingen et al. 1942). In rats exposed to
80 ppm for 4 weeks, impaired motor skills in beam walking were found, requiring a significantly wider
beam to maintain balance (von Euler et al. 2000). The study authors reported that the impairment was

predominantly due to improper placement of hindlimbs. In contrast, motor impairments in the tilting
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plane or rotarod test were not found in rats exposed to 1,000 ppm toluene for 8 hours/day, 7 days/week

for 13 weeks (Tahti et al. 1983).

Nociception. Toluene exposure can alter pain perception in animals; however, alterations in nociception
may be species-, concentration-, and duration-dependent. Mice exposed to toluene at S00—8,000 ppm for
30 minutes exhibited a dose-related increase in nociception in the hotplate test (Cruz et al. 2001; Paez-
Martinez et al. 2008). In both studies, mice exhibited decreased latencies for paw-licking that were
significantly shorter at 1,000 ppm, compared with unexposed controls. Cruz et al. (2001) also reported
statistically significant decreases in latencies for the antialgesic flexor reflex and escape responses at
2,000 and 6,000 ppm, respectively. In rats exposed to 0, 25, 100, or 250 ppm 6 hours/day, 5 days/week
for 4 weeks, increased escape behavior in the hot-plate test in the 100- and 250-ppm groups was
observed, which likely accounts for the observed increased paw-lick latencies (rather than decreased
nociception) (Wiaderna and Tomas 2002). A clearer demonstration of decreased nociception was found
in rats exposed to 6,000 ppm toluene for 30 minutes that required significantly increased shock intensity
to elicit flinch, jump, or vocalization responses, compared with unexposed controls (Huerta-Rivas et al.
2012). No change in nociception was observed at 1,000, 2,000, or 4,000 ppm, and this effect was not
observed in rats exposed to 6,000 ppm for 30 minutes, 2 times/day for 10 days (Huerta-Rivas et al. 2012).

Auditory System

Overview. Hearing loss in animals has been observed following acute- and intermediate-duration
exposure to toluene at concentrations in >250 ppm in guinea pigs (McWilliams et al. 2000) and

>1,000 ppm in rats (Johnson 1992; Johnson et al. 1988; Pryor et al. 1984b). Observed hearing loss may
not be solely due to neurological damage, as exposure to 500-2,000 ppm damages the outer hair cells
(OHCs) in the cochlea that are responsible for amplifying incoming sound waves prior to signal
transduction (Campo et al. 1997; McWilliams et al. 2000). This type of damage is referred to as

sensorineural hearing loss.

Hearing loss was examined in rats exposed to 0, 400, 700, or 1,000 ppm 14 hours/day for 16 weeks using
both behavioral and electrophysiological methods (Pryor et al. 1984b). Diminished auditory responses in
a conditioned pole-climb avoidance response (CAR) task using a 20-kHz tone and increased BAER
thresholds were measured in rats exposed to 1,000 ppm, compared with unexposed controls (Pryor et al.
1984b). Similarly, diminished auditory brainstem responses were measured in rats exposed to 1,000 ppm

toluene for 16 hours/day for 10 days or 2 weeks, compared with controls (Johnson 1992; Johnson et al.
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1988). The effects persisted at least 4-6 months post-exposure and were compounded by post-exposure
high noise levels. However, following shorter daily durations (6 hours/day), diminished brainstem
auditory responses or distortion product otoacoustic emissions (DPOAE) were only observed in rats
exposed to up to 1,500 ppm for 10 days when exposure was combined with wide-band or impulse noise
(92 dB SPL; peak level for impulse 130 dB), compared with unexposed and noise-only exposed groups
(Lund and Kristiansen 2008). Toluene exposure for 6 hours/day, 5 days/week for 90 days did not impair
hearing at levels up to 500 ppm, with or without noise exposure at 90 dB SPL (Lund and Kristiansen

2008).

Sensitivity to toluene-induced hearing loss may be species-specific. Guinea pigs may be more sensitive
than rats to toluene-induced hearing loss. Transient, dose-related impairments in mid- to high-frequency
hearing were observed in guinea pigs exposed to 250, 500, or 1,000 ppm toluene 8 hours/day for 5 days,
compared with controls, as measured by brainstem auditory responses or DPOAE (McWilliams et al.
2000). When guinea pigs in the 500 ppm group were exposed for an additional 3 weeks, hearing loss was
more pronounced (McWilliams et al. 2000). However, chinchillas may be less sensitive than rats. While
toluene led to decreased auditory evoked potentials in rats exposed to 2,000 ppm toluene for 10 days (8 or
12 hours/day), compared with unexposed controls, auditory evoked potentials were not altered in

similarly exposed chinchillas (Davis et al. 2002).

Toluene had a more pronounced effect on hearing loss in mice that had a genetic predisposition for early
onset spontaneous auditory degeneration than on mice that were predisposed to late onset moderate
hearing loss following exposure to 1,000 ppm toluene for 12 hours/day for 7 days (Li et al. 1992). Thus,

the severity of toluene-induced hearing loss appears to be influenced by genetic susceptibility.

Visual System. FEP responses were abnormal in rats exposed to single 30-minute exposures to 500—
16,000 ppm toluene (Rebert et al. 1989a, 1989b). This technique measures the electrical response of the
visual components of the nervous system to a high intensity flashing strobe light. Distortion of the FEP
waveform is indicative of impaired visual response to light. Similarly, F2 wave amplitudes of VEPs were
decreased 40—65% in rats exposed to 1,000-4,000 ppm toluene for 1-4 hours in a dose-related manner
(Boyes et al. 2007). Two hours after exposure ended, partial recovery was found in the 4,000-ppm group
but not in the 3,000 ppm group.

In a series of intermediate-duration experiments, Boyes et al. (2016) reported subtle, but persistent,

changes in visual function in rats exposed to 1,000 ppm toluene 6 hours/day, 5 days/week for 13 weeks,
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but not 4 weeks; no visual system effects were observed at <100 ppm. Specifically, significant decreases
were observed in the maximal b-wave amplitude induced by a scotopic flash, measured by
electroretinogram (ERG) at 5—6 weeks and 1 year after the 13-week exposure period (but not 2-3 weeks
after the 4-week exposure period). Reduction of the b-wave amplitude indicates altered firing patterns of
non-bipolar cells. No exposure-related effects were noted in the ultraviolet (UV) or green flicker data or
the photopic flash data from ERGs, and no exposure-related changes were observed in VEPs measured 2—
3 weeks after the 13-week exposure period (not measured in the 4-week study). Additionally, the density

of rod and M-cone photoreceptors were comparable between exposed and control animals.

Olfactory System. Decreased avoidance of a toluene-containing arm in a T-maze was observed in female
mice exposed following exposure to 1,000 ppm toluene 5 hours/day, 5 days/week for 4 weeks, compared
with pre-exposure measures (Jacquot et al. 2006). Decreased olfactory sensitivity continued for 2 weeks
following cessation of exposure. This behavior was accompanied by reversible olfactory inflammation
and decreased numbers of olfactory epithelial cells, perhaps indicating that olfactory sensitivity was
decreased by exposure to toluene (Jacquot et al. 2006). However, this could instead indicate tolerance to
toluene odor with repeat exposures and/or toluene-seeking behavior (see the section on Animal Studies

Modeling High-Concentration Solvent Abuse).

Sleep Patterns. Toluene exposure also changes sleep patterns in animals. Both single 4- or 8-hour
episodes of toluene exposure (900—4,000 ppm) and repeated exposures, 8 hours/day for 3 weeks (900 and
2,700 ppm), changed patterns of sleep and wakefulness in rats (Arito et al. 1988; Takeuchi and Hisanaga
1977). After the single exposures, there was a decrease in wakefulness and an increase in slow-wave
sleep; a prolonged sleep latency was apparent for the 2 days following exposure. Latency was defined as
the time interval between the end of the exposure period and the beginning of a particular phase of the
sleep cycle. Following the 3-week exposures, there was an increase in wakefulness during the dark
period on the 2 days after exposure and a decrease in slow wave sleep on the first day. Exposure to
concentrations of 100—-700 ppm for 2 hours increased the duration of the wake cycle and decreased both
rapid-eye movement and nonrapid eye movement sleep in a concentration-related fashion in young and

adult male rats (Ghosh et al. 1989, 1990).

Brain Weight, Volume, and Histology. Altered brain weight and volume have been reported in rats, but
not in mice, following intermediate-duration exposure to toluene. In rats exposed to 80 ppm 6 hours/day,
5 days/week for 4 weeks, the area of the cerebral cortex measured by MRI and Ds receptor

autoradiography was decreased significantly by 4 and 10%, respectively, compared with controls (von
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Euler et al. 2000). MRI analysis indicated that the main effect was in the parietal cortex, which was
significantly decreased in area by 6%. However, no change was observed in total brain weight or volume
(von Euler et al. 2000). Similarly, no change in total brain weight was reported in rats up to 320 ppm
using the same protocol (Hillefors-Berglund et al. 1995). In contrast, rats exposed continuously to

320 ppm for 30 days, both cerebrocortical and total brain weight were significantly decreased compared
with control by 4 and 8%, respectively (Kyrklund et al. 1987). There was also a decrease in the total
phospholipid content of the cerebral cortex accompanied by a small increase in phosphatidic acid levels.
These data suggest a breakdown of phospholipids resulting in a loss of gray matter (Kyrklund et al. 1987).
The mechanism of action for this effect is uncertain. Following exposure to toluene at 0, 100, 625, 1,250,
2,500, or 3,000 ppm 6.5 hours/day, 5 days/week, for 15 weeks, relative brain weights were increased
significantly in rats exposed to 2,500 or 3,000 ppm, compared with controls (NTP 1990). However, no
changes in brain weights were observed in mice similarly exposed to concentrations up to 2,500 ppm for
14 weeks or in rats or mice exposed by the same protocol to toluene at concentrations up to 1,200 ppm for
2 years (NTP 1990). The mechanism(s) underlying the apparent species difference in the intermediate-
duration NTP study is unknown. In a multigenerational study, no changes in brain weight were observed
in FO and F1 parental rats or F1 and F2 weanlings exposed to 100-2,000 ppm toluene for 95 days (pre-
mating and mating), gestation, and lactation (API 1985; Roberts et al. 2003). No gross or microscopic

brain tissue changes were observed in any of the mouse or rat studies described above.

GFAP Levels. Changes in brain levels of GFAP, a structural marker for astrocytes, have been found in
toluene-exposed rats. Rats exposed to 1,000 ppm toluene for 3 or 7 days exhibited a significant decrease
in GFAP levels in the thalamus (Little et al. 1998). Rats exposed to 100-3,000 ppm toluene 6 hours/day,
5 days/week for up to 42 days exhibited changes in the concentration of GFAP in the cerebellum,
hippocampus, and thalamus (API 1997). For the first week of exposure, GFAP concentration of exposed
animals was significantly increased in the cerebellum and hippocampus, and decreased in the thalamus
compared with unexposed controls (API 1997). After 21 days, the concentration of GFAP in the
hippocampus was significantly decreased in rats exposed to 1,000 ppm compared with controls, while at
42 days, rats exposed to 300 ppm had significantly higher concentrations of GFAP in the cerebellum
compared with controls, but rats exposed to 1,000 ppm did not (API 1997). In mice exposed to 500—
2,000 ppm for 8 hours, no significant alterations in c-Fos, c-Jun, or GFAP mRNA levels in the cerebrum

were found (Matsuoka et al. 1997).

Oxidative Stress Markers in Brain Tissue. Increased oxidative stress has been observed in the rat brain

following acute- or intermediate-duration inhalation exposure. Increased glutathione peroxidase activity
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and H>O,-induced chemiluminescence in cortical brain tissue were reported for rats exposed to 500 ppm
toluene for 4 hours/day, 5 days/week for 1 month, compared with controls, indicating toluene-induced
free radical processes (Burmistrov et al. 2001). These effects were not seen at 50 ppm. However, no
changes in free or total malondialdehyde levels, another marker of oxidative stress, were observed in rats
exposed to 1,000 ppm, 6 hours/day for 10 days, compared with controls (Chalansonnet et al. 2013).
Similarly, no significant changes in brain levels in markers of oxidative stress, including lipid peroxidase,
superoxide dismutase, or 4-hydroxy-nonenal, or total brain DNA levels of 8-OH-dG were observed in rats
exposed to 1,500 ppm, 4 hours/day for 7 days (Tokunaga et al. 2003). The biological adversity of these
findings are unclear, therefore NOAELs and LOAELSs for changes in brain oxidative stress markers are

not included in Table 3-1.

Brain Tissue Changes in Levels of Neurotransmitters, Synthesis, and Binding Sites

Overview. Changes in the levels of brain neurotransmitters and their precursors and metabolites have
been observed in rodents exposed by inhalation to toluene for acute and intermediate durations.
Alterations in neurotransmitter synthesis and binding have also been reported. Current mechanistic
understanding is inadequate to determine the biological adversity of the observed changes and findings

from these studies are not included in Table 3-1.

Following exposure to 1,000—4,000 ppm toluene for 20 minutes, dopamine (DA) levels were increased in
the cerebellum and striatum of rats, while norepinephrine (NE) and serotonin (5-HT) were significantly
increased in the cerebellum and cortex (Kim et al. 1998). Increased concentrations of DA in the striatum,
NE in the medulla and midbrain, and 5-HT in the cerebellum, medulla, and striatum were observed in rats
exposed to 1,000 ppm, but not 100 or 300 ppm, for 8 hours, compared with controls (Rea et al. 1984). In
other studies, increased levels of DA and noradrenaline were observed in several brain regions in rats
exposed to 80-3,000 ppm, 6 hours/day for 3—5 days (Andersson et al. 1980, 1983b); however, decreased
DA levels and rates of turnover were observed in several areas of the nucleus caudate in the brain of rats
exposed to 80 ppm toluene, 6 hours/day for 3 days (Fuxe et al. 1982). Altered DA turnover was also
reported in rats exposed to 40 ppm toluene for 16 weeks, compared with controls, as demonstrated by
significant localized increases in DA levels, as well as decreases in the levels of its metabolite
3,4-dihydroxyphenylacetic acid (DOPAC) and its precursor dihydroxyphenylalanine (DOPA) (Berenguer
et al. 2003, 2004). No statistically significant exposure-related changes were observed in the 5-HT
neurotransmitter system. Altered levels of noradrenaline and DA were observed in select brain areas of

male rats continuously exposed to 400 ppm toluene for 30 days, compared with controls (Ikeda et al.
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1986). The directionality and magnitude of change varied across brain regions, and no effects were
observed at 200 ppm. The biological adversity of region-specific neurotransmitter changes in the absence

of behavioral effects is unknown.

Several statistically significant changes in the activities of enzymes responsible for neurotransmitter
synthesis (glutamic acid decarboxylase, choline acetyltransferase, and aromatic amino acid
decarboxylase) in different areas of the brain were seen in male rats exposed to toluene at concentrations
of 50-1,000 ppm for 4 weeks or 500 ppm for 12 weeks (Bjornaes and Naalsund 1988). Concentration-
response trends were not apparent in the data and there were variant responses by different areas of the
brain. Exposure to 400 ppm toluene 7 hours/day for 10 days produced a statistically significant increase
in the total dehydrogenase activity in the brains of female mice (Courtney et al. 1986). Minimal, but
statistically significant, alterations in monoamine neurotransmitter synthesis (tyrosine and tryptophan
hydroxylase enzyme activities) were reported in the brainstem and hypothalamus of rats exposed to

40 ppm toluene 104 hours/week for 16 weeks, but not in other brain regions (Soulage et al. 2004). The
direction and magnitude of changes (17-44%) differed between brain regions and sexes. Due to the lack
of concentration-related effects and/or variability of the responses between brain regions and sexes,

NOAEL/LOAEL values for these studies could not be determined for this assessment.

Toluene exposure at 80 ppm for 4 weeks was found to affect DA D, agonist binding in the rat caudate-
putamen (Hillefors-Berglund et al. 1995; von Euler et al. 1993). Von Euler et al. (1994) also reported that
rats exposed to 80 ppm had increased serum prolactin levels, which could be related to a possible
interaction between toluene and the pituitary DA D; receptor since this receptor normally inhibits the
release of prolactin into serum. However, in another study, no significant exposure-related changes in
serum prolactin levels were reported with 4-week exposures to concentrations up to 320 ppm (Hillefors-
Berglund et al. 1995). There were also no changes in DA Dsreceptor binding 4 weeks after cessation of a
4-week exposure to 80 ppm toluene (von Euler et al. 2000). There is some evidence of changes in
glutamate and gamma amino butyric acid (GABA) binding in male rats exposed to toluene at
concentrations of 50—1,000 ppm for 4 weeks or 500 ppm for 12 weeks (Bjornaes and Naalsund 1988).
Binding increased in most of the brain areas studied, but decreased in some areas. Because of the

variability in response, the biological adversity of the observed changes cannot be determined.
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Gene Expression Changes in Brain Tissue

Overview. Numerous gene expression changes have been observed in brain tissue of rats and mice
following acute or intermediate inhalation exposure. Results of these studies vary greatly, and indicate
that gene expression changes are species-, strain-, dose-, duration-, and lifestage-dependent, and that
immune status may affect gene expression changes in the brain. Current mechanistic understanding is
inadequate to determine the biological adversity of the observed changes in gene expression, and findings

from these studies are not included in Table 3-1.

In rats, microarray analysis 6 and 18 hours following an acute 6-hour exposure to 1,000 ppm identified
226 and 3,352 differentially expressed genes in the striatum (p<0.05), respectively, compared with
controls (Hester et al. 2011). Pathway analysis identified synaptic transmission and plasticity as the
predominate pathways affected by acute toluene exposure (Hester et al. 2011). However, gene expression
changes from the acute study by Hester et al. (2011) were not predictive of gene expression changes in
rats exposed to 0, 10, 100, or 1,000 ppm toluene for 6 hours/day, 5 days/week for 64 days (Hester et al.
2012). In the intermediate-duration study, microarray analysis 18 hours after the final exposure identified
22, 57, and 94 differentially expressed genes in the striatum (p<0.05) in the 10-, 100-, and 1,000-ppm
groups, respectively, compared with control. However, only 57 differentially expressed genes were found
in both the acute study (Hester et al. 2011) and the intermediate-duration study (Hester et al. 2012), and
the direction of change (up- or down-regulation) was inconsistent. Additionally, altered gene expression
in the intermediate-duration study did not demonstrate consistent dose-related changes in gene expression

(Hester et al. 2012).

Win-Shwe et al. (2007a) reported upregulation of memory-related genes in the hippocampus in BALB/c
mice following 30-minute exposures to 9 ppm toluene for 3 consecutive days followed by 1 day/week for
4 weeks. These changes may be mediated by T-cell activation, as nude mice similarly exposed did not
demonstrate memory-gene upregulation (Win-Shwe et al. 2007a). However, when the study was repeated
in C3H/HeN mice, changes in expression of memory-related genes in the hippocampus were not
statistically significant in mice exposed to 9 or 90 ppm, compared with unexposed C3H/HeN mice (Win-
Shwe et al. 2010c). Gestational and prenatal exposure studies found that exposure to toluene during
development significantly altered hippocampal memory-related gene expression with exposure to 5 or

50 ppm from PND 8 to 12 and 50 ppm from PND 2 to 6, but not with exposure to 5 or 50 ppm from

GD 14 to 16 (Win-Shwe et al. 2010b).
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When C3H/HeN, BALB/c, and C57BL/10 mice were exposed to 0, 5, 50, or 500 ppm toluene for

6 hours/day, 5 days/week for 6 weeks, changes in mRNA levels of neurotrophins (NGF, BDNF) and their
receptors (TrkA, TrkB) in the hippocampus differed between strains (Win-Shwe et al. 2010a). In
C3H/HeN mice, mRNA levels for NGF, BDNF, TrkA, and TrkB were all significantly upregulated
(p<0.01) in the 500-ppm group, compared with controls. However, only BDNF was significantly
upregulated in BALB/C mice exposed to 500 ppm, and no significant changes were observed in
C57BL/10 mice (Win-Shwe et al. 2010a). There were no significant, dose-related gene expression
changes in marker genes for NGF signal-transduction or dopamine signaling pathways; however, HO-1
mRNA levels (a marker for oxidative stress) were significantly upregulated in the 500-ppm C3H/HeN
group. The immune system may have a role, as neurotrophin mRNA levels were increased in allergy-
challenged C3H/HeN mice exposed to 50 ppm, compared with controls, but not in allergy-challenged
mice exposed to 500 ppm (Win-Shwe et al. 2010a). Similarly, in a separate study, the same exposure
protocol led to upregulation of mRNA levels of neuroinflammatory genes TLR4 and NF-kB in the
hippocampus following exposure to 50 ppm, but not 5 or 500 ppm, in C3H/HeN mice (Win-Shwe et al.
2011).

Following exposure to 0 or 50 ppm, 6 hours/day, 5/days week for 6 or 12 weeks, mRNA levels for
synaptic plasticity genes were measured in the hippocampus of C3H/HeN mice (Ahmed et al. 2007).
Significant upregulation (p<0.05) was found in mRNA levels of N-methyl-D-aspartate (NMDA) receptor
subunit 2B, CaMKIV, CREB-1, and FosB/AFosB in mice exposed to 50 ppm for 12 weeks, compared
with controls. No changes were found in NMDA receptor NR2 or CREB-2 after 12 weeks, and no
significant changes in any mRNA levels for these genes were observed after exposure for 6 weeks

(Ahmed et al. 2007).

Neurodevelopment. Studies examining neurotoxic effects of gestational and/or neonatal exposure during

critical periods of neurodevelopment are discussed in Section 3.2.1.6, Developmental Effects.

The highest NOAEL values and all LOAEL values for each reliable study for neurological effects in each

species and duration category in are recorded in Table 3-1 and plotted in Figure 3-1.

Animal Studies Modeling High-Concentration Solvent Abuse

Overview. Numerous animal studies model human solvent abuse using single or repeat exposure to high

concentrations of toluene (most concentrations >1,000 ppm). Examined end points in these studies were
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the same as those examined in animal studies at lower exposure levels or included abuse-related
behaviors (e.g., reward-seeking, tolerance) or brain systems (e.g., mesolimbic system). Due to adequate
dose-response information from lower-dose studies, LOAELs from these studies are not included in

Table 3-1.

Adverse Neurological Effects. Effects observed in these high-exposure studies (>1,000 ppm) include
overt signs of neurological impairment (e.g., ataxia, tremors, loss of consciousness) (Beyer et al. 2001;
Bruckner and Peterson 1981a, 1981b; Davis et al. 2002; Lorenzana-Jimenez and Salsas 1990; NTP 1990;
Ono et al. 1999; Pryor 1991; Pryor and Rebert 1992), neurobehavioral alterations (Apawu et al. 2014;
Batis et al. 2010; Baydas et al. 2005; Bikashvili et al. 2012; Bowen et al. 2007; Bushnell et al. 2007;
Castilla-Serna et al. 1991; Dashniani et al. 2014; Duncan et al. 2012; Galliot et al. 2012; Gmaz et al.
2012; Harabuchi et al. 1993; Hinman 1987; Huerta-Rivas et al. 2012; Lammers et al. 2005b; Lorenzana-
Jimenez and Salas 1990; Mattsson et al. 1990; Miyagawa et al. 1998; Oshiro et al. 2007, 2011; Paez-
Martinez et al. 2013; Pryor 1991; Pryor and Rebert 1992; Samuel-Herter et al. 2013), impaired motor
coordination (Gmaz et al. 2012; Lorenzana-Jimenez and Salas 1990; Samuel-Herter et al. 2013; Tahti et
al. 1983), altered pain perception (Lopez-Rubalcava and Cruz 2000; Pacz-Martinez et al. 2008), altered
sleep patterns (Alfaro-Rodriguez et al. 2011), auditory effects (Campo et al. 1998; Johnson and Canlon
1994; Lataye and Campo 1997; Lataye et al. 1999; Mattsson et al. 1990; Pryor 1991; Pryor and Rebert
1992; Pryor et al. 1984a, 1984b; Waniusiow et al. 2008, 2009), decreased FEPs (Bale et al. 2007;
Mattsson et al. 1990), nystagmus (Larsby et al. 1986; Tham et al. 1982), altered neurotransmitters and
receptors in nervous system tissues (Alfaro-Rodriguez et al. 2011; Apawu et al. 2014; Gerasimov et al.
2002¢; Koga et al. 2007; O’Leary-Moore et al. 2007, 2009; Ono et al. 1999; Paez-Martinez et al. 2008;
Tsuga and Honma 2000; Williams et al. 2005), increased GFAP levels in brains (Baydas et al. 2003;
Gotohda et al. 2000a, 2000b, 2007), damage to olfactory and hippocampal neurons (Gelazonia et al.
2006a, 2006b), reduced brain weight (Edelfors et al. 2002), increased markers of oxidative stress (Baydas
et al. 2003, 2005; Coskun et al. 2005), and gene expression changes in the brain (Gotohda et al. 2000b;
Ikematsu et al. 2007; Sanchez-Serrano et al. 2011).

Abuse-Specific Behaviors. Since toluene is often intentionally inhaled to become intoxicated, multiple
animal studies have been conducted assessing dependence, reward-seeking behavior, and tolerance
following toluene exposure. Removal of mice following exposure to 250 ppm toluene continuously for
4 days resulted in chemical withdrawal, as evidenced by increased handling-induced convulsions (Wiley
et al. 2003). Multiple studies report that mice and rats show conditioned place preference after acute

exposure to toluene concentrations of >700 and >1,895 ppm, respectively, preferring the toluene-filled
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chamber over an air-filled chamber (Funada et al. 2002; Gerasimov et al. 2003; Lee et al. 2006; Schiffer
et al. 2006). When rats were evaluated in a wait-for-reward task 22—23 hours after daily 30-minute
exposures to 0, 1,000, 3,600, or 6,000 ppm for 40 days, a higher response-to-reinforcer ratio and
decreased number of rewards received was observed in the 3,600- and 6,000-ppm groups, compared with
controls (Bowen and McDonald 2009). Altered performance persisted during the 40-day recovery period.
Tolerance to toluene and toluene-induced effects with repeated exposure to >1,000 ppm has been noted in
various neurobehavioral tests, including the righting-reflex (Lorenzana-Jimenez and Salas 1990), pain
perception (Huerta-Rivas et al. 2012), visual signal detection (Oshiro et al. 2007, 2011), and locomotor
activity (Bowen et al. 2007). However, intermittent exposure to 3,000 ppm toluene during adolescence in

rats did not increase ethanol-seeking behaviors in adulthood (Dick et al. 2014).

Mesolimbic System. Consistent with observed patterns of abuse in humans, acute exposure to high
toluene levels of 4,000—10,000 ppm in animals can affect the mesolimbic system, which plays an
important role in drug dependence. This system contains both multiple neurotransmitter pathways, and
includes several brain structures such as the frontal cortex, hippocampus, basal ganglia, nucleus
accumbens, specific areas of the brainstem, and the white matter tracts connecting them. Effects observed
include increased c-Fos activity (neural activity) in catacholaminergic cells of the nucleus accumbens
shell (Tomaszycki et al. 2013), increased c-Fos activity in the forebrain and midbrain structures
implicated in reward, emotion, and olfactory stimulation (Perit et al. 2012), persistent alterations in
excitatory synaptic strength of mesolimbic dopamine (DA) neurons (Beckley et al. 2013), increased
activation of DA neurons in the ventral tegmental area of the midbrain (Riegel and French 2002),
increased DA and noradrenaline levels in the medial prefrontal cortex and nucleus accumbens (Koga et al.
2007), and altered glutamatergic signaling in corticostriatal circuitry (Dick et al. 2015). Effects on the
dopaminergic system may be changed with continued abuse, and may indicate potential compensatory
mechanisms following repeat exposure. Mice exposed once to 2,000—4,000 ppm showed significant
increases in DA release in the caudate-putamen and nucleus accumbens; however, repeated exposures to
the same concentrations over 7 days resulted in a significant decrease in DA release in the nucleus
accumbens (Apawu et al. 2014). Toluene abuse may also lead to cross-sensitization to other drugs, as
acute exposure to toluene increased diazepam-induced locomotion (Wiley et al. 2003), apomorphine-
induced locomotion (Wiaderna and Tomas 2002), cocaine-induced locomotion (Beyer et al. 2001), and

cocaine-induced increases in DA levels in the nucleus accumbens (Gerasimov et al. 2002c).

Effects observed in the mesolimbic system may result from permanent brain injury. Numerous animal

studies report injury to multiple regions of the brain following acute or repeated exposure to
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concentrations of toluene ranging from 1,500 to 6,000 ppm, including degenerative changes and
ultrastructural damage in the hippocampus, frontal cortex, and brain stem (Kanter 2008a, 2008b, 201 1c,
2013), decreased or shrunken cells in the hippocampus (Gotohda et al. 2002; Korbo et al. 1996; Zhvania
et al. 2012), impaired dendritic outgrowth in the frontal cortex (Pascual and Bustamante 2010), and white

matter damage in anterior commissure (Duncan et al. 2012).

3.2.1.5 Reproductive Effects

Overview. Current data do not provide convincing evidence that acute or repeated inhalation exposure to
toluene may cause reproductive effects in humans. Limited evidence in humans indicates that
occupational exposure to toluene may lead to an increased incidence of spontaneous abortion (Lindbohm
et al. 1992; Ng et al. 1992b; Taskinen et al. 1989) or decreased fecundity in female workers (Plenge-
Boenig and Karmaus 1999). One population-based cohort study reported increased risk of preterm birth
with increasing environmental toluene exposure (Poirier et al. 2015); however, concurrent exposure to
multiple pollutants (which were not controlled for in statistical analyses) limits the conclusions that can
be drawn from this study. A few studies in animals exposed to toluene via inhalation at concentrations
>2,000 ppm reported effects on male and female reproductive tissues, including abundant vacuoles, lytic
areas, and mitochondrial degeneration in the antral follicles of the ovaries of female rats (Tap et al. 1996)
and reduced sperm count, motility, and quality and altered reproductive organ weight and histology in
male rats (Kanter 2011b; Ono et al. 1996, 1999). However, changes in sperm count and epididymis
weight were not accompanied by any change in indices of reproductive performance (e.g., fertility) in
male rats exposed to 2,000 ppm for 60 days before mating (Ono et al. 1996). The majority of animal
studies provided little evidence for toluene reproductive toxicity. Studies in rats exposed repeatedly by
inhalation to toluene, including a 2-generation reproductive toxicity study, have shown no evidence of
adverse effects on mating or fertility at tested concentrations as high as 1,200-2,000 ppm (API 1981,
1985; Ono et al. 1996; Roberts et al. 2003; Thiel and Chaboud 1997). In addition, the majority of
gestational exposure studies reported no exposure-related changes in reproductive indices (see citations

below).

Occupational Exposure Human Studies. Ng et al. (1992b) reported a significant increase in spontaneous
abortion for women employed in an audio speaker factory and exposed to 50—150 ppm (mean of 88 ppm)

for 10 years (12.4%), compared with controls exposed to 0—25 ppm toluene from the same factory (2.9%)
and unexposed controls from the general population (4.5%). The majority of women examined did not

smoke or drink and were of similar socioeconomic status (Ng et al. 1992b). Exposed workers did not
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report increased incidence for menstrual cycle irregularities, altered extent of uterine bleeding, or
occurrence of dysmenorrhea (Ng et al. 1992a). Other possible confounding factors such as exposure to
chemicals other than toluene were minimized by inclusion of controls who carried out similar types of
work, but did not use toluene-based adhesives (Ng et al. 1992b). Increased incidence of dysmenorrhea
was reported in 38 female shoemakers who were exposed to toluene concentrations that varied from

65 ppm (15-100 ppm) in winter to 100 ppm (10-200 ppm) in summer for an average of 40 months,
compared with 16 controls (Matsushita et al. 1975). No other reproductive end points were assessed by
Matsushita et al. (1975). The concentration for reproductive effects is estimated at 83 ppm (the average
between summer and winter exposures). The incidence of spontaneous abortions exceeded population
norms among five female workers (Lindbohm et al. 1992) and among the wives of small groups of 28—
48 male workers (Lindbohm et al. 1992; Taskinen et al. 1989) exposed to toluene; however, exposure

levels were not reported in these studies and only a small number of cases were included.

Fecundity (probability of conception) was decreased in female workers, but not in male workers, in
German printing facilities for periods when they were employed in printing facilities and exposed to
toluene, compared with periods when they were employed in other jobs without toluene exposure
(Plenge-Boenig and Karmaus 1999). Toluene exposure was divided into three groups based on work
history and exposure measurements from previous years (conducted by industrial hygienists of the
Employer’s Liability Insurer): low exposure (e.g., stacking and book binding; <10 ppm), medium
exposure (cylinder preparation, galvanisers; 10-30 ppm), and high exposure (printers; <200 ppm before
1984, <100 ppm in 1984-1994, and <50 ppm after 1994). Actual air concentrations of toluene were not
reported. Reproductive and work history data collected from workers were analyzed to determine
fecundability ratios based on time to pregnancy and periods of unprotected intercourse during exposed
and unexposed employment. The analysis included adjustments for age, ethnicity, smoking, parity, pelvic
inflammatory diseases, and frequency of sexual intercourse. In women, the fecundability ratio was
significantly reduced for periods of toluene exposure (0.47, 95% CI 0.29-0.77), whereas fecundity was
not significantly affected in toluene-exposed periods in male workers and their partners. Female workers
in this study were exclusively employed in areas of printing facilities (stacking and book binding), with
air concentrations expected to be lower than areas of high (operating printing machines) and medium

(preparing cylinders) toluene exposure. Men were employed in all three areas.

Several studies of blood levels of reproductive hormones in repeatedly exposed workers have not
provided strong and consistent evidence of exposure-related effects. No statistically significant changes

were observed in serum FSH, LH, or testosterone levels in 1,225 male rotogravure workers exposed to
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median toluene concentrations of 24 ppm (printers) or 4.5 ppm (non-printers) for at least 20 years,
compared with 109 unexposed referents (Gericke et al. 2001). Significantly decreased serum levels of
LH, FSH, and testosterone were found in 20 male toluene-exposed rotogravure printers, compared with
44 unexposed referents (Svensson et al. 1992a). TWA air concentration estimates for the exposed
workers during the period when blood was sampled ranged from 8 to 111 ppm, with a median of 36 ppm.
Increasing workplace air concentrations were not significantly (p>0.05) associated with plasma
concentrations of LH, FSH, testosterone, or prolactin, after adjustments for age, in a study of 47 male
toluene-exposed printers from two factories (Svensson et al. 1992b). Median serum levels of these
hormones in exposed workers were not significantly different from median levels in 46 unexposed
referents (Svensson et al. 1992b). TWA air concentrations for the exposed workers during the period
when blood was sampled ranged from 1 to 108 ppm (median 11 ppm) in one factory and from 1 to

142 ppm (median 47 ppm) in the second factory (Svensson et al. 1992b). In female U.S. Air Force
personnel with mixed exposure to fuel (primarily JP-8 jet fuel) and several solvents, pre-ovulatory LH
levels were significantly reduced compared with unexposed female U.S. Air Force personnel (Reutman et
al. 2002). No air exposure levels were reported; instead, mean breath concentrations of aromatic and
aliphatic hydrocarbons were measured. While mean toluene breath concentrations in the unexposed and
exposed group were reported (1.3 and 9 ppb, respectively), analysis was only conducted for the combined
concentrations of BTEX (3.8 and 73.5 ppb, respectively). Since no toluene-specific analysis was
conducted, and toluene only accounted for 12% of the BTEX breath concentration in the exposed group,

it cannot be determined if toluene exposure influenced preovulatory LH levels in this study.

Environmental Human Exposure. In a population-based cohort study, the potential associations
between exposure to air pollutants and adverse birth outcomes (preterm birth, term low birth weight, and
small for gestational age) were evaluated in 15,284 mothers who gave birth between 2008 and 2012 in
Halifax, Nova Scotia (Poirier et al. 2015). The median (range) toluene concentration in Urban Halifax
during this time period, determined using land-use regression-modeled air pollution data, was 0.4 (0.2—
1.1) pg/m? (0.0001 [0.00005-0.003] ppm). A significant increased risk of preterm birth was observed in
mothers exposed to the 2", 3, or 4™ quartile of toluene, compared with mothers exposed to the

1* quartile of toluene exposure, before and after adjustment for mother’s age, parity, and smoking.
However, after adjustment for age, parity, smoking, and neighborhood income, the risk was only
significantly elevated in mothers in the 2™ quartile (OR 1.35, 95% CI 1.12-1.63). Interquartile ranges
were not reported; however, following piecewise logistic regression breakpoint analysis for exposure to
toluene and preterm birth, a cut point of 0.36 pg/m?*(95% CI 0.33-0.40) was determined. Mothers

exposed to toluene levels above the cut point were at a significantly higher risk of preterm birth after
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adjustment for age, parity, smoking, and neighborhood income (OR 1.19, 95% CI 1.01-1.39). No
significant increases in risk of low birth weight or small for gestational age were observed with increasing
toluene exposure. This study suggests that low-level toluene exposure may increase the risk of preterm
birth; however, the likelihood of concurrent exposure to multiple pollutants (which were not controlled

for in statistical analyses) limits the conclusions that can be drawn from this study.

Controlled Human Exposure. LH, FSH, and testosterone levels were determined in blood samples
collected at 20-minute intervals from five men, five women in the luteal phase of the menstrual cycle, and
five women in the follicular phase, before, during, and after a 3-hour exposure to 0 or 50 ppm (Luderer et
al. 1999). Analysis of variance in data for men and women indicated no statistically significant direct
effects of exposure on any hormone end point, with the exception of a significant interaction between
exposure and sampling period for LH levels in men, indicating a greater LH decline during toluene
exposure than clean-air exposure. Interpretation of these reproductive hormone data from a biological
adversity perspective is constrained by the lack of data on reproductive function and the variance across

studies in applying adjustments for confounding factors such as age, smoking and alcohol consumption.

Intentional Human Exposure. A single case report of testicular atrophy and aspermia involving chronic

solvent abuse was located (Suzuki et al. 1983).

Acute-Duration and Gestational Exposure Animal Studies. Exposure of female rats to 3,000 ppm
toluene for 7 days produced abundant vacuoles, lytic areas, and mitochondrial degeneration in the antral
follicles of the ovaries (Tap et al. 1996). However, the majority of gestational exposure studies in rodents
did not report exposure-related changes in reproductive end points (e.g., number of litters, gestational age,
implantations, pre- or post-implantation loss, number of live and dead pups, sex ratio) at concentrations
ranging from 50 to 12,000 ppm (API 1978, 1991, 1992; Bowen and Hannigan 2013; Bowen et al. 2005,
2007, 2009a, 2009b; Courtney et al. 1986; Dalgaard et al. 2001; Hougaard et al. 2003; Jones and Balster
1997; Klimisch et al. 1992; Ladefoged et al. 2004; Ono et al. 1995; Roberts et al. 2007; Saillenfait et al.
2007; Thiel and Chahoud 1997), despite evidence for maternal toxicity (decreased maternal weight gain)
at concentrations as low as 1,200 ppm (API 1991; Dalgaard et al. 2001; Ono et al. 1995; Roberts et al.
2007; Saillenfait et al. 2007; Thiel and Chahoud 1997). However, continuous exposure of pregnant
rabbits to 267 ppm during days 7-20 of pregnancy produced maternal toxicity (decreased weight gain)
and abortions in 4/8 does (Ungvary and Tatrai 1985). Additionally, rats exposed to 5,000 ppm

6 hours/day during days 615 of pregnancy resulted in increased post-implantation loss and complete

fetal resorption in 6/9 litters (API 1992). These effects were not observed at 133 ppm in rabbits or
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<3,500 ppm toluene in rats (API 1992; Ungvary and Tatrai 1985). Another rat study found no exposure-
related effects on mating, fertility, or pregnancy indices for F1 rats that had been exposed in utero to 0,
300, 600, 1,000, or 1,200 ppm toluene for 6 hours/day during GDs 9-21 (Thiel and Chahoud 1997).

Other studies examining reproductive effects in offspring following exposure to toluene during gestation

are discussed in Section 3.2.1.6, Developmental Effects.

Intermediate-Duration Animal Studies. Significantly decreased sperm counts (26%) and decreased
weights of the epididymides (15%) were reported in male rats exposed to 2,000 ppm 6 hours/day for a
total of 90 days, including 60 days before mating to females that were exposed for 14 days before and

7 days after mating (Ono et al. 1996). A slight decrease in sperm count (13%) was also observed at

600 ppm, but histological examination of the testes and epididymides found no abnormalities at either
concentration. No significant exposure-related effects on mating behavior or fertility indices were found
in this study (Ono et al. 1996). Exposure to 3,000 ppm toluene 8 hours/day, 6 days/week for 12 weeks
resulted in a statistically significant 23% decrease in mean seminiferous tubule diameter, decreased
immunohistological staining for proliferating cell nuclear antigen (PCNA) in spermatogonia and early-
stage spermatocytes, decreased spermatogenesis, increased apoptosis in testes, and various histological
and ultrastructural abnormalities in testes (Kanter 2011b). In contrast, no statistically significant changes
in numbers of spermatogenic cells at various stages in seminiferous tubules, testes weight, testicular
histology, or serum hormone levels were found in rats exposed to 4,000 or 6,000 ppm 2 hours/day for

5 weeks, compared with controls, but significant changes in sperm parameters were found in rats exposed
to 6,000 ppm (Ono et al. 1999). Changes included a 66% decrease in sperm head counts, a 78% decrease
in motility, and a 76% decrease in ovum penetration (Ono et al. 1999). In rats exposed to 0 or 1,500 ppm
4 hours/day for 20 days, no exposure-related effects were revealed by histological examination of testis
and epididymis sections, by immunohistochemical analysis of testis and epididymis for heat shock protein
70 (HSP70), c-Fos protein, and PCNA, or on testis or epididymis weights, although body weights of
exposed rats were significantly lower than controls (Ishigami et al. 2005). In rats exposed to paint thinner
(66% toluene) at toluene concentrations of 1,500 ppm for 2 hours for up to 30 days, significantly reduced
seminiferous tubule diameter, testicular weight, and serum and testicular testosterone levels were found
(Yilmaz et al. 2006). Other components in paint thinner (acetone, isobutyl acetate, butyl glycol, and

isobutanol) may have contributed to these effects.

Exposure of male mice to concentrations of 100 or 400 ppm for 8 weeks did not induce dominant lethal

mutations or cause pre- and post-implantation losses after they were mated with nonexposed females (API
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1981). There were no treatment-related histopathological lesions in the testes of rats or mice exposed to
up to 3,000 ppm toluene for 14—15 weeks although rats showed a 15% increase in testes weight (NTP
1990). In 2-generation reproduction studies in rats, exposure of males and females to concentrations of
100, 500, or 2,000 ppm 6 hours/day for up to 95 days did not adversely affect reproductive parameters
(e.g., fertility) or offspring survival compared with unexposed controls (API 1985; Roberts et al. 2003).
No effects on reproductive performance or offspring survival were found when males only or females
only were exposed to 2,000 ppm by a similar protocol and mated to unexposed partners (Roberts et al.
2003). Additionally, no effects on pregnancy outcomes or offspring survival were observed following

exposure to 1,200 ppm 6 hours/day from GD 7 to PND 18 (Dalgaard et al. 2001; Hass et al. 1999).

Chronic-Duration Animal Studies. Toluene did not cause altered weight or histopathological lesions of
the ovaries or testes in rats exposed to toluene concentrations up to 300 ppm toluene for 24 months (CIIT

1980) or in rats or mice at concentrations up to 1,200 ppm for 2 years (NTP 1990).

The highest NOAEL values and all LOAEL values for each reliable study for reproductive effects in each

species and duration category are recorded in Table 3-1 and plotted in Figure 3-1.

3.2.1.6 Developmental Effects

Overview. A number of published reports have described birth defects, similar to those associated with
fetal alcohol syndrome, in children born to women who intentionally inhaled large quantities of toluene or
other organic solvents during pregnancy (Arnold and Wilkins-Haug 1990; Arnold et al. 1994; Erramouspe
et al. 1996; Goodwin 1988; Hersh 1988; Hersh et al. 1985; Lindemann 1991; Pearson et al. 1994;
Wilkins-Haug and Gabow 1991a). These reports suggest that exposure to high concentrations of toluene
during pregnancy can be toxic to the developing fetus. Studies of women exposed during pregnancy to
much lower concentrations of toluene in the workplace are restricted to a retrospective study of 14 women
in Finland occupationally exposed to mixed solvents, which suggested that solvent exposure may increase
risk for central nervous system anomalies and neural tube closure defects (Holmberg 1979). A number of
developmental toxicity studies with rats, mice, and rabbits involving toluene exposure by inhalation
during gestation have been conducted to further describe developmentally toxic effects from toluene and
exposure-response relationships. The results indicate that toluene did not cause maternal or
developmental toxic effects in animals at exposure levels <1,000 ppm administered for 6—7 hours/day
during gestation (API 1978, 1991, 1992; Jones and Balster 1997; Klimisch et al. 1992; Ono et al. 1995;
Roberts et al. 2007; Saillenfait et al. 2007; Thiel and Chahoud 1997; Tsukahara et al. 2009; Win-Shwe et
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al. 2012a, 2012b; Yamamoto et al. 2009). Predominant effects reported at concentrations ranging from
1,000 to 3,000 ppm included retarded fetal growth and skeletal development, altered development of
behavior in offspring, and were almost always accompanied by signs of maternal toxicity (API 1991,
1992; Dalgaard et al. 2001; Hass et al. 1999; Hougaard et al. 2003; Jones and Balster 1997; Ono et al.
1995; Roberts et al. 2007; Saillenfait et al. 2007; Thiel and Chahoud 1997). Other animal studies
reported that continuous, 24-hour/day exposure during gestation caused maternal body weight depression
and effects on fetuses including depressed body weight and delayed skeletal ossification at toluene
concentrations as low as 133-399 ppm in rats, mice, and rabbits (Hudak and Ungvary 1978; Ungvary and
Tatrai 1985). Performance deficits in a few neurobehavioral tests were observed in one study of offspring
of pregnant mouse dams exposed by inhalation to 2,000 ppm, but not to 200 or 400 ppm, for 60 minutes

3 times/day on GDs 12—-17 (Jones and Balster 1997). Performance deficits were not observed in offspring
of pregnant rat dams exposed by inhalation to concentrations up to 2,000 ppm for 6 hours/day during
gestation (Hougaard et al. 2003; Ono et al. 1995; Thiel and Chahoud 1997). Impaired learning and
memory, increased malformations, and fetal death have been observed when animals are exposed during
gestation to higher concentrations modeling solvent abuse (8,000—16,000 ppm, 15-30 minutes/day)
(Bowen and Hannigan 2013; Bowen et al. 2005, 2009a; Callan et al. 2015).

Human Studies. Microcephaly, central nervous system dysfunction, attentional deficits, minor
craniofacial and limb anomalies, developmental delay, and variable growth have been described in case
reports of children who were exposed to toluene in utero as a result of maternal solvent abuse during
pregnancy (Arnold and Wilkins-Haug 1990; Arnold et al. 1994; Hersh 1988; Hersh et al. 1985;
Lindemann 1991; Pearson et al. 1994; Wilkins-Haug and Gabow 1991a). Growth retardation and
dysmorphism were reported in five infants born to women who were chronic paint sniffers (Goodwin

1988).

Children born to toluene abusers have exhibited renal tubular acidosis immediately after birth that is
thought to be due to alterations in ion gradient maintenance in the renal tubules. The kidney effects are
often associated with hyperchloremia (Erramouspe et al. 1996; Goodwin 1988; Lindemann 1991). In one
report (Goodwin 1988), the acidosis was resolved within 3 days of birth, while in the other two reports, it
took about 2 weeks for the resolution of the metabolic acidosis. There were no abnormalities in the
urinary tract of two children born to chronic toluene abusers based on results of a renal ultrasound

evaluation (Hersh 1988).
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Studies of women exposed during pregnancy to much lower concentrations of toluene in the workplace
are restricted to a single study. A retrospective study of 14 women in Finland occupationally exposed to
mixed solvents (some of which included toluene), as well as various drugs including aspirin, vasodilators,
and diuretics, suggested that solvent exposure may increase the risk of central nervous system anomalies

and defects of neural tube closure in children exposed in utero (Holmberg 1979).

While these findings suggest that occupational exposure to solvents may be toxic to the developing fetus,
the small sample size coupled with multiple chemical exposures cannot support definitive conclusions

regarding developmental toxicity of exposure to low toluene levels in humans.

Standard Developmental Toxicity Studies in Animals. Numerous studies in rats, mice, and rabbits with
inhalation exposure to concentrations <1,000 ppm toluene for 1-8 hours/day during various gestational
periods have found no exposure-related effects on maternal and developmental end points (API 1978,
1991, 1992; Jones and Balster 1997; Klimisch et al. 1992; Ono et al. 1995; Roberts et al. 2007; Saillenfait
et al. 2007; Thiel and Chahoud 1997). Exposure to 1,000-3,500 ppm during gestation resulted in
decreased fetal/pup weight and/or decreased neonatal growth in a number of studies (API 1991, 1992;
Dalgaard et al. 2001; Hass et al. 1999; Hougaard et al. 2003; Ladefoged et al. 2004; Ono et al. 1995;
Roberts et al. 2007; Saillenfait et al. 2007; Thiel and Chahoud 1997). Significantly decreased maternal
body weight gain was observed at exposure levels causing decreased weight or growth in offspring,
except in studies by Hass et al. (1999), which reported no significant change in maternal body weight gain
at 1,200 ppm and Thiel and Chahoud (1997), which reported fetal body weight effects at 1,000 ppm and
maternal body weight effects at 1,200 ppm. Additional developmental effects observed in these studies
include delayed ossification in rat fetuses following exposure to 3,000 ppm for 6 hours/day from GD 6 to
15 (API 1991; Roberts et al. 2007), increased postnatal/preweaning mortality in rat pups following
exposure to 1,200 ppm for 6 hours/day from GD 9 to 21 (Thiel and Chahoud 1997), and total resorption
of rat litters with exposure to 5,000 ppm for 6 hours/day from GD 6 to 15 (API 1992). In another study,
exposure of pregnant mice to 200 or 400 ppm, 7 hours/day on GDs 7-16 produced significantly increased
litters with fetuses with enlarged renal pelvises in the 200-ppm group (but not in the 400-ppm group) and
a difference in the distribution of fetuses with varying numbers of ribs in the 400-ppm group, compared
with the control group (Courtney et al. 1986). Similarly, exposure of pregnant mice to 133 or 266 ppm,
3—4 hours/day on GDs 6—15, did not significantly affect maternal or fetal survival, or incidences of
fetuses with visceral or skeletal anomalies or malformations. However, incidences of fetuses with
decreased body weight and skeletal retardations were significantly increased in the group exposed to

266 ppm (Ungvary and Tatrai 1985).
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A series of studies indicate that continuous, 24-hour/day exposure during gestation can cause maternal
and developmental toxicity at toluene concentrations as low as 133—399 ppm in rats, mice, and rabbits
(Hudak and Ungvary 1978; Ungvary and Tatrai 1985). In pregnant rats exposed to 399 ppm,

24 hours/day on GDs 1-8 or 9-14, no statistically significantly increased incidences of fetuses with
visceral or skeletal malformations were found (Hudak and Ungvary 1978). However, 5/14 dams died,
fetal body weight was decreased, and retardation of fetal skeletal development occurred with exposure on
GDs 1-8, and 2/21 dams died and increased incidences of skeletal anomalies (extra ribs, fused sternebrae)
were found with exposure on GDs 9-14 (Hudak and Ungvary 1978). No maternal mortality, fetal weight
loss, or fetal malformations were found in another group of rats exposed to 266 ppm, 8 hours/day on

GDs 1-21, but significantly increased incidence of fetuses with skeletal retardation occurred (Hudak and
Ungvary 1978). In mice exposed to 133 ppm, 24 hours/day on GDs 6—13, no effects on maternal survival
or incidences of fetuses with malformations were found, but fetal body weight was significantly
decreased (Hudak and Ungvary 1978). All 15 pregnant mice died that were exposed to 399 ppm,

24 hours/day on GDs 6—13 (Hudak and Ungvary 1978). In rabbits exposed to 133 ppm, 24 hours/day on
GDs 7-20, no significant effects were found on maternal or fetal survival, fetal body weight, or
incidences of fetuses with skeletal retardation, minor anomalies, skeletal or visceral malformations
(Ungvary and Tatrai 1985). Following exposure to 266 ppm by the same protocol, 2/8 rabbit dams died,

4/8 dams aborted, and no live fetuses were found at sacrifice (Ungvary and Tatrai 1985).

Studies of Reproductive System Development in Animals. Studies of inhalation exposure of rats to
concentrations as high as 1,800 ppm for 6 hours/day during gestation and/or early postnatal periods have
provided little evidence of adverse effects on reproductive performance in adulthood. Female offspring
of dams exposed to 1,200 ppm toluene, 6 hours/day on GDs 9-21 showed a significant delay in
reproductive development (vaginal opening) compared with unexposed controls, but no significant
exposure-related effects on mating, fertility, or pregnancy indices were observed in groups of male and
female F1 offspring exposed during gestation to 300, 600, 1,000, or 1,200 ppm (Thiel and Chahoud
1997). In another study, no exposure-related changes were observed in the appearance of sexual
maturation landmarks in male or female rat offspring of dams exposed to 1,200 ppm toluene, 6 hours/day
on GD 7 to PND 18 (Hass et al. 1999). No significant changes in the percent of motile sperm or any
parameters of sperm motility on PND 100 were observed in male offspring of dams exposed to 1,200 ppm
toluene, 6 hours/day from GD 7 to PND 18 (Dalgaard et al. 2001). In male offspring of dams exposed to
1,800 ppm toluene, 6 hours/day from GD 7 to 20, no significant changes in testicular weight or histology
at PND 11, 21, or 90 were found, compared with controls (Dalgaard et al. 2001). Additionally, no
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significant changes in serum prolactin or LH were observed in 8-week-old male rats following neonatal
exposure to 80 ppm for 6 hours/day from PND 1 to 7, compared with controls (von Euler et al. 1989).
However, Tsukahara et al. (2009) reported that nose-only exposures of 0.09-9 ppm for 90 minutes/day in
dams from GD 14.5 to 18.5 resulted in statistically significant decreased fetal serum testosterone and
3B-HSD steroidogenic enzyme immunoreactivity in fetal testes in the 0.9 and 9 ppm groups, and
significantly decreased 3-HSD mRNA levels in the 0.9 ppm group only. These effects were more
pronounced at 0.9 ppm than 9 ppm and were not accompanied by any histological changes in the fetal
testes; mechanistic understanding is inadequate to determine biologically adversity of the observed

effects.

Studies of Neurological Development in Animals. Gestational exposure by inhalation to toluene
concentrations as high as 1000—1,500 ppm did not affect the performance of offspring in neurobehavioral
tests in several animal studies (Jones and Balster 1997; Ladefoged et al. 2004; Ono et al. 1995; Thiel and
Chahoud 1997); at 2,000 ppm, one study reported some statistically significant performance deficits in
mouse offspring (Jones and Balster 1997), whereas another found no statistically significant deficits in rat

offspring (Ono et al. 1995).

Mouse pups from dams exposed to 2,000 ppm for 60 minutes, 3 times/day on GDs 12—17 gained less
weight between PND 2 and 8 compared with unexposed controls, and showed statistically significant
increased latency of righting reflex on PNDs 1, 5, and 6, decreased forelimb grip strength on PNDs 5-7
and 9-11, and increased latency to climb in the inverted screen test on PNDs 14—17 (Jones and Balster
1997). No statistically significant effects on these end points were observed after exposure to 200 or
400 ppm by the same protocol, and no effects on times to reach developmental landmarks such as incisor

eruption and eye opening were noted in any of the exposure groups (Jones and Balster 1997).

In another study, offspring of rat dams exposed to 600 or 2,000 ppm, 6 hours/day on GDs 7-17 showed
no statistically significant differences from control rats in postnatal viability or physical development
through PND 21, tests of reflexes on PNDs 610, locomotor activity during postnatal week 4, balance on
a rotating rod during postnatal week 7, or learning ability in the Biel water maze test during postnatal

week 6 (Ono et al. 1995).

No consistent, concentration-dependent performance deficits were found in tests of reflexes on PND 3,

balance on a rotating rod on PND 18, locomotor activity on PNDs 31-34, or discrimination learning on
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PNDs 70-81 in rat offspring of dams exposed to 300, 600, 1,000, or 1,200 ppm, 6 hours/day on GDs 9—
21, compared with controls (Thiel and Chahoud 1997).

No changes were observed in Morris water maze spatial learning and memory in female offspring
following exposure to 1,500 ppm for 6 hours/day from GD 7 to 20, compared with controls (Ladefoged et
al. 2004).

Exposure of pregnant rats to 1,200 ppm toluene, 6 hours/day from GD 7 to PND 18 produced statistically
significant decreased postnatal growth (PNDs 0-10), delayed ontogeny of reflexes between PND 2 and
13, and increased open-field locomotor activity on PND 28 in male and female offspring, compared with
unexposed controls (Hass et al. 1999). Significantly increased latency to find the hidden platform in the
Morris water maze test after platform relocation was found in13-week-old exposed female offspring,
compared with nonexposed female offspring, when data were analyzed on an individual basis, but not on
a litter basis. No consistent significant effects were observed in rotarod performance on PNDs 22-26,
auditory brainstem responses at 4 months, or in physical development (e.g., eye opening) on PND 14

(Hass et al. 1999).

Decreased neonatal growth, impaired auriculonasocephalic reflex (reflexive movement to thermal and
olfactory stimuli, e.g., “dummy dam”), impaired ability to locate a visible platform in the Morris water
maze, and impaired learning in the passive avoidance task were reported for neonatal rats exposed by
inhalation to 500 ppm on PNDs 7-30 (Museridze et al. 2010). However, the available report did not
indicate the daily exposure duration used in this study, provided no indication that air concentrations were

measured during the exposure periods, and used mongrel rats.

Significant localized changes in dopamine and noradrenaline neurotransmitter levels and utilization were
observed in 8-week-old adult male rats that were exposed to 80 ppm for 6 hours/day from PND 1 to 7,
compared with controls (von Euler et al. 1989). Neurotransmitter levels were increased in some areas of
the brain, were decreased in some areas, and remained the same in other areas. Localized changes in
dopamine and noradrenaline neurotransmitter levels and utilization were also observed in 8-week-old rats
exposed both neonatally on PNDs 1-7 and again for 3 days during postnatal week 8 to 80 ppm

(6 hours/day), compared with previously unexposed 8-week-old rats (von Euler et al. 1989). The
biological adversity of region-specific neurotransmitter alterations in the absence of neurobehavioral

changes is unknown.
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Biochemical and cellular changes in brain tissues have been reported in several studies of animals
exposed to toluene by inhalation during gestation or during early postnatal periods. In rats, offspring of
dams exposed to 1,500-1,800 ppm during gestation had elevated levels of cerebellar apoptosis during
postnatal development (Dalgaard et al. 2001; Ladefoged et al. 2004) and increased in vitro generation of
reactive oxygen species in cultured synaptosomes (Edelfors et al. 2002), and neonatal rats exposed to
100-500 ppm had reversible decreases in the volume of the granular cell layer in the dentate of the
hippocampus (Slomianka et al. 1990). In mice, offspring of dams exposed to 400 ppm had elevated LDH
activity on PND 21 (Courtney et al. 1986). Mechanistic understanding is inadequate to determine the

biological adversity of these effects.

Animal Studies Modeling High Concentration Solvent Abuse. A series of studies in rats were designed
to model human solvent abuse during pregnancy to determine if repeated brief exposures to very high
concentrations during gestation could cause adverse developmental effects. These studies found that
exposure to 8,000—16,000 ppm for 15-30 minutes twice daily from GD 8 to 20 caused decreased maternal
body weight gain; decreased pup/fetal weight, length, and postnatal growth; decreased placental weight;
increased number of litters with malformed, runted, or dead pups; impaired motor coordination in
offspring; impaired learning and memory in offspring, and altered reward-seeking behavior with
increased impulsivity in offspring (Bowen and Hannigan 2013; Bowen et al. 2005, 2007, 2009a, 2009b;
Callan et al. 2015; Jarosz et al. 2008). No changes were found in the achievement of physical landmarks

(Bowen and Hannigan 2013; Bowen et al. 2005).

The highest NOAEL values and all LOAEL values for each reliable study for developmental effects in

each species and duration category are recorded in Table 3-1 and plotted in Figure 3-1.

3.2.1.7 Cancer

Human Studies. Numerous human epidemiology studies were located that assessed toluene exposure as
a possible risk factor for cancer. Cancers of most sites were not significantly associated with toluene
exposure in any study, and there was weak consistency in the findings of those studies that did find
association of a particular cancer type with toluene exposure. Five cohort studies involved occupationally
exposed workers exposed predominantly to toluene (Antilla et al. 1998; Lehman and Hein 2006;
Svensson et al. 1990; Walker et al. 1993; Wiebelt and Becker 1999), whereas the remainder of the human
studies primarily involved subjects exposed to mixtures of solvents including toluene (Austin and

Schnatter 1983; Blair et al. 1998; Carpenter et al. 1988; Gao et al. 2014; Gérin et al. 1998; Heck et al.
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2013, 2014, 2015; Lundberg and Milatou-Smith 1998; Olsson and Brandt 1980; Wen et al. 1985;
Wilcosky et al. 1984). The information from these studies is inadequate to assess the carcinogenic
potential of toluene, predominantly because of the lack of consistent findings across the studies and the

likelihood that many of the studied groups were exposed to multiple chemicals.

Svensson et al. (1990) compared cancer incidence and mortality in a cohort of Swedish printers, exposed
primarily to toluene and employed for at least 3 months between 1925 and 1985, to mortality and cancer
incidence for the region. Current and historical monitoring data were used to estimate yearly average
concentrations of toluene in the air. Concentrations had declined from about 450 ppm in the 1940s to

30 ppm by the mid-1980s. There were indications of excess risk of morbidity (standardized incidence
ratio, SIR) and mortality (standardized mortality ratio, SMR) for respiratory tract cancer (SMR, 1.4; 95%
CI, 0.7-2.5; n=11; SIR, 1.8; 95% CI, 1.0-2.9; n=16), stomach cancer (SMR 1.4, 95% CI 0.7-2.5, n=11;
SIR 1.8, 95% CI 1.0-2.9, n=16), stomach cancer (SMR 2.7, 95% CI 1.1-5.6, n=7; SIR 2.3, 95% CI1 0.9—
4.8, n=7), and colo-rectal cancer (SMR 2.2, 95% CI 0.9-4.5, n=7; SIR 1.5, 95% CI 0.7-2.8, n=9), but

there was no significant association between increased risk and cumulative exposure.

Walker et al. (1993) conducted a cohort mortality study among 7,814 shoe-manufacturing workers
(2,529 men and 5,285 women) from two plants in Ohio in operation since the 1930s. Workers were
exposed to solvents and solvent-based adhesives. Based on results of a hygiene survey (1977-1979),
exposure was thought to be primarily to toluene (10—72 ppm), but other chemicals (e.g., 2-butanone,
acetone, and hexane) were also recorded at similar concentrations. IARC (1999) noted that benzene may
have been present as an impurity of toluene. Mortality follow up was from 1940 to 1982 and relative risk
estimates (SMRs) were derived using the general population of the United States as controls. There were
excess risks of lung cancer for both men (SMR 1.6, 95% CI 1.2-2.0, n=68) and women (SMR 1.3, 95%
CI0.9-1.9, n=31), but smoking may have been a confounding factor and relative risk of lung cancer did
not increase with increasing duration of employment. There was a slight excess risk for colon cancer
among men (SMR 1.3, 95% CI 0.8-2.1, n=18) and women (SMR 1.2, 95% CI 0.8-1.8, n=28). Other
cancers showed no excess risk. In a follow-up study of this cohort, an excess of lung cancer deaths
persisted with additional follow-up through 1999 (SMR 1.36, 95% CI 1.19-1.54, n=248), but the relative
risk of lung cancer still did not increase with increasing duration of employment (Lehman and Hein

2006). No other cancers showed excess risk in this follow-up.

Antilla et al. (1998) carried out a retrospective cohort analysis of 5,301 workers (3,922 male and

1,379 female) monitored for biological markers of occupational exposure to styrene, toluene or xylene
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over the period 1973—1992. No increase in overall cancer risk or risk for cancers at specific tissue sites
was associated with exposure to toluene, except for a nonsignificant increase in the incidence of lung
cancer in individuals exposed to toluene for more than 10 years (SIR 1.62, 95% CI 0.33-4.73,

three cases). Antilla et al. (1998) noted, however, that these workers may also have been exposed to

benzene.

Wiebelt and Becker (1999) examined cancer incidence and mortality in a cohort of 6,830 German males
employed in rotogravure printing plants for at least one year between 1960 and 1992, and compared them
to mortality and cancer incidence for West Germany. Workers were divided into three work areas:
printing/proof printing (<100 ppm after 1985, <200 ppm 1960-1985), printing cylinder preparation

(<30 ppm) and finishing (<30 ppm). When the three groups were examined together, no statistically
significant increases in overall cancer risk or risk for cancers at specific tissue sites were associated with
exposure to toluene. When analyzed by work area, a strong increase in mortality from bone and
connective tissue cancers was found in the workers from the highest exposure group (printers) based on a
small number of observed cases. SMRs for bone and connective tissue cancers were 8.1 (95% CI 1.4—
32.4; three cases) and 6.3 (95% CI 1.2-25.9; three cases), respectively. Wiebelt and Becker (1999) noted
that the significance of these findings is unclear as they have not been previously associated with toluene
exposure. Nonsignificant increases in mortality from lung cancer were observed in printers (SMR 1.3,
95% CI1 0.7-2.5) and finishers (SMR 1.8, 95% CI 0.8—4.4); however, the risk was greater in the group

with the lower toluene exposure levels.

Many of the other human epidemiological cancer studies showed positive associations between exposure
to toluene and cancer at one or more tissue site, but individuals were exposed to multiple chemicals in all
of these studies (Austin and Schnatter 1983; Blair et al. 1998; Carpenter et al. 1988; Gao et al. 2014;
Gérin et al. 1998; Heck et al. 2013, 2014, 2015; Lundberg and Milatou-Smith 1998; Olsson and Brandt
1980; Wen et al. 1985; Wilcosky et al. 1984). Nested case-control studies included studies of prostate
and brain cancer within cohorts of Texas petrochemical plant workers (Austin and Schnatter 1983; Wen
et al. 1985), of lung cancer, stomach cancer, and leukemia among U.S. rubber workers (Wilcosky et al.
1984), cancer of the central nervous system among a group of Tennessee nuclear facility workers
(Carpenter et al. 1988), prostate cancer and multiple myeloma among Swedish paint industry workers
(Lundberg and Milatou-Smith 1998), and multiple myeloma, nonHodgkin’s lymphoma, and breast cancer
among aircraft maintenance facility workers (Blair et al. 1998). Community-based case-control studies
report possible associations between Hodgkin’s disease in Swedish patients and controls (Olsson and

Brandt 1980), childhood leukemia in Chinese or Californian patients and controls (Gao et al. 2014; Heck
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et al. 2014), childhood retinoblastoma (but not neuroblastoma) in Californian patients and controls (Heck

et al. 2013, 2015), and esophageal and rectal cancer in Canadian patients and controls (Gérin et al. 1998).

Animal Studies. Inhalation cancer bioassays carried out in experimental animals have produced no
evidence to support toluene as a potential carcinogen. No increased incidences of treatment-related
neoplastic lesions were observed in Fischer 344 rats or B6C3F1 mice exposed to toluene concentrations
up to 1,200 ppm for 6.5 hours/day, 5 days/week for 2 years (Huff 2003; NTP 1990). Similar results were
reported for another study in which Fischer 344 rats were exposed to toluene concentrations up to

300 ppm 6 hours/day, 5 days/week for 2 years, but the maximum exposure concentration in this study was
likely below that necessary to approach a maximum tolerated dose (CIIT 1980; Gibson and Hardisty
1983). The NTP (1990) study was well conducted, achieved the maximum tolerated dose, and provides

evidence suggesting a lack of carcinogenicity of toluene in experimental animals.

3.2.2 Oral Exposure

Studies of the effects of oral exposure to toluene are limited. Only four case studies were located
regarding health effects in humans after oral exposure to toluene and there are only a minimal number of

animal studies.

3.2.2.1 Death

Human Case Study. Ingestion of approximately 60 mL (625 mg/kg) of toluene proved fatal for a 51-year
old male (Ameno et al. 1989). Death occurred within 30 minutes of ingestion. The autopsy results
revealed constriction and necrosis of the myocardial fibers, a markedly swollen liver, congestion and
hemorrhage of the lungs, and acute tubular kidney necrosis. The probable cause of death was determined

to be severe depression of central nervous system function.

Acute-Duration Animal Studies. The limited number of studies on the acute oral toxicity of toluene in
animals have focused on lethal effects. The acute oral LDso of toluene in adult rats ranged from 5.5 to
7.4 g/kg (Kimura et al. 1971; Smyth et al. 1969; Withey and Hall 1975; Wolf et al. 1956). Age may play
a role in determining the lethal dose for toluene. The LDs value for 14-day-old rats was 3.0 g/kg, which

is markedly lower than the adult values (Kimura et al. 1971).

Intermediate-Duration Animal Studies. Mice were more sensitive than rats to the lethal effects of

toluene in 13-week gavage studies. All rats and mice that received 5,000 mg/kg died within the first
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week. Mortality was also high for groups receiving 2,500 mg/kg with eight out of ten male rats, one out
of ten female rats, and with four out of ten male and female mice dying before the end of the study. A
dose of 1,250 mg/kg/day was lethal in 10% of female mice but no deaths occurred in male mice or in rats
of either sex (NTP 1990). LOAEL values from each reliable study for death in each species and duration
category are recorded in Table 3-3 and plotted in Figure 3-2.

3.2.2.2 Systemic Effects

Overview. Human data pertaining to the systemic effects of oral exposure to toluene are limited to four
case studies (Ameno et al. 1989; Caravati and Bjerk 1997; Einav et al. 1997; Malingre et al. 2002).
Animal data are also limited, but include evidence for cardiovascular, hematological, hepatic, renal, and
body weight effects in rats and mice exposed orally to toluene at dosage levels ranging from 312 to

2,500 mg/kg/day for 13 weeks (NTP 1990), hepatic effects in mice exposed to 105 mg/kg/day for 28 days
(Hsieh et al. 1989), and hepatic effects in rats exposed to 5,200 mg/kg/day for up to 45 days (Kamel and
Shehata 2008). However, no cardiovascular, hematological, hepatic, or renal effects were reported in rats
exposed to 590 mg/kg/day for 6 months (Wolf et al. 1956). Acute exposure to single doses >1,000 mg/kg
have resulted in cardiovascular and hepatic effects (Ayan et al. 2013; Gordon et al. 2010; Tas et al.
2013b). All systemic effects are discussed below. The highest NOAEL values and all LOAEL values
from each reliable study for systemic effects in each species and duration category are recorded in

Table 3-3 and plotted in Figure 3-2.

Respiratory Effects.

Human Case Studies. Lung congestion and hemorrhage were reported in one case report involving
lethal ingestion of approximately 625 mg/kg toluene by an adult male (Ameno et al. 1989). A 15-month-
old girl who accidently ingested paint thinner was intubated after presenting with severe central nervous
system depression (Malingre et al. 2002). Extubation the following day resulted in serious respiratory
stridor and bronchoscopy showed mucosal lesions and pronounced edema. The patient was re-intubated
for an additional 8 days. No residual damage was observed following extubation (Malingre et al. 2002).

No additional studies were located regarding respiratory effects in humans after oral exposure to toluene.

Animal Studies. No respiratory effects were reported in mice or rats after oral exposure to toluene at

dosage levels up to 2,500 mg/kg/day for 13 weeks (NTP 1990) or 590 mg/kg/day for 6 months (Wolf et
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Table 3-3 Levels of Significant Exposure to Toluene - Oral
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuetr;;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
ACUTE EXPOSURE
Death
1 Human once 625 (death in 30 minutes) ~ Ameno et al. 1989 Case report.
2 Rat NS )
5568 LD50 Kimura et al. 1971
(Sprague- ) ( young adult rat)
Dawley)
3 Rat NS .
6438 LD50 ad Kimura et al. 1971
(Sprague- (@) ( adult rat)
Dawley)
4 Rat NS .
2610 LD50 14-day- Kimura et al. 1971
(Sprague- (@) ( day-old rat)
Dawley)
5 Rat E\IGS) 7300 (LD50) Smyth et al. 1969
6 Rat Z’G”;?e 5580 M (LD50 adult rats) Withey and Hall 1975
7 Rat once

(Wistar) (G)

7000 (LD50 young adult rats) ~ Wolf et al. 1956
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. ; (Route) .
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
Systemic
8 Human once Resp 625 M (lung congestion and Ameno et al. 1989 Case report.
hemorrhage)
Cardio 625 M (necrosis of myocardial
fibers)
Gastro 625 M
Hepatic 625 M (enlarged liver)
Renal 625 M (acute tubular necrosis)
9 Rat once Hepatic 5200 M (Slight degeneration of Ayan et al. 2013
(Wistar) hepatocytes and
mononuclear cell
infiltration; increased
serum AST, ALT;
increased apoptosis)
10 Rat once Cardio 1200 M Gordon et al. 2007 Observed tachycardia
(Long- Evans) (GO) and hypertension
attributed to increased
locomotion; no change
in ECG.
11 Rat once .
Cardio 600 M 1000 M (6, 8, and 13% decrease Gordon et al. 2010
(Brown (GO) in relative heart weight in
Norway) young, middle aged, and

Bd Wt

aged rats)

1000 M
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Fi ; (Route) .
igure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
" ?Sa;rag e ?)?/de_19 Bd Wt 520 F (24% decrease in Gospe et al. 1994
ue- maternal body wt gain
Dawley)  (GO) y wt gain)

13 RaF once Cardio 5200 M (congestion, edema and Tas et al. 2013b
(Wistar) (©) apoptosis in cardiac

tissue)

14 Rat Gd 16-19 Hepatic 1250 F Warner et al. 2008 Hepatic NOAEL is for
(Sprague- (GO) maternal liver weight
Dawley) and histology.

Renal 1250 F (swollen tubules, tissue

adhesion to Bowman's
capsule, areas of
solidification within
glomeruli)

Bd Wt 1250 F
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. ; (Route) :
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
15 Mouse 14d Resp 600 F Burns et al. 1994 Endpoints examined:
(B6C3F1) (GO) organ weight and
histology, clinical
chemistry, hematology.
Hemato 600 F (increased reticulocytes)
Hepatic 600 F
Renal 600 F
Bd Wt 600 F
Immuno/ Lymphoret
16 Mouse 14 d 600 F Burns et al. 1994 Endpoints examined:
(B6C3F1) (GO) spleen and thymus
weight and histology,
bone marrow cell
count, immune
function. assays,
host-resistance assays
Neurological
v Human once 625 M (severe central nervous Ameno et al. 1989 Case report.
system depression)
b
18 Rat once 250 M (decrease in amplitude in Dyer et al. 1988
(Long- Evans) (GO) FEP N3 peak)
19 Rat once 400 M 800 M (increased locomotor Gordon et al. 2007

(Long- Evans) (GO)

activity)
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/

Key & Species Fr(%qouuiz)cy NOAEL Less Serious Serious Reference

Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments

20 Rat once 300 M 650 M (increased locomotor Gordon et al. 2010
(Brown (GO) activity)

Norway)

21 Rat once 2610 M (increase in motor Mehta et al. 1998
(Sprague-  (G) activity, lacrimation and
Dawley) salivation)

22 Mouse 14 d 600 F Burns et al. 1994 Endpoints examined:
(B6C3F1) (GO) brain weight and

histology.

Reproductive

23 Rat Gd 6-21 650 F Gospe and Zhou 2000 Endpoints evaluated:
(Sprague- (GO) litter size.

Dawley)

24 Rat Gd 16-19 1250 F Warner et al. 2008 Endpoints evaluated:
(Sprague- (GO) number of corpora
Dawley) lutea, implantations,

pre- and
post-implantation loss,
resorptions, and live
fetusesllitter.

25 Mouse ?d/d7_14 2350 F NIOSH 1983 Endpoints evaluated:
(CD-1) X number viable and

(GO)

totally resorbed litters.
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuiz)cy NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
26 Mouse Gd 8-12 1800 F Seidenberg et al. 1986 Endpoints evaluated:
(ICR) 5d litter size.
(G)
Developmental
27 Rat Gd 6-19 650 (delayed brain Gospe and Zhou 1998 Gd 19: decrea}sed brain
development of fetus) volume, cell size,
number of nuclei, and
myelination; Pnd 21:
decrease myelination
(no standard dev't
endpoints assessed).
28 Rat Gd 6-21 650 (decreased neurogenesis Gospe and Zhou 2000 Endpoints assessed:
(Sprague-  (GO) and altered migration of litter means for body
Dawley) cortical neurons during and brain weight,
development) generation and
migration of cortical
neurons.
29  Rat ?f,df"w 520  (9.4% reduction in fetal Gospe et al. 1994
(Sprague- weight)

Dawley) (GO)

30  Rat ?)3 d6‘19 650 (11.9% decrease in fetal Gospe et al. 1996
(Sprague- brain weights, 21%
Dawley) (GO) decrease in fetal weights,

delayed skeletal
ossification)
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Ff(aqouui’;;’y NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
31 Rat Gd 16-19 1250 (increased incidence of Warner et al. 2008
(Sprague-  (GO) grade 3 or 4 left renal
Dawley) pelvis dilation)
32 Mouse Gd 7-14 2350 NIOSH 1983 Endpoints evaluated:
(CD-1) 1x/d total litter weights,
(GO) number of viable and
totally resorbed litters,
number of live and
dead pups per litter.
33 Mouse Gd 8-12 1800 Seidenberg et al. 1986 Endpoints evaluated:
(ICR) 5d litter size, litter weight,
(G) external malformations

INTERMEDIATE EXPOSURE
Death
34  Rat 13 wk
(Fischer- 344) 5 diwk
1x/d

(GO)
35 Mouse 13 wk
(B6C3F1)  Sdiwk
1x/d

(GO)

2500 (8/10 males and 1/10

females died)

2500 M (4/10 died)
1250 F (1/10 died)

NTP 1990

NTP 1990

of dead neonates.
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Ff(aqouuigfy NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
Systemic
36 Rat' 45d Hepatic 650 M (increased levels of Kamel and Shehata 2008 Organ weight and
(albino) (G) markers for hepatic histology were not
apoptosis and oxidative assessed.
stress)
Renal 650 M (increased levels of

markers for renal
oxidative stress)
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuetr;;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mg/kg/day) (mg/kg/day) Chemical Form Comments
37 Rat 13 wk Endpoint luated:
R 2500 NTP 1990 ndpoints evaluated:
(Fischer- 344) 5 diwk esp body and organ weight,
1x/d organ histology,
(GO) hematology, clinical
chemistry, urinalysis.
Cardio 1250 M 2500 M (38% increase in relative
heart weight)
625 F
1250 F (11% increase in relative
heart weight)
Gastro 2500
Hemato 2500
Musc/skel 2500
Hepatic 312 M 625 M (8% increase in liver
weight)
625 F
1250 F (22% increase in liver
weight)
Renal 312 M 625 M (6% increase in kidney
weight)
625 F
1250 F (8% increase in kidney
weight)
Endocr 2500
Bd Wt 1250 M 2500 M (body weight 19% lower

than controls)
2500 F
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Table 3-3 Levels of Significant Exposure to Toluene - Oral

(continued)

186

Exposure/ LOAEL
Duration/
Key & Species Fr(%qouuetg;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
38 Rat 6 mo
R 590 F Wolf et al. 1956
(Wistar) 5 diwk esp
1x/d
(G)
Cardio 590 F
Hemato 590 F
Hepatic 590 F
Renal 590 F
39 Mouse 28d Hemato 105 M Hsieh et al. 1989
(CD-1) (W)
Hepatic 22M 105 M (significant increase in
liver weight [19%])
Renal 105 M
Bd Wt 105 M
© on W Hemato 84 M risien et al. 19502 NOAELS are fo organ
weight and gross
pathology.
Hepatic 84 M
Renal 84 M
Bd Wt 84 M
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Fi ; (Route) :
igure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
41 Mouse 28d Bd Wi 105 M Hsieh et al. 1990b
(CD-1) (W)
42 Mouse 28d Endocr 22M 105 M (increased serum Hsieh et al. 1991
(CD-1) (W) corticosterone and

ACTH)

Bd Wt 105 M
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
. ; (Route) .
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
43 Mouse 13 wk Endpoint luated:
R 2500 NTP 1990 ndpoints evaluated:
(B6C3F1) 5 diwk esp body and organ weight,
1x/d organ histology,
(GO) hematology, clinical
chemistry, urinalysis.
Cardio 2500 5000 (myocardial
degeneration)
Gastro 2500
Hemato 2500
Musc/skel 2500
Hepatic 625 M 1250 M (10% increase in relative
liver weight)
312 F (7% increase in relative
liver weight)
Renal 2500
Endocr 2500
Bd Wt 625 M 1250 M (body weight 16% lower
than controls)
2500 F
Immuno/ Lymphoret
44 Rat 13 wk 2500 NTP 1990 Endpoints evaluated:

(Fischer- 344) 5 diwk
1x/d

(GO)

spleen and thymus
weight and histology.
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key & Species Frequency NOAEL Less Serious Serious Reference
Figure (Strain (Route) i
g ( ) System  (mg/kg/day) (mg/kg/day) (mg/kg/day) Chemical Form Comments
C .
45 Mouse 28d 22 M 105 M (decreased thymus Hsieh et al. 1989
(CD-1) (W) weight; diminished
response in immune
assays)
C .
46 Mouse 28d 22 M 84 M (diminished response in Hsieh et al. 1990a
(CD-1) (W) immune assays)
c )
47 Mouse 28d 22 M 105 M (decreased interleukin-2 Hsieh et al. 1991
(CD-1) (W) immune response)
48 Mouse 13 wk Endpoint luated:
2500 NTP 1990 ndpoints evaluated:
(B6C3F1) 5 d/wk spleen and thymus
1x/d weight and histology.
(GO)
Neurological
49 Rat 15, 30, or 45 d 650 M (increased levels of Kamel and Shehata 2008
(albino) (G) markers for cortical and
cerebellar apoptosis and
oxidative stress)
50 Rat 13 wk 625 1250  (brain necrosis) NTP 1990 Endpoints assessed:

(Fischer- 344) 5 diwk
1x/d

(GO)

brain weight and
histology, clinical signs.
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)
Exposure/ LOAEL
Duration/
Key 6 Species Ff(aqouui’;;’y NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
51 Mouse ;:ijy\‘:vkk 625 M 1250 M (12% increase in relative 2500  (ataxia, hypoactivity, NTP 1990 Endpoints assessed:
(B6C3F1) brain weight) prostration) brain weight and
1x/d 1250 F histology, clinical signs.
(GO)
Reproductive
52 Rat 15,30, 0or45d 650 M (increased levels of Kamel and Shehata 2008 Reproductive organ
(albino) (G) markers for testicular weight and histology
oxidative stress) were not assessed.
Reproductive function
was not assessed.
53 Rat 13 wk Endpoint luated:
2500 NTP 1990 ndpoints evaluated:
(Fischer- 344) 5 d/wk organ weight and
1x/d histology; reproductive
(GO) function not assessed.
54  Mouse 13 wk 625M 1250 M (7% increase in relative NTP 1990 Endpoints evaluated:
(B6C3F1)  Sdlwk testicular weight) organ weight and
1x/d 2500 F histology; reproductive

(GO)

function not assessed.
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Table 3-3 Levels of Significant Exposure to Toluene - Oral (continued)

Exposure/ LOAEL

Duration/
Key 6 Species Fr(%qouu(ir;;:y NOAEL Less Serious Serious Reference
Figure (Strain) System (mg/kg/day) (mgl/kg/day) (mg/kg/day) Chemical Form Comments
Developmental
55 Mouse SSdO(f;; 21 106  (increased open-field Kostas and Hotchin 1981

(Hybrid) activity; lack of
(W) habituation)

a The number corresponds to entries in Figure 3-2.

b Used to derive an acute oral minimal risk level (MRL); dose (250 mg/kg/day) divided by an uncertainty factor of 300 (3 for use of a minimally adverse LOAEL, 10 for interspecies
differences in response, and 10 for human variability), resulting in an MRL of 0.8 mg/kg/day

¢ Used to derive an intermediate oral minimal risk level (MRL) along with 2 companion studies supporting a NOAEL of 22 mg/kg/day for immunological effects; dose divided by an
uncertainty factor of 100 (10 for interspecies differences in response and 10 for human variability), resulting in an MRL of 0.2 mg/kg/day

ACTH = adrenocorticotropic hormone; ALT = alanine amino transferase; AST = aspartate aminotransferase; Bd Wt = body weight; Cardio = cardiovascular; d = day(s); ECG =
electrocardiogram; Endocr = endocrine; F = Female; FEP = flash evoked potential; (G) = gavage; Gastro = gastrointestinal; Gd = gestational day; (GO) = gavage in oil; Hemato =
hematological; Immuno/Lymphoret = immunological/lymphoreticular; LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male; mo = month(s);
Musc/skel = musculoskeletal; NOAEL = no-observed-adverse-effect level; NS = not specified; Ppd = post-parturition day; Resp = respiratory; x = time(s); (W) = drinking water; wk =
week(s)



TOLUENE 192
3. HEALTH EFFECTS
Figure 3-2 Levels of Significant Exposure to Toluene - Oral
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Figure 3-2 Levels of Significant Exposure to Toluene - Oral (Continued)
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Figure 3-2 Levels of Significant Exposure to Toluene - Oral (Continued)
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Figure 3-2 Levels of Significant Exposure to Toluene - Oral (Continued)
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al. 1956). No changes in lung weight or histology were reported in female mice exposed to

600 mg/kg/day via gavage for 14 days, compared with controls (Burns et al. 1994).

Cardiovascular Effects.

Human Case Studies. One case study involving lethality in humans reported necrosis of myocardial
fibers after oral exposure to 625 mg/kg toluene (Ameno et al. 1989). Severe sinus bradycardia was
reported in a man who accidently ingested 30 mL of an organic solvent containing toluene and other
chemicals (Einav et al. 1997). No cardiovascular effects were reported in a 15-month-old girl following

ingestion of paint thinner (Malingre et al. 2002).

Acute-Duration Animal Studies. Cardiac edema and congestion were observed in rats given single
gavage doses of 5,200 mg/kg, compared with controls (Tas et al. 2013b). The number of TUNEL-labeled
cardiac cells were significantly increased by ~7-fold in treated rats and semi-quantitative caspase-3
labeling was increased, compared with controls, indicating increased apoptosis in heart tissue. Blood
levels of troponin T, a marker for ischemic heart damage, were also significantly increased 14-fold in
toluene-exposed rats, compared with controls. No significant changes in heart rate or blood pressure were

observed (Tas et al. 2013b).

In a multi-dose study, rats were given single oral doses of 0, 400, 800, and 1,200 mg/kg in random order,
with 72 hours between each dose (Gordon et al. 2007). Heart rate and blood pressure were significantly
elevated following the 800 and 1,200 mg/kg doses for ~1 hour, compared with the vehicle control dose;
however, these findings coincided with significant, dose-related increases in motor activity. Therefore,
they likely do not represent adverse cardiac effects of toluene exposure. No significant treatment-related
findings were observed in electrocardiograms (Gordon et al. 2007), indicating a 1,200 mg/kg NOAEL for

cardiac effects.

Transient increases in heart rate and motor activity were also observed in young, middle aged, and aged
rats following single gavage doses of 0, 300, 650, or 1,000 mg/kg, and no treatment-related
histopathological changes were observed in cardiac tissue in any age group (Gordon et al. 2010).
However, relative heart weights of young, middle aged, and aged rats given 1,000 mg/kg were
statistically significantly reduced by 6, 8, and 13%, respectively, compared with controls, indicating
adverse cardiac effects. Several changes in iron content, enzyme activities and mRNA levels for genes

involved in thrombosis, vasoconstriction, and inflammation were also noted in cardiac tissue by Gordon
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et al. (2010). Activity of aconitase was significantly decreased in the young and middle aged rats at
1,000 mg/kg, activity of ferritin was significantly increased in the middle aged rats at 1,000 mg/kg, and
activity of mitochondrial ubiquinone reductase was significantly increased in the middle-aged rats at
650 and 1,000 mg/kg. No exposure-related changes in other cardiac biochemical end points (superoxide
dismutase, glutathione transferase, glutathione, mitochondrial aconitase, mitochondrial isocitrate
dehydrogenase, or mitochondrial ferritin) were found. Additionally, cardiac mRNA levels for genes
involved in thrombosis, oxidative stress, vasoconstriction, and inflammation were assessed in cardiac
tissue from rats in the control and 1,000-mg/kg groups. Statistically significant alterations in mRNA
levels, compared with controls, included: decreased tissue factor (TF, a thrombosis marker) in exposed
young rats; increased macrophage inflammatory protein-2 (MIP-2, an inflammatory marker) and
decreased endothelin-1 and endothelin receptor-B (ET-1, ET-B, vasoconstriction markers) in exposed
middle-aged rats; and decreased MIP-2 and ET-1 in exposed aged rats. Overall, exposure-induced
changes in relative heart weight and in biochemical end points and gene expression in cardiac tissue did

not reveal clear age-related effects.

Intermediate-Duration Animal Studies. Increased relative heart weights were noted in rats exposed to
toluene at 1,250 mg/kg/day for 13 weeks and myocardial degeneration was present in mice exposed to
5,000 mg/kg/day (NTP 1990). All of the mice receiving 5,000 mg/kg/day died during the first weeks of
exposure. No effects on the weight or gross morphology of the heart were noted in rats receiving

590 mg/kg/day for 6 months (Wolf et al. 1956).

Gastrointestinal Effects. Gastric pain was reported by a man who accidently ingested 30 mL of an
organic solvent containing toluene and other chemicals (Einav et al. 1997). Gastrointestinal effects were

not reported in other case studies of oral exposure (Ameno et al. 1989; Malingre et al. 2002).

No gastrointestinal effects were reported in mice or rats after oral exposure to toluene at dosage levels up

to 2,500 mg/kg/day for 13 weeks (NTP 1990).

Hematological Effects. No studies were located regarding hematological effects in humans after

oral exposure to toluene.

There were no changes in erythrocytes, hemoglobin, hematocrit, leukocytes, mean corpuscular volume
(MCV), mean corpuscular hemoglobin (MCH), or mean corpuscular hemoglobin concentration (MCHC)

in female mice exposed to 600 mg/kg/day via gavage for 14 days, compared with controls (Burns et al.
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1994). However, reticulocytes were significantly increased by 87%, compared with controls (Burns et al.
1994). There were no changes in total erythrocytes in male mice administered 5—105 mg/kg/day toluene
in their drinking water for 28 days, although there was a nonsignificant decrease in the concentrations of
leukocytes, lymphocytes, and neutrophils (Hsieh et al. 1989). No significant changes were found in the
concentrations of erythrocytes, leukocytes, lymphocytes, or neutrophils in male mice administered 22 or
84 mg/kg/day toluene in their drinking water for 28 days, compared with controls (Hsieh et al. 1990a).
No effect on erythrocyte counts, leukocyte counts, or hemoglobin concentrations resulted in rats exposed
to 590 mg/kg/day for 6 months (Wolf et al. 1956). Neither rats nor mice given doses of 312—

2,500 mg/kg/day for 13 weeks displayed any compound-related differences in hematological parameters

(NTP 1990).

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after

oral exposure to toluene.

No musculoskeletal effects were reported in mice or rats after oral exposure to toluene at dosage levels up

to 2,500 mg/kg/day for 13 weeks (NTP 1990).

Hepatic Effects.

Human Case Studies. The liver of an adult male who died from toluene ingestion (625 mg/kg) was
found to be enlarged on autopsy (Ameno et al. 1989). Clinical chemistry did not reveal abnormal liver

function in a 15-month-old girl following accidental ingestion of paint thinner (Malingre et al. 2002).

Acute-Duration Animal Studies. Slight degeneration of hepatocytes and mononuclear cell infiltration
were observed in rats given single gavage doses of 5,200 mg/kg, compared with controls (Ayan et al.
2013). The number of TUNEL-labeled hepatic cells were significantly increase by ~6-fold in exposed
rats and semi-quantitative Bax and caspase-3 labeling was increased, compared with controls, indicating
increased apoptosis in hepatic tissue. Serum levels of AST and ALT were significantly increased in
toluene-treated rats by 119 and 60%, respectively, compared with controls (Ayan et al. 2013). However,
no alterations in liver weight or histology were reported in pregnant rats exposed to 1,250 mg/kg/day
toluene via gavage from GD 16 to 19 (Warner et al. 2008) or female mice exposed to 600 mg/kg/day

toluene via gavage for 14 days (Burns et al. 1994), compared with controls.
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Intermediate-Duration Animal Studies. In male mice, there was a significant increase in liver weight
after 28 days of ingestion of 105 mg/kg/day toluene in drinking water, but not at doses of 22 mg/kg/day
or lower (Hsieh et al. 1989). In a separate study, 22 or 84 mg/kg/day in drinking water for 28 days did
not alter liver weight in exposed male mice, compared with controls (Hsich et al. 1990a). Relative liver
weights increased significantly over control levels in mice administered toluene by gavage for 13 weeks
with doses >312 mg/kg/day in females and >1,250 mg/kg/day in males (NTP 1990). In female rats, the
liver weights were increased by exposure to doses >1,250 mg/kg/day and in male rats by exposure to
doses >625 mg/kg/day. No treatment-related gross or histopathological lesions of the liver were reported
by NTP (1990) in these 13-week studies. When rats were exposed for a longer duration, liver weights
were not affected and there were no treatment-related lesions in rats that received 590 mg/kg/day toluene

by gavage for 6 months (Wolf et al. 1956).

Increased hepatic cell apoptosis, indicated by increased caspase-3 activity, and changed markers of
oxidative stress were observed in the liver of rats exposed to 650 mg/kg/day via gavage for 45 days,
compared with controls (Kamel and Shehata 2008). Exposed rats showed significant increases in hepatic
levels of thiobarbituric acid reactive substances (end products of lipid peroxidation), glutathione disulfide,
and glutathione-S-transferase activities, as well as significantly decreased reduced glutathione levels and
glutathione reductase activities. Effects were more pronounced at 45 days than after 15 or 30 days of
exposure. No exposure-related changes were seen in hepatic activities of superoxide dismutase,

glutathione peroxidase, or the inflammation marker COX-2 (Kamel and Shehata 2008).

Renal Effects.

Human Case Studies. Acute tubular necrosis was reported after a lethal exposure to 625 mg/kg (Ameno
et al. 1989), and acidosis was noted in a nonlethal case report of thinner consumption (Caravati and Bjerk
1997). Clinical chemistry did not reveal abnormal kidney function in a 15-month-old girl following

accidental ingestion of paint thinner (Malingre et al. 2002).

Acute-Duration Animal Studies. Evidence for renal pathology was reported in dams exposed to

1,250 mg/kg/day toluene via gavage from GD 16 to 19 (Warner et al. 2008). Kidneys from toluene-
exposed dams demonstrated swollen tubules, tissue adhesion to Bowman’s capsule, and areas of
solidification within glomeruli that were not observed in control dams. No exposure-related changes
were observed in kidney weight. No changes in kidney weight or histology were reported in female mice

exposed to 600 mg/kg/day via gavage for 14 days, compared with controls (Burns et al. 1994).
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Intermediate-Duration Animal Studies. There were no changes in kidney weight for male mice
administered doses of 5—105 mg/kg/day in drinking water for 28 days (Hsieh et al. 1989, 1990a) or in
female mice given doses of 312-2,500 mg/kg/day by gavage for 13 weeks (NTP 1990). There was a
significant decrease in the absolute kidney weight for male mice administered 2,500 mg/kg/day for

13 weeks but no change in the relative kidney weight (NTP 1990). There were significant increases in the
relative kidney weights in male rats administered toluene doses >625 mg/kg/day by gavage for 13 weeks
and in females administered doses of 1,250 mg/kg/day (NTP 1990). In addition, lethal exposures of the
rats to 5,000 mg/kg/day resulted in hemorrhages of the urinary bladder. No effects on the weight or gross
morphology of the kidney were recorded for rats receiving 590 mg/kg/day toluene for 6 months (Wolf et
al. 1956).

Minor changes in several markers of oxidative stress were observed in kidneys of rats following exposure
to 650 mg/kg/day for 15, 30, or 45 days via gavage (Kamel and Shehata 2008). Exposure resulted in
significant increases in renal levels of thiobarbituric acid reactive substances and glutathione disulfide and
significantly decreased glutathione reductase activity, compared with controls. Effects were most
pronounced after 45 days of exposure. No exposure-related changes were seen in renal levels of reduced
glutathione or activities of superoxide dismutase, glutathione peroxidase, glutathione-S-transferase,

COX-2 or caspase-3 (Kamel and Shehata 2008).

Endocrine Effects. No studies were located regarding endocrine effects in humans after oral

exposure to toluene.

Serum corticosterone and ACTH levels were significantly elevated in male mice exposed to

105 mg/kg/day toluene in drinking water for 28 days, compared with controls (Hsieh et al. 1991). Levels
were not significantly elevated following exposure to 5 or 22 mg/kg/day. Microscopic examination
revealed no effects on the adrenal or thyroid glands in rats and mice administered 312-2,500 mg/kg/day

toluene by gavage for 13 weeks (NTP 1990).

Dermal Effects. No studies were located regarding dermal effects in humans or animals after oral

exposure to toluene.

Ocular Effects. No studies were located regarding ocular effects in humans or animals after oral

exposure to toluene.
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Body Weight Effects. No studies were located regarding body weight effects in humans after oral

exposure to toluene.

Acute-Duration Animal Studies. There were no dose-related changes in body weight for male rats
following single gavage administration of 0, 300, 650, or 1,000 mg/kg (Gordon et al. 2010). No body
weight effects were reported in female mice exposed to 600 mg/kg/day via gavage for 14 days, compared
with controls (Burns et al. 1994). There was also no change in maternal body weight gain in rat dams
exposed to 1,250 mg/kg/day toluene via gavage from GD 16 to 19, compared with controls (Warner et al.
2008). However, maternal weight gain was 24% lower in rats given 520 mg/kg/day toluene by gavage

from GD 6 to 19, compared with control rats (Gospe et al. 1994).

Intermediate-Duration Animal Studies. There were no changes in body weight for male mice
administered 5105 mg/kg/day toluene in their drinking water for 28 days (Hsieh et al. 1989, 1990a,
1990b, 1991). There was also no significant difference in body weights for female rats and female mice
given gavage doses of up to 2,500 mg/kg/day for 13 weeks (NTP 1990). However, body weights were
16% lower in male mice given 1,250 mg/kg/day and 19% lower in male rats given 2,500 mg/kg/day by
gavage for 13 weeks (NTP 1990).

3.2.2.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological effects in humans after oral exposure to toluene.

A series of studies investigated the effects of exposure to toluene in drinking water for 28 days on the
immune system end points in male mice (Hsieh et al. 1989, 1990a, 1991). Thymus weights, mixed
lymphocyte culture responses, and antibody PFC responses were decreased at doses of 105 mg/kg/day,
and mitogen-stimulated lymphocyte proliferation and IL-2 immunity were depressed by doses of 22 and
105 mg/kg/day, compared with controls (Hsieh et al. 1989). A dose of 5 mg/kg/day had no effect upon
any of these indicators of immune system function. In another study, IL-2 immune response was
significantly decreased only at 105 mg/kg/day (no other immune end points were evaluated) (Hsieh et al.
1991). In another study, antibody PFC responses were depressed at doses of 84 mg/kg/day, and mixed
lymphocyte culture responses were depressed at 22 or 84 mg/kg/day (Hsieh et al. 1990a). No significant
changes were observed in thymus weight, mitogen-stimulated lymphocyte proliferation, IL-2 immunity,

or cell-mediated cytotoxicity at doses up to 84 mg/kg/day (Hsieh et al. 1990a). Collectively, these studies
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support a NOAEL of 22 mg/kg/day for immune effects, as consistent immune effects were not observed
until dose levels of 84-105 mg/kg/day. No effects on the histology or weight of the spleen or thymus
were reported in rats and mice given gavage doses of up to 2,500 mg/kg/day toluene for 13 weeks (NTP
1990). The NOAEL of 22 mg/kg/day for immune effects based on the studies by Hsieh (1989, 1990a,
1991) was used as the basis for the intermediate-duration oral MRL (0.2 mg/kg/day) (see Section 2.3 and
Appendix A).

In an acute-duration 14-day study, neither diminished in vitro immune responses nor impaired host-
resistance was observed in female mice exposed to 600 mg/kg/day toluene via gavage, compared with
vehicle controls (Burns et al. 1994). Spleen and thymus weights and histology were also not altered in

exposed animals.

The highest NOAEL values and all LOAEL values for each reliable study for immunological effects in

each species and duration category are recorded in Table 3-3 and plotted in Figure 3-2.

3.2.2.4 Neurological Effects

Human Case Studies. Severe depression of central nervous system function was the probable cause of
death for a 51-year-old man who ingested approximately 60 mL (625 mg/kg) of toluene (Ameno et al.
1989). A man who accidently ingested 30 mL of an organic solvent containing toluene and other
chemicals was drowsy and complained of dizziness (Einav et al. 1997). In a nonlethal case study,
depressed consciousness, lethargy, hypotonia, and nystagmus were observed in a 15-month-old girl

following accidental ingestion of paint thinner (Malingre et al. 2002).

Acute-Duration Animal Studies. Male and female rats exposed to single gavage doses of 2,610, 3,915,
or 5,220 mg/kg exhibited changes on a variety of neurological tests (Mehta et al. 1998). Significantly
greater increases in motor activities were seen at all doses in both male and female rats on day 1; by day
14 after exposure, there were no significant differences, except for vertical motor activity in female rats
was significantly reduced at the 2,620 and 3,915 mg/kg/day doses. A dose-dependent increase in
abnormal gait was seen on day 1 for male rats at all doses, while female rats exhibited abnormal gait at
3,915 and 5,220 mg/kg. A dose-dependent increase in lacrimation and salivation was seen on day 1 for

both males and females at all doses (Mehta et al. 1998).



TOLUENE 203

3. HEALTH EFFECTS

Dose-related increases in motor activity were observed in rats given single oral doses of 0, 400, 800, and
1,200 mg/kg in random order, with 72 hours between each dose (Gordon et al. 2007). Changes were
transient in nature, lasting ~60 minutes, and were statistically significant at 800 and 1,200 mg/kg,
compared with the vehicle control. Similarly, transient dose-related increases in motor activity were
observed in young (4 months), middle-aged (12 months), and aged (24 months) male rats given single
gavage doses of 0, 300, 650, or 1,000 mg/kg (Gordon et al. 2010). Changes were only statistically
significantly increased in young rats given 650 or 1,000 mg/kg and aged rats given 1,000 mg/kg.

In another study, 24-month-old rats showed more pronounced increased horizontal activity in response to
single gavage doses of 650 or 1,000 mg/kg toluene than younger rats (1, 4, or 12 months of age)
(MacPhail et al. 2012).

Two studies have examined changes in oxidative stress markers (Kodavanti et al. 2011) and gene
expression (Royland et al. 2012) in rats following single gavage doses of 0, 650, or 1,000 mg/kg toluene,
but mechanistic understanding is inadequate to determine the biological adversity of the observed
changes. Kodavanti et al. (2011) measured levels of reactive oxygen species (NQO1, UBIQ-RD), total
antioxidant substances, enzymes involved in antioxidant homeostasis (super oxide dismutase, gamma-
glutamylcysteine synthetase, glutathione transferase, glutathione peroxidase, and glutathione reductase)
and markers of oxidative damage (total aconitase and protein carbonyls) in the frontal cortex, cerebellum,
striatum, and hippocampus of young, middle-aged, and aged rats 4 hours after single gavage doses of 0,
650, or 1,000 mg/kg toluene. Multiple indicators of oxidative stress were found to increase with toluene
exposure, but findings varied greatly between brain regions and age groups. Multivariate analysis
indicated that 12-month-old “middle-aged” rats were more susceptible to oxidative damage in the frontal
cortex and cerebellum than younger or older age groups (Kodavanti et al. 2011). Microarray analysis of
the hippocampi of young, middle-aged, and aged rats following single gavage doses of 0, 650, or

1,000 mg/kg indicated that only two genes reached a significant threshold (>1.25-fold, dose-related
change) with toluene exposure, but 56 genes demonstrated a significant age-toluene interaction (Royland
et al. 2012). Toluene-related genes were Lrpapl and Ralgps2, which are both associated with dementia
and Alzheimer’s. Age-toluene interaction genes include those involved in immune response,

cytoskeleton, protein and energy metabolism, and oxidative stress.

No changes in brain weight or histology were reported in female mice exposed to 600 mg/kg/day via

gavage for 14 days, compared with controls (Burns et al. 1994).
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Outer hair cell loss was observed in the area of the cochlea responsive to medium frequencies (10—

25 kHz) of rats exposed to 780 mg/kg toluene via gavage 5 days/week for 2 weeks (Gagnaire and
Langlais 2005). Apical and basal portions of the cochlea were spared. Cell counts were determined with
cochleograms and using electron microscopy, but the available report did not specify whether or not

unexposed controls were assessed in this study.

Single doses of 250-1,000 mg/kg administered by gavage to male rats caused a decrease in the FEP wave
pattern amplitudes (Dyer et al. 1988). This suggests that toluene may have an effect on the visual system

at high doses. The minimally adverse LOAEL of 250 mg/kg for the effects of FEP waveform was used as
the basis for the acute-duration oral MRL (0.8 mg/kg) (see Section 2.3 and Appendix A).

Intermediate-Duration Animal Studies. Brain levels of norepinephrine (NE), dopamine (DA), serotonin
(5-HT), and their respective metabolites, vanillylmandelic acid (VMA), homovanillic acid (HVA), and
5-hydroxyindolacetic acid (5-HIAA) were altered in six areas of the brain in male CD-1 mice
administered toluene (5-105 mg/kg/day) in their drinking water for a 28-day period (Hsieh et al. 1990b).
Significant increases of NE, DA, and 5-HT were present in the hypothalamus at all dose levels. The
maximum increase occurred with the 22 mg/kg/day dose and there were lesser increases for both the

5 and 105 mg/kg/day doses. Roughly similar fluctuations were seen in the concentrations of VMA and
HVA, which are metabolites of DA and NE, and 5-HIAA, a serotonin metabolite. In the corpus striatum,
the levels of DA and 5-HT were significantly increased at the two highest doses. The level of VMA was
also increased significantly at the same doses. In the medulla oblongata, the concentrations of NE, VMA,
and 5-HIAA were significantly increased at the 22 mg/kg/day dose, but not at the other doses, while the
levels of 5-HT were significantly increased at the 22 and 105 mg/kg/day doses. NE concentrations were
elevated in the midbrain. An additional study confirmed increased NE, but not VMA, in the
hypothalamus using the same protocol (Hsieh et al. 1991). Again, the maximum increase occurred with
the 22 mg/kg/day dose and there were lesser increases for both the 5 and 105 mg/kg/day doses (no other
neurotransmitters were examined). Due to the lack of dose response, lack of information on persistence
of changes, and unclear association with neurobehavior, it cannot be determined if these changes are
adverse. Therefore, a NOAEL/LOAEL was not established for the brain biochemical changes reported in
this study.

Exposure to 1,250 and 2,500 mg/kg/day for 13 weeks resulted in increased relative brain weights in male
mice (NTP 1990). Cellular necrosis was present in the hippocampus and cerebellum of rats exposed to

1,250 and 2,500 mg/kg/day, but increases in brain weight were only apparent with the 2,500 mg/kg/day
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dose (NTP 1990). Clinical signs in rats and mice exposed to 2,500 and 5,000 mg/kg/day included ataxia,
hypoactivity, prostration, and tremors. No neurological effects were seen in mice or rats at dose levels of

625 mg/kg/day (NTP 1990).

In a study of rats exposed to 0 or 650 mg/kg/day for 15, 30, or 45 days, exposed rats showed increased
caspase-3 activity and changed markers of oxidative stress in the cerebellum and cerebral cortex,
compared with unexposed controls (Kamel and Shehata 2008). Altered markers of oxidative stress
included increased levels of thiobarbituric acid reactive substances and glutathione disulfide, increased
activity of superoxide dismutase, and decreased levels of reduced glutathione and activities of glutathione
reductase and glutathione peroxidase. No changes were seen in the activities of glutathione-S-transferase

or the inflammation marker COX-2 (Kamel and Shehata 2008).

Studies examining neurotoxic effects of gestational exposure during critical periods of neurodevelopment

are discussed in Section 3.2.2.6, Developmental Effects.

The highest NOAEL values and all LOAEL values for each reliable study for neurological effects in each

species and duration category are recorded in Table 3-3 and plotted in Figure 3-2.

3.2.2.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after oral exposure to toluene.

There was no significant difference in the mean number of implantations per dam, corpora lutea per dam,
live fetuses per litter, the total number of resorptions per dam, or pre- or post-implantation loss in
pregnant rats exposed to 1,250 mg/kg on GDs 16—19, compared with controls (Warner et al. 2008).
Similarly, there was no effect on the number of mice producing viable litters following oral
administration of 2,350 mg/kg on GDs 7-14 (NIOSH 1983). Litter size was not changed in mice
administered 1,800 mg/kg on GDs 8—12 (Seidenberg et al. 1986) or rats administered 650 mg/kg on

GDs 6-21 (Gospe and Zhou 2000).

Increased relative testicular weights were reported in male mice exposed to 1,250 and 2,500 mg/kg/day
by gavage for 13 weeks (NTP 1990). However, no effects on the weight of the prostate, testes, uterus, or
ovaries were observed in rats or female mice exposed to 312-2,500 mg/kg/day (NTP 1990).

Reproductive performance was not evaluated in these 13-week studies.
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Changes in several biochemical markers of oxidative stress were observed in testes of rats following
exposure to 650 mg/kg/day for 15, 30 or 45 days via gavage (Kamel and Shehata 2008). Testicular levels
of glutathione disulfide were increased and levels of reduced glutathione and glutathione reductase
activity were significantly decreased, compared with control values. No exposure-related changes were
seen in activities of superoxide dismutase, glutathione peroxidase, or glutathione-S-transferase, levels of

thiobarbituric acid reactive substances or activities of COX-2 or caspase-3 (Kamel and Shehata 2008).

The highest NOAEL values and all LOAEL values for each reliable study for reproductive effects in each

species and duration category are recorded in Table 3-3 and plotted in Figure 3-2.

3.2.2.6 Developmental Effects

No studies were located regarding developmental effects in humans after oral exposure to toluene.

Toluene was not a developmental toxicant when administered orally to pregnant mice during the period of
organogenesis in two developmental screening studies (NIOSH 1983; Seidenberg et al. 1986). No
changes were observed in litter size, litter weight, or external malformations of dead neonates following
exposure to 1,800 mg/kg/day via gavage on GDs 812, compared with vehicle controls (Seidenberg et al.
1986). Similarly, no changes were observed in total litter weights, numbers of animals producing litters
and with totally resorbed litters, or number of live and dead pups per litter following exposure to

2,350 mg/kg/day via gavage on GDs 7—-14, compared with vehicle controls (NIOSH 1983).

In a comprehensive developmental toxicity study in rats, a statistically significant increase in the
incidence of a dilated renal pelvis in the left kidney was observed in fetuses from dams exposed to

1,250 mg/kg/day on GDs 16—19 via gavage, compared with controls (Warner et al. 2008). Renal pelvis
dilation was graded from 1 to 4, with grade 1 representing a normal kidney and grade 4 showing >50%
dilation. The incidence of fetuses with grade 3 or 4 dilated left and right renal pelvis in treated fetuses
was 14.6 and 12.4%, respectively, compared with respective control incidences of 5.5 and 8.9%.
Incidences of litters with fetuses with grade 3 or 4 renal pelvis dilation were 7/8 for left kidney for
exposed versus 2/8 in controls and 6/8 for right kidney in exposed versus 5/8 in controls. No changes
were observed in any other soft-tissue anomalies, malformations, skeletal variations, ossification, or fetal
body weight. Warner et al. (2008) also reported accelerated development of the cochlea in treated fetuses

accompanied by increased numbers of apoptotic cells in the cochlea, compared with controls. The
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biological significance of this finding is unknown. Based on the result of apoptosis analysis in the
cochlea, the investigators suggested that toluene may induce excessive cell death resulting in premature

maturation of the cochlea.

Following exposure of pregnant rats to gavage doses of 520 or 650 mg/kg/day toluene in corn oil on

GDs 6-19, fetuses showed significantly reduced body weight, delayed skeletal ossification, smaller brain
volumes, and decreases in forebrain myelination per cell compared with controls (Gospe and Zhou 1998;
Gospe et al. 1994, 1996). The difference in forebrain myelination was the only difference that remained
between exposed and control offspring by PND 21 (Gospe and Zhou 1998). Cortical cell proliferation
and migration were also altered in offspring following exposure of pregnant rats to gavage doses of

650 mg/kg/day toluene in corn oil on GDs 6—19 (Gospe and Zhou 2000). Cortical cell density was
significantly decreased by 12.5% in all layers of the cerebral cortex in toluene-exposed pups on PND 21,
compared with controls. The greatest decrease (26.8%) was observed in layer IV. Decreased density was
attributed to altered neurogenesis, as neurons labeled with bromodeoxyuridine (BrdU) from injections on

GDs 13-21 were decreased in numbers and exhibited altered migration patterns (Gospe and Zhou 2000).

Neurological development was assessed in mice exposed to 0, 4, 21, or 106 mg/kg/day toluene from

GD 0 through PND 55 (via their dams during gestation and lactation and drinking water thereafter)
(Kostas and Hotchin 1981). No exposure-related changes were observed in neonatal survival or growth,
attainment of physical landmarks (eye opening, pinnae detachment), surface righting, or startle-

response. Significantly decreased habituation (i.e., less activity with time in chamber) during a 20-minute
open-field activity assessment was observed in mice receiving 106 mg/kg/day toluene, compared with
controls. In controls, activity counts during the last 5 minutes of the trial were reduced by ~45%
compared with counts during the first 5 minutes; however, activity counts were only decreased by ~17%
in mice exposed to 106 mg/kg/day. Habituation was not altered in other exposure groups. Additionally,
rotorod performance was impaired during the first two of four consecutive trials in all exposed mice when
measured on PNDs 45-55, compared with controls. However, the effect on rotorod performance
diminished with increasing dose. Time spent on the rod in the 4, 21, and 106 mg/kg/day groups was
decreased by approximately 20, 16, and 8%, respectively, in trial 1 and by 27, 16, and 9%, respectively, in
trial 2, compared with controls. Although time spent on the rod was statistically significantly decreased
compared with controls at 4 and 21 mg/kg/day for trial 1, and at all exposures for trial 2, the changes are
interpreted to be of questionable exposure-related adversity because the magnitude of effect diminished
with increasing dose. The lack of impairments in the later trial may be due to compensation by the mice,

as suggested by the study authors. The NOAEL and LOAEL values for neurodevelopmental effects in
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this study are 21 and 106 mg/kg/day, respectively, based on increased open-field activity and lack of

habituation in high-dose mice.

The highest NOAEL values and all LOAEL values for each reliable study for developmental effects in

each species and duration category are recorded in Table 3-3 and plotted in Figure 3-2.

3.2.2.7 Cancer

No studies were located regarding carcinogenic effects in humans after oral exposure to toluene.

There is one oral study on the carcinogenic effects of toluene in animals. Toluene was administered at
doses of 500 and 800 mg/kg/day to male and female rats for 104 weeks (Maltoni et al. 1997). A nondose-
related increase in total malignant tumors in both males and females at all dose levels, in mammary gland
tumors in females at the lower dose, in head cancers in males at the higher dose and females at the lower
dose, in lymphomas and leukemias in males at the higher dose and females at both doses, were observed
(Maltoni et al. 1997). However, the increased incidences were not dose-related and confidence in the

study is low.

3.2.3 Dermal Exposure

There are limited data on the effects of dermal exposure to toluene. There are studies describing
occupational exposure of humans to toluene (see Section 3.2.1). Toxicokinetic data (Section 3.4) indicate
that humans and animals can absorb toluene across the skin. Studies of dermal exposure to toluene in

humans and animals are discussed below.

3.2.3.1 Death

No studies were located regarding lethal effects in humans or animals after dermal exposure to toluene.

3.2.3.2 Systemic Effects

Data are available regarding dermal effects in humans and animals after dermal exposure to toluene. No
studies were located regarding respiratory, cardiovascular, gastrointestinal, hematological, or musculo-
skeletal effects in humans or animals after dermal exposure to toluene. In addition, there are data on

hepatic, renal, and ocular effects in animals after dermal exposure to toluene. The highest NOAEL values
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and all LOAEL values for each reliable study for systemic effects in each species and duration category

are recorded in Table 3-4.

Hepatic Effects. No studies were located regarding hepatic effects in humans after dermal exposure

to toluene.

Application of 1 mL toluene to the skin of guinea pigs for 16 hours did not alter liver morphology
(Kronevi et al. 1979). Because only one dose of toluene was applied and more sensitive indicators of
liver toxicity were not monitored, conclusions cannot be derived regarding the hepatic effects of toluene

following dermal exposure.

Renal Effects. No studies were located regarding renal effects in humans after dermal exposure to

toluene.

Application of toluene to the skin of guinea pigs for 16 hours did not alter renal morphology (Kronevi et

al. 1979). The limitations of this study were discussed in the previous section.

Dermal Effects. In humans, dermal contact with toluene may cause skin damage because it removes
skin lipids (EPA 1983a). Workers exposed to mixtures of solvents, of which toluene was generally the
major component, reported problems with the skin of their hands (Winchester and Madjar 1986). The
specific symptoms associated with the reported skin abnormalities were not reported. Increased
complaints of itching and dermatitis of the hands was reported in in 38 female shoemakers who were
exposed to toluene vapor concentrations that varied from 65 ppm (15-100 ppm) in winter to 100 ppm
(10-200 ppm) in summer for an average of 40 months, compared with 16 controls (Matsushita et al.
1975). Eye irritation in humans occupationally exposed to toluene vapors has also been reported

(Meulenbelt et al. 1990).

Repeated application of undiluted toluene (amount unstated) to the rabbit ear or shaved skin produced
slight to moderate irritation (Wolf et al. 1956). In guinea pigs, continuous contact with toluene resulted in
shrinkage and dissolution of the cell nuclei, cellular edema, and cellular infiltration of the dermis
(Kronevi et al. 1979). Application of toluene to the skin of guinea pigs, 3 times/day for 3 days, resulted
in redness and an increase in epidermal thickness (Anderson et al. 1986). In mice, application of 25 uLL
undiluted toluene once weekly for 5 weeks to the dorsal surface of the ear lobe resulted in significant ear

swelling that peaked at 1 hour post application starting on week 2 (Saito et al. 2011). After the 5-week
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Exposure/ LOAEL
Duration/
Species Frequency Reference
(Strain) (Route) System NOAEL Less Serious Serious Chemical Form Comments
ACUTE EXPOSURE
Systemic
Gn Pig 3d o Anderson et al. 1986
(albino) 3x/d Dermal 10 M (skin irritation)
uL
Gn Pig 0.25-16 hr Hepatic 1 Kronevi et al. 1979
(albino)
mL
Renal 1
mL
Dermal 1 (karyopyknosis,
mL karyolysis, perinuclear
edema, spongiosis,
junctional separation,
cellular infiltration)
Rabbit once i
Ocular 01 (eye irritation) Exxon Chemical Co. 1962
mL
INTERMEDIATE EXPOSURE
Systemic
Mouse 5 wk Saito et al. 2011 No effect
Dermal ; ot o effects were
(BALBI/c) 1x/wk 25F  (swelling at application observed with diluted
uL site [ear lobe],

inflammatory cell
invasion)

preparations (25 or
50% in acetone).

d = day(s); F = Female; Gn pig = guinea pig; hr = hour(s); LOAEL = lowest-observed-adverse-effect level; M = male; NOAEL = no-observed-adverse-effect level; x = time(s); wk =

weeks(s)
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exposure, microscopic examination of the ears revealed marginal inflammatory cell invasion. No
significant dermal changes were observed following five applications of diluted toluene (25 or 50% in
acetone) (Saito et al. 2011). Collectively, these data suggest that undiluted toluene is slightly-to-

moderately irritating to the skin.

Ocular Effects. No studies were located regarding ocular effects in humans after dermal exposure to

toluene.

Slight irritation of the conjunctival membranes, but no corneal injury, was observed in rabbit eyes
following direct application of toluene (Exxon Chemical Co. 1962; Mobil Oil Corp. 1975; Wolf et al.
1956). Moderately severe injury to the eyes of rabbits following direct application of a 40% solution of
toluene has also been reported (Carpenter and Smyth 1946). These data suggest that toluene is slightly-

to-moderately irritating to the eyes.

No studies were located regarding the following effects in humans or animals after dermal exposure to

toluene:

3.2.3.3 Immunological and Lymphoreticular Effects
3.2.3.4 Neurological Effects

3.2.3.5 Reproductive Effects

3.2.3.6 Developmental Effects

3.2.3.7 Cancer

No studies were located for cancer effects in humans after dermal exposure to toluene.

Dermally administered toluene markedly inhibits skin tumorigenesis in the two-stage mouse model
utilizing phorbol-12-myristate-13-acetate (PMA) as a promoter (Weiss et al. 1986). The reduction in
tumorigenesis was observed in mice initiated with dermal applications of benzo(a)pyrene or
7,12-dimethylbenz(a)anthracene. The pattern of inhibition indicated that the observed effect was not
likely to be due to a direct chemical effect on the promoter. The authors speculated that toluene competed
for a PMA receptor site, interfered with a biochemical process within the cell membrane, or affected the

intracellular cascade between the membrane and the nucleus.
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3.3 GENOTOXICITY

Overview. There is no conclusive evidence to support that toluene is a genotoxic agent. Results from
human occupational exposure studies are inconsistent, and are limited by small cohort size (15—45/group),
lack of historical exposure monitoring, and (in some cases) concurrent exposure to other chemicals. Most
short-term in vivo tests in laboratory animals have not found genotoxic effects. Similarly, genotoxic
effects were not induced in the majority of in vitro assays. Results of in vivo studies and in vitro

genotoxicity studies are summarized in Table 3-5 and Table 3-6, respectively.

Human Occupational Studies. Multiple studies have assessed genotoxic end points in printers with
occupational exposure predominately to toluene; however, cohort sizes are small and the results are
inconsistent between studies. Chromosomal abnormalities (e.g., aberrations, breaks, gaps) have been
reported in peripheral lymphocytes of printers exposed to a median time-weighted air level of 150 mg/m?
(40 ppm) toluene per week (Nise et al. 1991), printers exposed to 104—1,170 ppm toluene and office and
technical workers exposed to 2.1-4.3 ppm plus 0-2 hours/day in the rotogravure workshop (Pelclova et
al. 1990), printers exposed to 30-1,550 mg/m? (8410 ppm) (Pelclova et al. 2000), and printers exposed
to 200-300 ppm toluene (Bauchinger et al. 1982), compared with unexposed referents. Examination of
former printers 4 months to 2 years after cessation of exposure to toluene found that more than 2 years
without exposure was necessary to remove a significantly higher incidence of chromatid aberrations in
workers than in never-exposed controls (Schmid et al. 1985). In other studies, exposure-related changes
in chromosomal abnormalities were not induced in printers exposed to 7—112 ppm toluene (Maki-
Paakkanen et al. 1980) or printers exposed to 56—-824 ppm toluene (Forni et al. 1971). Increased sister
chromatid exchanges have been reported in peripheral lymphocytes of printers exposed to 200-300 ppm
toluene (Bauchinger et al. 1982), printers exposed to a median air toluene concentration of 252 mg/m?

(67 ppm) (Hammer 2002; Hammer et al. 1998), and paint workers (toluene air levels not quantified; mean
urinary hippuric acid levels were 2.5-fold higher in workers compared with unexposed referents) (Priya et
al. 2015), compared with unexposed referents. In printers, the number of sister chromatid exchanges was
significantly correlated with urinary para-cresol levels and the urinary cresol/hippuric acid ratio (Hammer
2002); weak correlations with urinary hippuric acid and ortho-cresol were not significant (0.05<p<0.1).
When smokers were excluded, only the urinary cresol/hippuric acid ratio was significantly associated
with the number of sister chromatid exchanges (Hammer 2002). In other studies, exposure-related
changes in sister chromatid exchanges were not induced in peripheral lymphocytes from printers exposed

to 7-112 ppm toluene (Maki-Paakkanen et al. 1980), or printers exposed to 104—1,170 ppm toluene and



TOLUENE

3. HEALTH EFFECTS

Table 3-5. Genotoxicity of Toluene In Vivo

213

Species (test
system)

End point

Results Reference

Non-mammalian
cells:

Grasshopper
(vapor)

Mammalian cells:

Rats
(inhalation)

Human?
Human?
Humanb
Human?

Humana
Human?

Human?2
Human?
Human?2
Humanb
Human?

Humana

Humanb
Human?2
Human?
Humane
Human?2

Rats
(inhalation)

Mice
(inhalation)
Humand
Humant
Humant
Humant
Humant
Mice
(inhalation)
Mice
(inhalation)

Mitotic arrest in embryos (intact chorion)

Chromosomal aberrations in bone marrow cells

Chromatid breaks and gaps in peripheral lymphocytes
Chromosome changes in peripheral lymphocytes
Chromosomal aberrations in peripheral lymphocytes
Chromosome changes in peripheral lymphocytes

Chromosome gaps in peripheral lymphocytes

Aberrant cells and chromosome breaks in peripheral
lymphocytes

Aberrant cells in peripheral lymphocytes
Chromosome aberrations in peripheral lymphocytes
Chromatid exchanges in peripheral lymphocytes
Sister chromatid exchange in peripheral lymphocytes
Sister chromatid exchange in peripheral lymphocytes

Sister chromatic exchange in peripheral lymphocytes

Sister chromatid exchange in peripheral lymphocytes
Sister chromatid exchange in peripheral lymphocytes
Sister chromatid exchange in peripheral lymphocytes
Sister chromatid exchange in peripheral lymphocytes
Sister chromatid exchange in peripheral lymphocytes
DNA damage and repair in lymphocytes

DNA damage in blood, bone marrow and liver

DNA damage in peripheral lymphocytes
DNA damage in whole blood

DNA damage in leukocytes

DNA damage in whole blood

DNA damage in leukocytes

Micronuclei in erythrocytes

Micronuclei in bone marrow cells

Liang et al. 1983

Dobrokhotov and
Enikeev 1977

Bauchinger et al. 1982
Forni et al. 1971
Haglund et al. 1980

Maki-Paakkenen et al.
1980

Nise et al. 1991
Pelclova et al. 1990

Pelclova et al. 2000
Schmid et al. 1985
Bauchinger et al. 1982
Haglund et al. 1980

Hammer 2002;
Hammer et al. 1998

Maki-Paakanen et al.
1980

Pitarque et al. 2002
Pelclova et al. 1990
Priya et al. 2015
Richer et al. 1993
Schmid et al. 1985

Martinez-Alfaro et al.
2010

Plappert et al. 1994

Cok et al. 2004
Heuser et al. 2005
Heuser et al. 2007
Moro et al. 2012
Pitarque et al. 1999
Bird et al. 2010

Wetmore et al. 2008
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Table 3-5. Genotoxicity of Toluene In Vivo

Species (test

system) End point Results Reference

Humanb Micronuclei in buccal cells + Gonzalez-Yebra et al.
2009

Human® Micronuclei in peripheral lymphocytes and buccal cells - Heuser et al. 2005
Humanb Micronuclei in peripheral lymphocytes and buccal cells - Heuser et al. 2007
Humanb Micronuclei in buccal cells - Moro et al. 2012
Human?2 Micronuclei in peripheral lymphocytes + Nise et al. 1991
Humanb Micronuclei in peripheral lymphocytes + Pitarque et al. 2002
Mice Dominant lethal mutations in sperm cells - API 1981
(inhalation)
Human¢ Cell cycle delay, cell mortality in peripheral lymphocytes - Richer et al. 1993f

a0ccupational exposure to predominantly toluene (printers).

bOccupational exposure to mixed solvents (e.g., shoe makers, paint manufacturers).
¢Controlled exposure in healthy volunteers.

dIntentional exposure in chronic glue sniffers.

+ = positive result; — = negative result
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Table 3-6. Genotoxicity of Toluene In Vitro

Results
With Without
Species (test system) End point activation  activation Reference
Prokaryotic organisms:
Salmonella typhimurium (TA98, Gene mutation - - Bos et al. 1981
TA100, TA1535, TA1537,
TA1538)
S. typhimurium (TA98, TA100, Gene mutation - - Connor et al.
UTH8413, 8414) 1985
S. typhimurium (TA1535, Gene mutation No data - Nakamura et al.
PSK1002) 1987
S. typhimurium Gene mutation No data - Nestmann et al.
1980
S. typhimurium (TA98, TA100, Gene mutation - - NTP 1990
TA1535, TA1537)
Escherichia coli (P3478) Gene mutation No data - Fluck et al. 1976
Mammalian cells:
Human lymphocytes Sister chromatid  No data - Gerner-Smidt
exchange and and Friedrich
chromosomal 1978
aberrations
Human lymphocytes Sister chromatid  No data - NTP 1990
exchange and
chromosomal
aberrations
Human HL-60 cells DNA damage No data + Sarma et al.
2011
Human lymphocytes Micronuclei - - Zarani et al. 1999

+ = positive result; — = negative result
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office and technical workers exposed to 2.1-4.3 ppm plus 0-2 hours/day in the rotogravure workshop
(Pelclova et al. 1990). Additionally, increased sister chromatid exchange frequencies were not observed
in peripheral lymphocytes from former printers, 4 months to 2 years after cessation of exposure to
toluene, compared with never-exposed controls (Schmid et al. 1985). Lymphocytes from printers
exposed to a median time-weighted air level of 150 mg/m? (40 ppm) toluene per week were found to be
significantly more sensitive to the production of micronuclei after stimulation with pokeweed mitogen

than lymphocytes from unexposed controls (Nise et al. 1991).

Some studies indicate that exposure to rotogravure ink mist may contribute to genotoxic findings in some
rotogravure printers, as they are potential sources of polycyclic aromatic hydrocarbons from carbon black
(Hammer et al. 1998; Pelclova et al. 1990, 2000). However, printing inks were not mutagenic in

Salmonella typhimurium bacterial assays (Pelclova et al. 2000).

Evidence for genotoxicity in occupational studies of industries with exposure to toluene plus other
solvents is also inconsistent. Solvent exposure-related changes in chromosome aberrations or sister
chromatid exchanges in peripheral lymphocytes were not induced in Swedish paint industry workers
exposed to toluene air concentrations ranging from 1 to 1,257 mg/m® (1-334 mg/m?), compared with
matched controls (Haglund et al. 1980). Sister chromatid exchanges were also not increased in Bulgarian
shoe workers exposed to mean current TWA toluene concentrations of 76 or 236 mg/m? toluene (20 or
63 ppm), compared with unexposed referents (Pitarque et al. 2002). DNA damage, assessed by the
Comet assay, was increased in whole blood or leukocytes in Brazilian shoe workers exposed to solvent-
based adhesive (mainly toluene, air concentration not reported) (Heuser et al. 2005, 2007) and Mexican
painters exposed to unreported concentrations of toluene (Moro et al. 2012), compared with unexposed
controls. However, no exposure-related differences in DNA damage in leukocytes were found between
Bulgarian shoe workers exposed to 96.0-412.3 mg/m? toluene (28—121 ppm) and unexposed controls, as
assessed by the Comet Assay (Pitarque et al. 1999). Increased micronuclei induction was observed in
peripheral lymphocytes or buccal cells in Bulgarian shoe workers exposed to mean current TWA toluene
concentrations of 76 or 236 mg/m?’ toluene (20 or 63 ppm) (Pitarque et al. 2002) and Mexican shoe
workers exposed to median toluene air concentrations of 31.6 mg/m’ (8 ppm) (Gonzalez-Yebra et al.
2009), compared with controls. Using multivariate analysis of age, BMI, smoking, alcohol consumption,
exposure duration, and exposure levels of acetone, ethyl acetate, methyl ethyl ketone, and toluene in
Mexican shoe workers, the only variable statistically significantly associated with micronuclei induction

was toluene concentration (Gonzalez-Yebra et al. 2009). However, micronuclei induction was not
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associated with solvent exposure in Brazilian shoe makers exposed to solvent-based adhesive (Heuser et

al. 2005, 2007) or Mexican painters exposed to unreported concentrations of toluene (Moro et al. 2012).

Human Solvent Abuse Study. DNA damage, determined by the Comet assay, was significantly increased
in peripheral lymphocytes of chronic glue sniffers, compared with age-matched controls (Cok et al.
2004). However, when only nonsmokers were assessed, there was no difference in the mean total comet
score between glue sniffers and controls. Exposure levels are unknown; however, the mean value of the
hippuric acid and ortho-cresol excretion rates for glue sniffers were 73- and 1,582-fold higher,

respectively, than in controls.

Controlled Exposure Study. Toluene did not induce sister chromatid exchanges in lymphocytes of
volunteers exposed to 50 ppm airborne toluene for 7 hours/day for 3 days on three occasions at 2-week

intervals (Richer et al. 1993).

Animal Studies. Most in vivo tests in laboratory animals have not reported toluene-induced genotoxicity.
Toluene did not induce DNA damage in the blood, bone marrow, or liver of mice exposed to 500 ppm
toluene for 6 hours/day, 5 days/week for 8 weeks, as assessed by Comet assay (Plappert et al. 1994).
Similarly, DNA damage and repair were not induced in lymphocytes of rats exposed to paint thinner
composed of toluene, acetone, ethanol, isobutyl acetate, isobutanol, butyl glycol, ethyl-benzene, and
trimethylbenzene at toluene levels of 3,000 ppm twice daily for 15 minutes for 6 weeks, as assessed by
Comet assay and H>O, damage and repair (Martinez-Alfaro et al. 2010). Toluene did not induce
micronuclei formation in bone marrow cells or erythrocytes of mice following exposure to 100 ppm

6 hours/day for 8 days (Bird et al. 2010; Wetmore et al. 2008). Toluene did not induce dominant lethal
mutations in sperm cells of mice exposed to 400 ppm for 6 hours/day, 5 days/week for 8 weeks, but
female mice were not assessed for genotoxic effects (API 1981). In a Russian study, toluene was reported
to induce chromosomal aberrations in the bone marrow cells of rats following chronic inhalation exposure
(duration and concentrations not available) (Dobrokhotov and Enikeev 1977). Additionally, when
grasshopper (Melanoplus sanguinipes) embryos (chorion intact) were suspended in sealed containers and
exposed to toluene vapors of 0, 40,000, 200,000, 400,000, or 800,000 ppm for 16 hours, mitotic arrest
was induced at 200,000 ppm (higher concentrations were lethal) (Liang et al. 1983).

In vitro Studies. Toluene did not induce gene mutations in bacterial cells with or without metabolic
activation (Bos et al. 1981; Fluck et al. 1976; Connor et al. 1985; Nakamura et al. 1987; Nestmann et al.

1980; NTP 1990), sister chromatid exchange or chromosomal aberrations in human lymphocytes without
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metabolic activation (Gerrner-Smidt and Friedrich 1978; NTP 1990), or micronuclei in human
lymphocytes with or without metabolic activation (Zarani et al. 1999). DNA damage was increased in
human promyelocytic leukemia HL-60 cells treated with 1.14 and 2.74 nM toluene without metabolic
activation, compared with untreated controls, as evidenced by significant, dose-related increases in tail

moment in the Comet assay (Sarma et al. 2011).

3.4 TOXICOKINETICS

Overview. Studies with volunteers and laboratory animals indicate that toluene is rapidly absorbed from
the respiratory tract with less rapid absorption occurring in the gastrointestinal tract and skin (Bushnell et
al. 2007; Nadeau et al. 2006; Pyykko et al. 1977; Sullivan and Conolly 1988; Thrall and Woodstock
2002; Thrall et al. 2002a). Studies with animals exposed by inhalation or oral routes showed that
absorbed toluene is distributed widely to tissues throughout the body with preferential distribution to
adipose tissue, brain, bone marrow, liver, and kidney. Absorbed toluene is distributed in pregnant
animals, as well as to the developing fetus. The primary initial steps in toluene metabolism in humans
and laboratory animals are side-chain hydroxylation (to form benzyl alcohol) catalyzed predominantly by
the cytochrome P450 (CYP) isozyme, CYP2E1 (Nakajima and Wang 1994; Nakajima et al. 1991, 1992a,
1992b, 1993, 1997; Tassaneeyakul et al. 1996) followed by oxidation to benzoic acid. Most of the
benzoic acid is then conjugated with glycine to form hippuric acid, but a small portion can be conjugated
with UDP-glucuronate to form the acyl-glucuronide. Studies with volunteers and human liver
microsomes indicate that a very small portion (<1-5%) of absorbed toluene can be converted by
CYP1A2, CYP2B2, or CYP2EI to ortho- or para-cresol, which are excreted in the urine as sulfate or
glucuronate conjugates (Baelum et al. 1993; Nakajima et al. 1997; Tassaneeyakul et al. 1996). In both
humans and rats, up to about 75-80% of inhaled toluene that is absorbed can be accounted for as hippuric
acid in the urine (Lof et al. 1993; Wang and Nakajima 1992). Remaining absorbed toluene is excreted
unchanged in exhaled air and urine and as conjugates of minor metabolites in urine (Ducos et al. 2008;
Janasik et al. 2008, 2010; Lof et al. 1993; Ogata 1984; Pierce et al. 2002; Tardif et al. 1998). Analyses of
kinetic data for toluene concentrations in blood, exhaled breath, adipose tissue, or urine following
inhalation exposure of humans indicate that most absorbed toluene is rapidly eliminated from the body
and that a smaller portion (that which gets into adipose tissues) is slowly eliminated (Janisik et al. 2008;
Leung and Paustenbach 1988; Lof et al. 1993; Nise et al. 1989; Pellizzari et al. 1992; Pierce et al. 1996,
1999, 2002). For example, elimination kinetics for toluene-exposed workers have been described by a
three-phase elimination model with half-times of 9 minutes, 2 hours, and 90 hours for toluene in blood

and a single median elimination half-time of 79 hours for toluene in fat (Nise et al. 1989). In a study of
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volunteers exposed by inhalation to about 50 ppm for 4 hours, a two-phase decline of urinary toluene

concentration was observed with half-lives of 0.88 and 12.9 hours (Janisik et al. 2008).

3.4.1 Absorption

3.4.1.1 Inhalation Exposure

In humans exposed to 80 ppm toluene, uptake was rapid as shown by the appearance of toluene (2—

5 umol/L) in the blood within 10-15 minutes of exposure (Hjelm et al. 1988) and by a high correlation
between the alveolar and arterial concentrations of toluene both during and after exposure (Carlsson
1982). About 50% of deuterium labeled toluene was absorbed from the lungs in volunteers exposed to

53 ppm for 2 hours during a period of light exercise (Lof et al. 1993). Seven humans exposed to 50 ppm
toluene in a closed chamber showed an average retention of 83% of the inspired concentration (Benoit et
al. 1985). In volunteers exposed to 50 ppm toluene for 7 hours while exercising or at rest, concentrations
of toluene in expired air and ortho-cresol (a toluene metabolite), in urine collected at the end of exposure
were higher during exercise than during periods at rest (~140-200% increase for blood concentrations and
~120% increase for urinary ortho-cresol) (Nadeau et al. 2006). The results are indicative of higher rates

of uptake (and excretion) of inhaled toluene during exercise than at rest.

Toluene was rapidly absorbed via the lungs of rats; the log concentrations of toluene in the blood and
brain were linear functions of the log concentration of toluene in the air (Benignus et al. 1984). In dogs,
toluene was found in the arterial and venous blood 2 minutes after the start of exposure (Hobara et al.
1984b). Toluene concentrations in blood and brain increased rapidly during 60-minute inhalation
exposures of physically active and sedentary rats to 2,000 ppm (Bushnell et al. 2007). Physical activity
during inhalation increased the uptake of toluene into the blood and brain. After 60 minutes of exposure,
physically active rats showed toluene concentrations in blood and brain that were ~26 and ~40% higher,

respectively, than concentrations in sedentary rats (Bushnell et al. 2007).

No information was located regarding possible differences in absorption of inhaled toluene by humans or

animals with differences in age.
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3.4.1.2 Oral Exposure

Complete gastrointestinal absorption of toluene in human subjects was indicated by monitoring exhaled
air for toluene and urine for toluene metabolites (hippuric acid and ortho-cresol) following oral admin-
istration of toluene as a 2 mg/min infusion for 3 hours through a feeding tube into the stomach (Baelum et
al. 1993). Absorption of orally administered toluene has also been observed in rats, but oral absorption
rates appear to be slower than pulmonary absorption (Pyykko et al. 1977; Sullivan and Conolly 1988). In
these rat studies, maximum blood concentrations were observed 1.5-3 hours after gavage administration,

whereas maximum blood levels following inhalation were reached in 15-30 minutes.

No statistically significant differences between physically active and sedentary rats were found in the time
course of the increase of concentrations of toluene in blood and brain following administration of single
gavage doses of ~800 mg/kg (Bushnell et al. 2007). Comparison with results from inhalation exposure
suggests that physical activity may not influence the uptake of orally administered toluene to the same

degree that it influences uptake of inhaled toluene.

Ingestion of soil contaminated with toluene can be a concern at hazardous waste sites. Binding to soil
does not prevent absorption. The time course for absorption of toluene mixed with sandy soil or clay soil
was increased when compared to the time course for pure toluene, but the total amount absorbed was the

same based on the area under the blood toluene concentration curve (Turkall et al. 1991).

Studies with brush border membrane vesicles isolated from rat intestines and exposed to toluene indicate
that toluene absorption occurs through the lipophilic matrix of the membrane (Alcorn et al. 1991). The
removal of proteins from the membrane surface had no effect upon the toluene partition coefficient, but
factors affecting the nonesterified membrane fatty acids reduced absorption. In this same in vitro study of
membrane partitioning, vesicles harvested from the proximal, middle, and distal intestinal segments
showed no differences, indicating that concentration and surface area, rather than membrane structure, are
the factors determining the amount of toluene absorbed from each portion of the small intestines. Since
toluene absorption occurs through the lipid matrix of the membrane, absorption can occur through the
mouth and stomach, as well as the small intestines. The amount of toluene absorbed from each organ of
the gastrointestinal tract will depend on residence time, absorptive surface area, and partitioning between

membrane lipids and lipids in the gastrointestinal tract.
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No information was located regarding possible differences in absorption of ingested toluene by humans or

animals with differences in age.

3.4.1.3 Dermal Exposure

Results from early studies indicated that toluene is absorbed slowly through human skin (Dutkiewicz and
Tyras 1968). The rate of absorption of toluene in human forearm skin was found to range from 14 to

23 mg/cm?/hour. EPA (1992b) estimated a human dermal permeability coefficient, Kp, of 1 cm/hour,
based on these data. Based on these estimates, Brown et al. (1984) calculated that bathing in water
containing 0.005-0.5 mg toluene/L (15 minutes/day) would result in absorbed dermal dose ranges of
0.0002—0.02 mg/kg/day for a 70-kg adult and 0.0004-0.04 mg/kg/day for a 10.5-kg infant. Transdermal
uptake of toluene directly from the air is expected to be low, accounting for 1-2% of the total body

burden received following exposure to toluene vapors (Brooke et al. 1998; Weschler and Nazaroff, 2014).

Soaking the skin of two volunteers with toluene for 5 minutes resulted in a maximum concentration of
toluene in blood of 5.4 pmol/L (Aitio et al. 1984). Individual differences were marked, and dramatic
changes in blood concentrations were observed over short periods of time. Similar individual differences

and highly variable results were reported by Sato and Nakajima (1978) in a study using five volunteers.

Monster et al. (1993) investigated dermal absorption of toluene in 6 rotogravure printing workers. The
workers washed their hands with toluene for 5 minutes, and alveolar air samples were collected up to
24 hours after exposure. The concentrations measured the next morning in exhaled air ranged between

0.5 and 10 mg/m’, clearly demonstrating dermal absorption of toluene.

Dermal permeability coefficients were estimated for human subjects wearing swimsuits who were
submerged to neck level for up to 25-30 minutes in warm tap water initially containing 500 pg/L toluene
(Thrall et al. 2002a). Subjects were provided purified breathing air, and exhaled breath was continuously
analyzed for toluene before, during, and after exposure to track the absorption and exhalation of toluene.
A human PBPK model, modified from a rat model for dermal absorption (Thrall and Woodstock 2002),
was fit to each exhalation time course dataset to estimate a dermal permeability coefficient, Kp.
Estimated Kp values (n = 6) ranged from 0.03 to 0.020 cm/hour, with an average value of 0.012 (standard
deviation [SD]=0.007) cm/hour. In a second phase involving dermal and inhalation exposure, subjects
breathed room air while they were submerged, and exhaled breath was collected and analyzed. Transient

peak concentrations of toluene in exhaled breath occurred earlier and were about 50% greater than levels
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during dermal-only exposure; these observations are consistent with a more rapid absorption through the
respiratory tract than through skin. Thrall et al. (2002a) concluded, based on room air monitoring data
and comparison of exhaled breath profiles for dermal-only and dermal+inhalation exposures, that
inhalation exposure to volatilized toluene under these conditions was transient and contributed little to the

overall total body from bathing in toluene-contaminated water.

Toluene in aqueous solution and neat toluene were absorbed through the skin of rats (Morgan et al. 1991).
Three solution strengths (0.162, 0.333, and 0.448 mg/L) were tested. Although the blood toluene levels
for each strength were near the analytical detection limits, the results of this study indicate that toluene

absorption was significant, since only 1% of the body surface was exposed.

A dermal permeability coefficient, Kp, of 0.74 cn/hour (SD=0.005) was measured for male F344 rats
exposed under occluded conditions to aqueous toluene solutions of 0.5 or 0.2 mg/mL applied to a 2.5-cm
diameter patch of clipper-shaved skin on the back (Thrall and Woodstock 2002). Immediately following
application, individual rats were placed in an off-gassing chamber, and exhaled breath of toluene was
monitored continuously as chamber concentrations. Rapid absorption was indicated with peak chamber
concentrations noted within 1-1.5 hours after exposure started; chamber concentrations showed steady
declines thereafter through 4-5 hours. Based on amounts of toluene remaining on the skin at the end of
exposure, average percentage absorptions of the applied doses were 45 and 42%, respectively, for the
low- and high-dose levels (1.75 and 4.14 mg/kg). Using a method similar to Thrall et al. (2002a), a
PBPK model was used to estimate a Kp for each exhaled breath dataset; the average Kp value across

datasets was 0.074 cm/hour (SD=0.005).

Dermal absorption also occurs when animals are exposed to toluene vapors. In nude mice exposure to
300, 1,000, or 3,000 ppm toluene under conditions where there was no respiratory intake of toluene, led to
a dose-related and duration-related increase in whole body toluene levels (Tsuruta 1989). The calculated
skin absorption coefficient was 1.24 cm/hour. The skin absorption rate for the 300 ppm concentration
was 0.0009 mg/cm?/hour; for the 1,000 ppm concentration, it was 0.0046 mg/cm*hour; and for the

3,000 ppm concentration, it was 0.0144 mg/cm*/hour. Exposure of guinea pigs to an unspecified
concentration of toluene for 1 minute, with the skin wiped dry and 1 minute exposures continuing every
30 minutes, for 4 hours, resulted in lower levels of toluene absorption than with continuous exposure for

4 hours (Boman et al. 1995).



TOLUENE 223

3. HEALTH EFFECTS

No information was located regarding possible differences in absorption of dermally applied toluene by

humans or animals with differences in age.

3.4.2 Distribution
3.4.2.1 Inhalation Exposure

There is a positive correlation between the levels of toluene in alveolar air and the levels in blood in both
humans and animals (Hjelm et al. 1988; Lof et al. 1990; Ovrum et al. 1978). With an exposure in humans
of 80 ppm toluene for 4 hours, toluene levels in the blood reached a plateau of 6—7 pmol/L at
approximately 2 hours (Hjelm et al. 1988; Lof et al. 1990). In humans, the toluene is distributed between
the plasma and red blood cells at approximately a 1:1 ratio according to in vitro data; in rats, the ratio is
1:2 based on in vivo data (Lam et al. 1990). In the red blood cells, toluene appears to be associated with
hemoglobin rather than the cell membrane. It is hypothesized that toluene interacts with the hydrophobic
core of the heme protein. The interaction of the toluene with the red blood cell increases the amount of
toluene that can be accommodated by the aqueous blood medium and facilitates transport of toluene to all
areas of the body (including the brain) at a rate that is greater than if toluene was transported only in the

plasma.

Autopsies of toluene-exposed humans indicate that absorbed toluene is distributed to lipid-rich and highly
vascular tissues such as the brain. For example, toluene levels in the brain and liver of a 16-year-old male
who died following an episode of glue sniffing were 297 and 89 pg/mg, respectively (Paterson and
Sarvesvaran 1983). Concentrations in the blood were 20.6 pg/mL of toluene and 3.0 ug/mL of acetone.
In a man who died following a fall while exposed to toluene during painting, tissue levels of toluene in

blood, lung, liver, and brain were 48, 35, 65, and 80 pg/g, respectively (Takeichi et al. 1986).

Within the human brain, toluene has a greater affinity for areas of the brain that contain lipid-rich white
matter, such as the brain stem, rather than the areas with larger amounts of gray matter (Ameno et al.
1992). The hippocampus and cerebellum had lower brain: blood toluene ratios than the spinal cord,
midbrain, medulla oblongata, and pons. The brain stem controls many involuntary aspects of cardiac,

respiratory, and vasomotor function.

Concentrations of toluene in subcutaneous adipose tissue of male subjects exposed during rest or physical
exercise to 300 mg/m? of toluene were determined (Carlsson and Ljungquist 1982). After exposure at rest

for 2 hours, the mean concentration of toluene in adipose tissue was 0.7 mg/kg. The corresponding value
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after 2 hours of work was 9.9 mg/kg. Linear regression analysis indicated that toluene concentrations in

adipose tissue were lower in subjects with large amounts of body fat.

The human data for distribution to the brain are supported by autoradiography studies using mice.
Immediately after inhalation, a high level of radioactivity was found in the body fat, bone marrow, spinal
nerves, spinal cord and white matter of the brain of exposed mice (Bergman 1983). Radioactivity was
also observed in the blood, kidney, and liver at lower levels. Autoradiography of mice sacrificed
immediately after the cessation of exposure revealed a very high concentration of nonvolatile
radioactivity in the kidney, particularly the medullary region. Nonvolatile radiation found in the liver and

kidney suggests rapid formation and excretion of toluene metabolites.

A one-compartment model was developed for blood and whole-brain toluene levels based on data from
rats exposed to 575 ppm toluene for up to 240 minutes (Benignus et al. 1981). Estimated saturation
asymptotes were 10.5 ppm for venous blood and 18.0 ppm for brain, respectively. Blood and brain levels
achieved 95% of their estimated asymptotes in 53 and 58 minutes, respectively. The distribution half-life
for a 30-minute exposure of rats to 2,000 ppm toluene was 0.34 hours, while that for exposure to

10,000 ppm was 0.6 hours (Ameno et al. 1992).

Toluene was rapidly distributed to the tissues in rats after 1, 2, or 3 days of exposure to 100 ppm for

12 hours per day (Zahlsen et al. 1992). Homeostasis was attained in 1 day for the kidney, brain, and liver,
whereas toluene concentrations continued to increase in perirenal fat deposits. Once exposures ceased,
toluene concentrations declined within 12 hours to near baseline levels for all tissues except in fat. The
toluene in rat brains was distributed to the brain stem and midbrain (Ameno et al. 1992), a distribution
that parallels that observed in humans and mice (Ameno et al. 1992; Bergman 1983). These regions have

a high concentration of white matter.

Toluene was detected in blood, brain, auditory nerves, and the organ of Corti, but not in cerebrospinal
fluid or inner ear fluids sampled from rats immediately following inhalation exposure to 1750 ppm

toluene for 10 hours (Campo et al. 1999).

In mice exposed nose-only to 0, 0.9, 9, 50, or 90 ppm toluene for 30 minutes, toluene concentrations in
the hippocampus showed statistically significant (p<0.05) concentration-dependent increases after
exposure to air concentrations >9 ppm, compared with control values (Nakajima et al. 2006). This study

used a solid-phase microextraction fiber inserted into the hippocampus and gas chromatography and mass
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spectrometry to determine brain concentrations in mice. Examination of mice exposed to 50 ppm toluene
showed that toluene concentrations in the brain returned to control levels 60 minutes after exposure

ceased.

Toluene distribution to several tissues was followed in dogs exposed through inhalation of 30,000 ppm
toluene from a plastic bag for 10 minutes. The toluene level in the arterial blood was 129+54.8 pg/mL
while that in the venous blood was 112+48.5 pg/mL. The liver and brain contained roughly equivalent
concentrations of toluene (184 and 191 pg/g), while the toluene in the kidneys was 99 ng/g (Ikeda et al.
1990).

Distribution of toluene (assayed by autoradiography and tissue concentrations of radioactivity) in
pregnant mice was also characterized by preferential uptake in maternal lipid-rich tissues (brain and fat)
immediately after 10-minute inhalation exposures to '*C-labeled toluene at approximately 2,000 ppm
(Ghantous and Danielsson 1986). It was thought that toluene, due to its high lipid solubility and low
molecular weight, might easily transfer across the placenta, but concentrations of radioactivity in fetal
tissues were only about 4% of concentrations in maternal brain and adipose tissue immediately after
exposure, and rapidly decreased within 4 hours of cessation of exposure. These results suggest that
absorbed toluene is preferentially distributed to maternal adipose tissues in pregnant mice and that
distribution to the developing fetus is limited with short-term exposure to the relatively high (compared
with occupational exposures) concentration of 2,000 ppm. This concentration, however, is low compared
with concentrations experienced by toluene abusers (4,000—12,000 ppm as cited by Gospe et al. 1994).
Ghantous and Danielsson (1986) suggested that the lower lipid content in fetal tissue compared with

maternal tissue could explain the low uptake of toluene into fetal tissue.

Following repeated inhalation exposure of pregnant rats to 8,000 or 12,000 ppm for 15, 30, or 45 minutes
twice daily from GD 8 through GD 20, measurable concentrations of toluene were found in the placenta,
amniotic fluid, and fetal brain collected from exposed dams on GD 20 (Bowen et al. 2007). Regardless of
daily exposure regimen or exposure level, amniotic fluid concentrations were ~<10% of concentrations in
GD 20 maternal saphenous blood samples. Concentrations in fetal brain were similar to maternal
saphenous blood concentrations at GD 20, whereas concentrations in placenta were higher.
Concentrations of toluene in maternal cerebellum, liver, kidney, and heart tissue on GD 20 (but not lung)
were higher than concentrations in GD 20 maternal saphenous blood. The results, consistent with those

of Ghantous and Danielsson (1986), indicate that toluene was transported to the fetal brain, and that fetal
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brain concentrations were similar to maternal blood levels, but were lower than maternal brain

concentrations.

No studies were located that examined in vivo distribution of toluene into breast milk in humans or
animals. Although breast milk is high in lipid content, it is unknown if there may be preferential uptake
of toluene into other maternal lipid-rich tissues. A published estimate of the human milk/blood partition
coefficient for toluene, 2.68, was lower than estimates of coefficients for partitioning of toluene between
other tissues and human blood, including liver or highly perfused tissues/blood (4.91) and fat/blood
(60.01) (Fisher et al. 1997). Transfer from blood to a tissue, however, is also dependent on the rate of
perfusion of the tissue with blood. Fisher et al. (1997) used these partition coefficient values in a
physiologically-based pharmacokinetic (PBPK) model designed to predict transfer of volatile chemicals
into breast milk, but human or animal pharmacokinetic data for lactational transfer of toluene were not

available to validate or modify the model.

Coexposure of rats to xylene increased the concentrations of toluene in the blood and brain in the

19 hours after exposure as compared to exposure to toluene alone (Tardif et al. 1992). This was,
apparently, the result of suppressed toluene metabolism because of competition between toluene and
xylene for active sites on enzymes responsible for metabolizing both compounds. Pulmonary excretion of
toluene was also decreased when exposure to both compounds occurred. As a result, the half-lives for

both toluene and xylene were increased.

Blood and brain toluene levels in rats exposed to 2000 or 4000 ppm for 4 hours during daylight were
significantly higher at the end of exposure and 40 minutes after the cessation of exposure than in animals
exposed in the dark (Harabuchi et al. 1993). This suggests that circadian rhythms may have an influence

on toluene absorption, distribution, and excretion.

3.4.2.2 Oral Exposure

In one human who died 30 minutes after ingestion of 625 mg/kg toluene, the liver was found to have the
highest concentration of toluene (433.5 pg/g) followed by the pancreas (88.2 ug/g), brain (85.3 pg/g),
heart (62.6 ug/g), blood (27.6 ng/g), body fat (12.2 pg/g), and cerebrospinal fluid (11.1 pg/g) (Ameno

et al. 1989). The short interval between toluene exposure and death limited the distribution of the toluene

to the peripheral body tissues.
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When rats were orally exposed to 400 mg/kg toluene, the peak concentration in the blood occurred
1.5 hours after exposure (Ameno et al. 1992). In the brain, the highest brain: blood toluene ratios were
found in the pons and caudate-putamen, as opposed to the hippocampus (Ameno et al. 1992). Toluene

distribution in the brain was similar with inhalation and oral exposure (Ameno et al. 1992).

3.4.2.3 Dermal Exposure

No studies were located regarding the distribution of toluene in humans or animals after dermal exposure.

3.4.2.4 Other Routes of Exposure

In baboons intravenously injected with !'C-labeled toluene, maximal concentrations of radioactivity in
different brain regions were attained within 1-4 minutes of injection (Gerasimov et al. 2002a, 2002b).
Concentrations of radioactivity steadily declined thereafter through about 45 minutes of monitoring. The
results are indicative of rapid distribution from the blood to the brain and rapid clearance. Half-times for
clearance from the brain ranged from about 10 to 20 minutes in three experiments. Similar experiments
with mice showed similarly rapid distribution to the brain and rapid clearance from the brain following

intravenous injection (Gerasimov et al. 2002a, 2002b).

3.4.3 Metabolism

Studies of urinary metabolites in toluene-exposed humans (Andersen et al. 1983; Angerer 1979; Angerer
et al. 1998a; Baelum et al. 1987, 1993; Dossing et al. 1983b; Inoue et al. 1986; Jonai and Sato 1988;
Kawai et al. 1992a, 1992b, 1993, 1996; Lof et al. 1990, 1993; Maestri et al. 1997; Ng et al. 1990) and rats
(Bray et al. 1949; van Doorn et al. 1980; Wang and Nakajima 1992) have identified hippuric acid (the
glycine conjugate of benzoic acid) as the major urinary metabolite of toluene. Minor urinary metabolites
(in approximate order of decreasing abundance) include: the glucuronyl conjugate of benzoic acid; sulfate
and glucuronide conjugates of ortho- and para-cresol; S-benzylmercapturic acid; and S-p-toluyl-
mercapturic acid. Based on these results and the results from in vitro studies, including recent studies
with human and rat liver microsomes (Nakajima and Wang 1994; Nakajima et al. 1991, 1992a, 1992b,
1993, 1997; Tassaneeyakul et al. 1996), a scheme for toluene metabolism in humans and animals is

presented in Figure 3-3.
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Figure 3-3. Scheme for Toluene Metabolism in Humans and Animals
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The initial steps are methyl and ring hydroxylations that are catalyzed by cytochrome P450 (CYP)
isozymes. Methyl hydroxylation to form benzyl alcohol was the predominant first step in human
(Nakajima et al. 1997; Tassaneeyakul et al. 1996) and rat (Nakajima et al. 1991, 1992a, 1992b, 1993)
liver microsomes. Ring hydroxylation to form ortho- or para-cresols in these studies usually represented

less than 5% of total metabolite formation.

Results from in vitro studies indicate that CYP2E1 is the most active CYP isozyme in forming benzyl
alcohol and CYP1A2 is the most active in forming ortho- and para-cresols. Using monoclonal antibodies
to CYP isozymes as in vitro metabolic inhibitors in rat microsome preparations, Nakajima et al. (1991)
demonstrated that CYP2ET1 (at low toluene concentrations) contributes to the formation of benzyl alcohol
and para-cresol, CYP1A1/2 contributes to ortho- and para-cresol formation, and CYP2B1/2 and
CYP2C11/6 (at higher toluene concentrations) contribute to the formation of benzyl alcohol and ortho-
and para-cresol. Biphasic enzyme kinetics for the formation of benzyl alcohol from toluene were
observed in human liver microsomes, supporting the concept that at least two isozymes with differing
affinity for toluene can catalyze benzyl alcohol formation (Tassaneeyakul et al. 1996). The high-affinity
component in human liver microsomes was markedly inhibited (about 90% inhibition) by 50 uM
diethyldithiocarbamate, an inhibitor of CYP2E1, whereas inhibitors of other CYP isozymes produced
generally less than 10% inhibition of the high affinity component (Tassaneeyakul et al. 1996). Other
inhibitors tested (and the CYP forms that they are expected to inhibit) were: furafylline (CYP1A2),
coumarin (CYP2A6), mephenytoin (CYP2C19), quinidine (CYP2D6), sulfaphenazole (CYP2D6), and
troleandomycin (CYP3A) (Tassaneeyakul et al. 1996). Using microsomes from cells in which cDNAs for
eleven different human CYP isozymes were expressed, Nakajima et al. (1997) demonstrated that CYP2EI
was the most active in forming benzyl alcohol, followed in order by CYP2B6, CYP2CS8, CYP1A2, and
CYP1AIl. The activities of CYP2A6, CYP2C9, CYP2D6, CYP3A3, CYP3A4, and CYP3AS in
metabolizing toluene were negligible. CYP1A2 also was active in forming ortho- and para-cresol

(22 and 35% of total metabolites) and CYP2E1 and CYP2B6 catalyzed the formation of para-cresol (11—
12% of total metabolites) (Nakajima et al. 1997). Comparison of the in vitro catalytic activities of human
recombinant CYP2E1, CYP2A6, and CYP2A13 (a form that is highly expressed in human respiratory
tract tissues) to form benzyl alcohol from toluene indicated the following order of catalytic activities:
CYP2A13 > CYP2A6 > CYP2EI1 (Fukami et al. 2008). The latter observations suggest that there may be
tissue specificities in the principal forms of CYPs catalyzing the initial step in toluene metabolism.
Kinetic constants (e.g., Km and Vmax) were comparable for recombinant wild-type CYP2E1 (CYP2E1.1)
and allelic variants of CYP2E1 (CYP2E1.2, CYP2E1.3, and CYP2E1.4) to convert toluene to benzyl

alcohol (Hanioka et al. 2010). The variants were made by site-directed mutagenesis involving amino acid
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substitutions to reflect CYP2E1 polymorphisms identified in human populations at frequencies ranging

from 1.3 to 2.6%.

Benzyl alcohol is thought to be converted to benzoic acid in two steps by alcohol dehydrogenase and
aldehyde dehydrogenase (see Figure 3-3). Conjugation with glycine to form hippuric acid can represent
83-94% of urinary metabolites of toluene in rats (Nakajima and Wang 1994). Hippuric acid formation
from benzoic acid (a common component of the diet) is catalyzed by acyl-CoA synthetase and acyl-
CoA: amino acid N-acyltransferase. Conjugation of benzoic acid with glucuronic acid to form benzoyl
glucuronide is catalyzed by UDP-glucuronyl transferase and can account for 3—-9% of urinary metabolites
in rats (Nakajima and Wang 1994). In plasma samples collected in baboons 30 minutes following
intravenous injection of ''C-toluene, relative amounts of radioactivity were 34% in unchanged toluene,
40% in benzoyl glucuronide, 18% in hippuric acid, 1% in benzyl alcohol and benzaldehyde, and 3% in

benzoic acid (Gerasimov et al. 2002a).

The 2,3- and 3,4-epoxide intermediates, precursors of ortho- and para-cresol, are thought to be oxidation
products of the catalytic actions of CYP1A2, CYP2EI1, and CYP2B6 (Nakajima et al. 1997). Ortho- and
para-cresol and their conjugates have been reported to account for 0.5-1.1 and 2.5-14.2%, respectively,
of urinary metabolites in rats (Nakajima and Wang 1994). S-benzyl mercapturic acid, a minor urinary
metabolite identified in humans, is thought to be formed via conjugation of benzyl alcohol with
glutathione (catalyzed by glutathione-S-transferases), followed by the concerted catalytic actions of
y-glutamyltranspeptidase, amino peptidase M, and N-acetyltransferase to release glutamic acid and
glycine and add an acetyl group (Angerer et al. 1998a) (see Figure 3-3). The formation of another minor
human urinary metabolite, S-p-toluylmercapturic acid, is thought to proceed by a similar series of

reactions from the proposed intermediate, 3,4-toluene epoxide (Angerer et al. 1998a).

The liver is expected to be the prime site of toluene metabolism, based on the high concentration of CYP
isozymes in the liver relative to other tissues. For example, levels of CYP2E1 in human lung microsomes
were 10.5% of liver activities (Wheeler et al. 1992). Studies with rats indicate that toluene exposure
causes changes in CYP-associated enzyme activities and CYP isozymes themselves in the liver (see
Nakajima and Wang 1994 for review). For example, single 6-hour exposures to toluene induced hepatic
CYP2EI1 levels and associated nitrosodimethylamine demethylase activities (at concentrations

>1,000 ppm), induced CYP2B1/2 and CYP3A1/2 levels (at concentrations >2,000 ppm), decreased
CYP2C11/6 levels (at 4,000 ppm), and did not change CYP1A1/2 levels (Wang et al. 1993). Other rat

experiments involving longer durations of exposure and potentially higher dose levels have consistently
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observed induction of hepatic activities of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin
O-deethylase (EROD), activities associated with CYP1A1/2 (see Nakajima and Wang 1994). Rats given
single intraperitoneal injections of 5 mmol toluene/kg showed induction of ethoxycoumarin O-deethylase
(ECOD) and EROD activities in liver, but no induction was apparent in lung or kidney tissues (Pyykko et
al. 1987). Exposure of rats to 375 ppm toluene, 6 hours/day for up to 5 days or 125 ppm for 6 hours did
not significantly change activities of AHH, EROD, or benzyloxyresorufin (BROD) in liver microsomes
compared with activities in nonexposed controls, but significantly decreased activities of AHH (by up to
about 50%), BROD (by 30-70%), and 2-aminofluorene N-hydroxylase (by up to about 50%) in lung
microsomes without altering EROD activities (Furman et al. 1998). The results from these rat studies
suggest that toluene exposure at concentrations >1,000 ppm, but not at lower concentrations, induces
hepatic CYP enzymes involved in its own metabolism and metabolism of other xenobiotics, and that
exposure to 125 or 375 ppm may cause a decrease in pulmonary activities of certain CYP mixed function
oxidases. Consistent with the idea of no CYP induction with low-level exposure is the report that
workers exposed to 100 ppm toluene did not display increased ability to clear antipyrine (Dossing et al.

1983c).

Levels of CYP isozymes in rat fetal livers are very low, but increase rapidly after birth (Nakajima and
Wang 1994). By 10 days after birth, rats of both sexes are capable of responding to toluene exposure by
inducing hepatic CYP-associated enzyme activities (Pyykko 1983). Comparison of rates of metabolism
in liver microsomes from male and female rats at 3 weeks (immature) and 18 weeks of age (mature) and
in pregnant female rats on gestations days 10 and 21 indicate that age, gender, and pregnancy can
influence rates of hepatic toluene metabolism and induction of CYP isozymes (Nakajima et al. 1992b).
Rates (on a mg protein basis) of high-affinity toluene metabolism were not statistically significantly
different between immature and mature male rats, but rates of low-affinity toluene metabolism were four-
fold higher in mature rats compared with immature rats (Nakajima et al. 1992b). In contrast, rates of
high-affinity toluene metabolism were lower in mature than in immature female rats, but rates of low-
affinity toluene metabolism were not statistically different between immature and mature female rats.
Rates of high- and low-affinity toluene metabolism were significantly lower in pregnant rats compared

with nonpregnant rats.

Given the lack or low levels of several CYP isozymes in the developing human fetus (Leeder and Kearns
1997), it is expected that the capacity for metabolic detoxification of toluene is low in the developing
fetus. Rat studies indicate that levels of CYP isozymes involved in toluene metabolism, however, are

rapidly increased following birth, and suggest that capabilities to carry out Phase I toluene metabolism at
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low exposure levels during neonatal periods may exceed those at sexual maturity and pregnancy
(Nakajima et al. 1992b). CYP2EI, one of the principal CYP isozymes involved in the major toluene
pathway (Nakajima et al. 1997; Tassaneeyakul et al. 1996), is reported to be expressed several hours after
birth in humans and continues to increase during the first year of life (Vieira et al. 1996). Phase 11
enzymes involved in toluene metabolism (e.g., N-acetyl transferases, UDP-glucuronyl transferases, and
sulfotransferases) also show changes during human neonatal development with adult activities reported to
be present by 1-3 years of age (Leeder and Kearns 1997). Although no studies were located directly
comparing toluene metabolic capacity in children and adults, the limited available information suggest
that children past early neonatal periods may be equally able as adults in metabolically disposing of
toluene at low exposure levels expected to be found in the general environment or at sites adjacent to

waste sites.

3.4.4 Elimination and Excretion
3.4.4.1 Inhalation Exposure

Studies with humans and laboratory animals indicate that following acute periods of inhalation exposure
to toluene, absorbed toluene is excreted predominately in the urine as metabolites (hippuric acid, benzoyl
glucuronide, ortho- and para-cresol and their sulfate and glucuronide conjugates, S-benzyl mercapturic
acid, and S-p-toluyl mercapturic acid, as discussed in Section 3.4.3) and, to a lesser extent, as non-
metabolized toluene in exhaled air and urine (Ducos et al. 2008; Janasik et al. 2008, 2010; Lof et al. 1993;
Ogata 1984; Tardif et al. 1998). For example, following a 2-hour exposure with light physical exercise to
deuterium-labeled toluene at a concentration of 200 mg/m?® (53 ppm), an average 78% of retained label
was excreted as urinary hippuric acid within 20 hours by a group of nine volunteers (Lof et al. 1993). A
significant portion of absorbed toluene in this and other studies has been estimated to be exhaled as
nonmetabolized toluene (7-20% of absorbed toluene) (Carlsson 1982; Leung and Paustenbach 1988; Lof
et al. 1993). Although unchanged toluene in urine is expected to be a minor elimination route based on
mass balance, elimination kinetics data for toluene in urine following acute exposure of volunteers are
consistent with the recommended use of this end point as a biomarker of exposure for toluene-exposed
workers (ACGIH 2010; Ducos et al. 2008; Janisik et al. 2008, 2010). For example, following 4-hour
exposure to 200 mg/m? (53 ppm), a two-phase decline of urinary toluene concentration was observed with
half-lives of 0.88 and 12.9 hours. The correlation coefficient between toluene air concentrations (20, 60,
or 100 mg/m?; ~5, 16, or 27 ppm) and urinary toluene concentrations in the last 2 hours of exposure was

0.998 (Janisik et al. 2008).
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Analyses of kinetic data for toluene concentrations in blood, exhaled breath, or adipose tissue or urine
following inhalation exposure of humans (Leung and Paustenbach 1988; Lof et al. 1993; Pellizzari et al.
1992; Pierce et al. 1996, 1999) and rats (Rees et al. 1985) indicate that most absorbed toluene is rapidly
eliminated from the body and that a smaller portion (that which gets into adipose tissues) is slowly
eliminated (Leung and Paustenbach 1988; Lof et al. 1993; Nise et al. 1989; Pellizzari et al. 1992; Pierce et
al. 1996, 1999, 2002). Using three-phase exponential mathematical models to describe curves of human
blood concentration as a function of time up to 3—5 hours after 2-hour exposures to 100 or 53 ppm
toluene, calculated half-lives (the time to decrease the amount in the phase by one-half) were 1.5 and

3 minutes for the initial phase, 26 and 40 minutes for the second phase, and 3.7 and 12.3 hours for the
final phase (Lof et al. 1993; Sato et al. 1974). Elimination half-lives ranged from about 12 to 65 hours
(0.5 to 2.7 days) in subcutaneous adipose tissue samples taken from 12 subjects at several times within

8 days of cessation of exposure to about 80 ppm toluene for four consecutive 30-minute periods (Carlsson
and Ljungquist 1982). Increasing elimination half-lives were significantly correlated with increasing
amounts of body fat (Carlsson and Ljungquist 1982). The time courses of toluene concentrations in blood
and subcutaneous fat of rotogravure printers exposed to 35-246 mg/m? (9—65 ppm) toluene during and
after a 5-day workweek were described by a three-phase elimination model with half-times of 9 minutes,
2 hours, and 90 hours for toluene in blood and a single median elimination half-time of 79 hours for
toluene in fat (Nise et al. 1989). Using PBPK models, mean terminal half-lives of about 30-38 hours
were calculated for changes in blood toluene concentrations between 50 and 100 hours after cessation of
2-hour inhalation exposures of male subjects to 50 ppm 'Hs-toluene and 50 ppm *Hs-toluene (Pierce et al.
1996, 1999). During this terminal phase of disposition, >95% of toluene is expected to be in adipose
tissue and the release of toluene from adipose tissues has been proposed to be the rate-limiting step
(Pierce et al. 1999). Analysis of rates of exhalation of nonmetabolized toluene and urinary excretion of
metabolites from 2-hour exposures of male subjects to 50 ppm *Hs-toluene indicated the following
distribution of the total dose: 13% *Hs-toluene in exhaled breath, and 75% 2Hs-hippuric acid, 0.31%
2H7-ortho-cresol, 0.53% *H;-meta-cresol, and 11% “H;-para-cresol in urine (Pierce et al. 2002). In
studies with rats exposed for 2 hours to 1,000, 1,780, or 3,000 ppm toluene, two-phase exponential
models were used to calculate average elimination half-lives of approximately 6 and 90 minutes, but
blood toluene concentrations were monitored in this study for no more than 2 hours following exposure

(Rees et al. 1985).

Correlations between work place air concentrations of toluene and urinary excretion of unchanged
toluene, hippuric acid, or ortho-cresol have been noted in a number of field studies (see ACGIH 2001 and

2010 for reviews and citations of these studies). Currently, ACGIH (2010, 2013) recommends using a
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combination of three biological exposure indices (BEIs®) to assess exposure of workers to toluene in the
workplace: ortho-cresol and unchanged toluene levels in blood immediately prior to the last shift of a
workweek. The recommendation was made based on analyses of numerous field studies examining
toluene blood concentrations and urinary concentrations of ortho-cresol and toluene in workers exposed
to varying workplace air concentrations of toluene (see ACGIH 2010 for review). The specific values for
these BEIs® correspond to concentrations likely to be observed in individuals exposed by inhalation to
20 ppm, the current ACGIH 8- hour TWA Threshold Limit Value (TWA-TLV®) for occupational
exposure to toluene (ACGIH 2010). Previously, the level of hippuric acid in urine at the end of a
workshift was recommended as a biomarker of exposure, but this recommendation was withdrawn
because background urinary hippuric acid (from consumption of benzoate in foods and beverages) is
expected to mask contributions from workplace exposure to toluene, especially at concentrations

<50 ppm (ACGIH 2001, 2010). Other urinary biomarkers of exposure that have been proposed include
benzylmercapturic acid (Inoue et al. 2002, 2004; Maestri et al. 1997) and S-p-toluylmercapturic acid
(Angerer et al. 1998a).

3.4.4.2 Oral Exposure

Following oral administration of toluene to eight male subjects by a 2 mg/minute infusion for 3 hours
through a feeding tube into the stomach, nonmetabolized toluene was detected in alveolar air samples for
up to 4 hours after cessation of exposure and rates of urinary excretion of hippuric acid and ortho-cresol
were elevated compared with values under nonexposed conditions (Baelum et al. 1993). A 6 mg/minute
infusion for 30 minutes did not change the rates of urinary excretion of hippuric acid and ortho-cresol, but
increased, by four-fold, the area-under-the-curve (AUC) for alveolar toluene concentration compared with
the values for the 2-mg/minute exposure protocol. Accompanying the 2-mg/minute exposure protocol
with oral doses of ethanol (0.32 g/kg, corresponding to two alcoholic drinks) decreased hippuric acid
urinary excretion and dramatically increased the AUC for alveolar toluene concentration (by about
850-fold in one experiment and 56-fold in another). These data indicate that orally administered toluene
is eliminated similarly to inhaled toluene, (i.e., by urinary excretion of metabolites and exhalation of
nonmetabolized toluene), and that ingestion of ethanol can have a dramatic effect on metabolism and
subsequent elimination of toluene. The results are consistent with other studies showing that ethanol
inhibits the major toluene metabolic pathway, side-chain oxidation (Dossing et al. 1984; Wallen et al.

1984).

No other studies were located regarding the excretion of toluene in humans or animals after oral exposure.
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3.4.4.3 Dermal Exposure

Following a 5-minute episode of hand-washing in toluene while wearing an airstream helmet to limit
inhalation exposure, toluene concentrations in exhaled air from human subjects peaked at about 1 ppm at
22 minutes and declined to about 0.03 ppm at 24 hours (Monster et al. 1993). The results from this study
indicate that dermally absorbed toluene can be eliminated as the parent compound in exhaled breath, but

provide no information concerning the possible urinary excretion of metabolites.

No other studies were located regarding elimination of toluene following dermal exposure. As discussed
in Section 3.4.1., studies in humans and rats have monitored concentrations of unchanged toluene in
exhaled breath during and following dermal exposure to aqueous solutions of toluene to estimate dermal
permeability coefficients (Thrall et al. 2002a; Thrall and Woodstock 2002). Like the study by Monster et
al. (1993), they demonstrate that dermally absorbed toluene can be exhaled unchanged, but they do not
provide information about the relative importance of urinary excretion of unchanged toluene or

metabolites following dermal exposure.

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and
disposition of chemical substances to quantitatively describe the relationships among critical biological
processes (Krishnan et al. 1994). PBPK models are also called biologically based tissue dosimetry
models. PBPK models are increasingly used in risk assessments, primarily to predict the concentration of
potentially toxic moieties of a chemical that will be delivered to any given target tissue following various
combinations of route, dose level, and test species (Clewell and Andersen 1985). Physiologically based
pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to

quantitatively describe the relationship between target tissue dose and toxic end points.

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to
delineate and characterize the relationships between: (1) the external/exposure concentration and target
tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and
Krishnan 1994; Andersen et al. 1987). These models are biologically and mechanistically based and can
be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from

route to route, between species, and between subpopulations within a species. The biological basis of
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PBPK models results in more meaningful extrapolations than those generated with the more conventional

use of uncertainty factors.

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model
representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and
Andersen 1994). In the early 1990s, validated PBPK models were developed for a number of
toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen
1994; Leung 1993). PBPK models for a particular substance require estimates of the chemical substance-
specific physicochemical parameters, and species-specific physiological and biological parameters. The
numerical estimates of these model parameters are incorporated within a set of differential and algebraic
equations that describe the pharmacokinetic processes. Solving these differential and algebraic equations
provides the predictions of tissue dose. Computers then provide process simulations based on these

solutions.

The structure and mathematical expressions used in PBPK models significantly simplify the true
complexities of biological systems. However, if the uptake and disposition of the chemical substance(s)
are adequately described, this simplification is desirable because data are often unavailable for many
biological processes. A simplified scheme reduces the magnitude of cumulative uncertainty. The
adequacy of the model is, therefore, of great importance, and model validation is essential to the use of

PBPK models in risk assessment.

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the
maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994).
PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in
humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste
sites) based on the results of studies where doses were higher or were administered in different species.

Figure 3-4 shows a conceptualized representation of a PBPK model.

If PBPK models for toluene exist, the overall results and individual models are discussed in this section in

terms of their use in risk assessment, tissue dosimetry, and dose, route, and species extrapolations.
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Figure 3-4. Conceptual Representation of a Physiologically Based
Pharmacokinetic (PBPK) Model for a
Hypothetical Chemical Substance
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Note: This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a
hypothetical chemical substance. The chemical substance is shown to be absorbed via the skin, by inhalation, or by
ingestion, metabolized in the liver, and excreted in the urine or by exhalation.

Source: Krishnan and Andersen 1994
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PBPK models are available that describe the kinetics of toluene after inhalation exposure for humans
(Benignus et al. 2006; Fisher et al. 1997; Jonsson and Johanson 2001; Sari-Minodier et al. 2009; Nong et
al. 2006; Pierce et al. 1996, 1999; Tardif et al. 1995, 2002) and rats (DeJongh and Blaauboer 1996, 1997;
Kenyon et al. 2008; Oshiro et al. 2011; Tardif et al. 1993; van Asperen et al. 2003). PBPK models to
describe the kinetics of dermally applied aqueous solutions of toluene are also available for humans
(Thrall et al. 2002a) and rats (Thrall and Woodstock 2002), but models to describe kinetics following oral

exposure to toluene have not been developed.

Available models are all modifications of the standard four-compartment PBPK model developed for

styrene (Ramsey and Andersen 1984) in which:

(1) absorption into the lung blood is assumed to be dependent on the inhaled concentration of
toxicant, the concentration of toxicant in alveolar air, blood flow to the lung, the blood:air
partition coefficient, and alveolar ventilation rates,

(2) exchange of toxicant between arterial blood and tissue compartments is flow-limited,

(3) changes in the amount of toxicant in three nonmetabolizing tissue compartments (adipose tissue,
slowly perfused tissues, and richly perfused tissues) are described by mass transfer differential
equations with tissue volume, blood flow through the tissue (i.e., tissue perfusion rate), arterial
blood toxicant concentration, and tissue:blood partition coefficients as explanatory variables, and

(4) changes in toxicant amount in the liver (the fourth compartment) are described by similar
differential equations that additionally include a Michaelis-Menten term for overall rates of
toxicant metabolism.

Human Models. The five-compartment human model for toluene developed by Pierce et al. (1996)
includes an additional equation describing mass balance across the lung that has a Michaelis-Menten
metabolic term (Pierce et al. 1996). The model assumes that toluene metabolism in the liver and lung are
adequately described by subject-specific maximal rate constants for liver and lung (“Vmax-h and
Vmax-p” of 52.1xBW®” umol/hour and 0-0.7x52.1xBW®’ umol/hour, respectively) and a common Km
(5.97 umol/L). The Km and Vmax-h values were based on those derived by fitting a Ramsey and
Andersen-type four-compartment PBPK model (in which all parameters were constant except Vmax and
Km) to toluene uptake data for rats placed in closed chambers at several initial toluene concentrations
(Tardif et al. 1993). The human Vmax-h was estimated for each subject by multiplying the rat Vmax-h
by the subject’s body weight to the 0.7 power; the rat Km was taken as the human value (Pierce et al.
1996). The lung Vmax (Vmax-p) was estimated by model-fitting for each subject, allowing the value to

range between 0 and 70% of the liver Vmax, Vmax-h. This procedure was based on observations that
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levels of CYP2E1 in human lung microsomes were 10.5% of liver activities (Wheeler et al. 1992), and

12 human liver samples showed a seven-fold range of CYP2E1 contents (Thummel et al. 1993).

Another singular feature of the Pierce human model is that subject-specific parameters such as age,
height, weight, alveolar ventilation rate, adipose tissue fraction, and blood:air partition coefficients are put
into the model (Pierce et al. 1996). Volumes of the tissue compartments in the model were scaled to each
subject’s body weight. Blood flows to the slowly and richly perfused tissues and the liver were taken as
fractions of a standard human cardiac output scaled to body weight to the 0.74 power (in units of liter-
hour), whereas subject-specific blood flows to the adipose tissue were estimated by model fitting (holding
other parameters constant) allowing the fraction of cardiac output that perfuses adipose tissue to range
between 0.06 and 0.18. The decision to “model-fit” this parameter within these bounds was based on
published observations that adipose blood flows among individuals range widely from about 0.06 to

0.18 of total cardiac output. Tissue:blood partition coefficients used in the model for the slowly and

richly perfused tissue, the liver, and adipose tissue were 1.54, 4.64, 4.64, and 55.9, respectively.

The initial development and validation of the human model involved comparing model fits with measured
data (blood concentrations) for a group of 26 male volunteers who were exposed to 100 ppm toluene

(50 ppm 'Hs-toluene and 50 ppm 2Hs-toluene) for a 2-hour period (Pierce et al. 1996). Venous blood
concentrations of 'Hs- and Hs-toluene were measured at intervals for 120 hours post exposure. Prior to
exposure, information on age, body weight, and adipose tissue fraction were obtained. During exposure,
individual ventilation rates and blood:air partition coefficients for toluene were measured. Measures of
the goodness-of-fit of the model predictions to the data were compared using subject-specific values,
average values from the 26 subjects, and average literature values for: body weight, adipose tissue
fraction, ventilation rate, blood:air partition coefficient, maximum velocity of pulmonary metabolism, and
fraction of cardiac output to adipose tissue. The measured concentrations of toluene in blood showed a
ten-fold interindividual range of variation. Subject-specific modeling explained 91% of the data

variability, compared with 53% using literature values for model parameters (Pierce et al. 1996).

Pierce et al. (1998) used the human model to estimate toluene concentrations in alveolar breath reflective
of exposure to 50 ppm toluene for 8 hours/day (the ACGIH 8-hour TWA TLV for toluene in 1998).
Calculated values were <10 umol/m?* for samples taken just before the final shift of a workweek and
<150 pmol/m? postexposure. It was proposed that toluene breath sampling would be a rapid, noninvasive

biomarker of toluene exposure in workers that is not contaminated by endogenous sources. Pierce et al.
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(1999) also used the human model as a research tool to ascribe differences in toxicokinetic behavior of

"H- and *Hs-toluene to underlying physiological mechanisms.

Jonsson and Johansen (2001) modified the Pierce et al. (1996) model to incorporate, and estimate inter-
and intra-individual variability in, exercise-induced changes in perfusion of fat tissue. The modified
model split the muscle compartment into working and resting muscle compartments, and the fat
compartment into perirenal and subcutaneous fat. Model parameters were expressed as prior
distributions, rather than point estimates, based on literature values. The model was fit by Markov chain
Monte Carlo simulation to time-course data for toluene concentrations in arterial blood, exhaled breath,
and subcutaneous fat for six individuals exposed by inhalation to 80 ppm for 2 hours during rest and
moderate to heavy exercise (50—150 W). The fitting exercise indicated that the kinetic data was best
described when no increase in perfusion of subcutaneous fat with exercise was allowed and increased
perfusion of perirenal fat induced by physical work was set to a constant level, rather than scaled

proportionally to the increase in oxygen uptake with increasing workload.

The model by Jonsson and Johansen (2001) was further modified to a population-based model by
replacing point-estimates for physiological model parameters with literature-based log-normal
distributions (Mork et al. 2014). Using Monte-Carlo techniques with the population-based model,
estimates of the distributions for an internal dose (Cmax in blood) for various subpopulations under
various exercise scenarios were calculated, and the ratio between the 50™ percentile values and higher
percentiles (90, 95, or 99" percentiles) were used to indicate human variability in toxicokinetic
disposition of toluene. Based on this modeling exercise, toluene-specific adjustment factors for human
toxicokinetic variability (AFux) were 1.2—1.8 for the general population, 1.4-2.1 for chronically-exposed
workers (under various exposure scenarios), and 1.4-3.9 for acutely-exposed workers (under various

exposure scenarios).

Another human PBPK model has been developed for volatile organic compounds that simulates transfer
of toxicant via lactation from a mother to a nursing infant, but in vivo pharmacokinetic data for toluene in
breast milk were not available to validate this model (Fisher et al. 1997). This model is an adaptation of
the Ramsey and Andersen design with the addition of a fifth compartment, a nonmetabolizing milk
compartment with a varying volume. The model includes equations describing the rate of change in the
amount of toxicant ingested by a nursing infant from the milk compartment, the rate of change in the
amount of milk in the mammary tissue lumen, and the rate of change in the amount of toxicant in breast

milk. The model used Michaelis-Menten kinetic constants for toluene metabolism in the liver estimated
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for rats (Vmax 7.5 mg/kg/hour; Km 0.3 mg/L); the rat Vmax was scaled for use in the model by
multiplying it by a reference body weight (60 kg) to the 0.74 power. Human milk:blood partition
coefficients for 19 volatile organic chemicals were experimentally determined using samples from
volunteers; the coefficient for toluene was 2.68. Other tissue:blood partition coefficients for toluene used
in the model included 4.91 for richly perfused tissue and for liver, 1.61 for slowly perfused tissue, and

60.01 for adipose tissue.

Fisher et al. (1997) used the model to estimate the amount of toluene an infant would ingest via milk if
the mother was occupationally exposed to toluene at the ACGIH (1999) TLV (50 ppm) throughout a
workday. The model predicted that such an infant would have a daily intake of 0.46 mg toluene, which is
below the U.S. EPA Health Advisory, 2.0 mg/day, for chronic ingestion of 1 L/day of toluene-
contaminated water by a 10-kg child.

Tardif et al. (1995) developed a four-compartment PBPK model for toluene in humans by modification of
a four-compartment rat model developed by Tardif et al. (1993), in which all metabolism occurred in the
liver. Physiological parameters for the human model were taken from the literature (e.g., alveolar
ventilation rate and cardiac outputs had values of 18.0 L/hour/kg body weight for subjects at rest).
Coefficients for human tissue:blood partitioning were calculated by dividing rat tissue:air values by a
human blood:air coefficient (15.6) taken from the literature. The metabolic constant, Km (0.55 mg/L),
was assumed to be the same in rats and humans, and the human Vmax (4.8 mg/hour/kg) was converted
from the rat value by using body weight®’® allometric scaling. The model was linked to a similar model
for xylene; linking occurred by competitive metabolic inhibition in the liver. The linked models were
evaluated by comparing predicted and observed values for toluene (and xylene) concentrations in alveolar
air and blood. The predicted values were judged to be “in accord” with observed values from a study of
volunteers exposed to 50 ppm toluene, 40 ppm xylene, or 50 ppm toluene+40 ppm xylene for 7 hours
(Tardif et al. 1991). Simulations with the model indicated that blood concentrations and extent of
metabolism for the two solvents during combined exposure at 50 ppm toluene and 100 ppm xylene would
not be more than 10% changed, compared with exposure to the individual solvents alone (Tardif et al.

1995).

Tardif et al. (2002) modified the unlinked human PBPK model developed by Tardif et al. (1995) to
include the description of urinary excretion of ortho-cresol. The fraction of total metabolites excreted as
ortho-cresol (0.00078) was estimated by fitting the model to data for urinary ortho-cresol levels in

toluene-exposed workers (Truchon et al. 1999). Values for urinary excretion rate of creatinine
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(12.06 pmol/hour/kg) and urine output (1.848 mL/hour/kg) were taken from the literature. The model
was used with Monte Carlo simulation to explore how published estimates of human population variance
for parameters for excretion, physiology, and metabolism would influence concentrations of toluene in
blood and ortho-cresol in urine. The resultant distribution for ortho-cresol excretion at the end of the first
8-hour workday in the week with exposure to 50 ppm toluene had a geometric mean of 0.635 mmol/mol
creatinine with lower and upper 95% confidence limits of 0.23 and 1.75 mmol/mol creatinine,
respectively. For blood toluene concentration prior to the last workday in the week, a somewhat smaller
distribution of values was indicated with a geometric mean of 120.6 pg/L and lower and upper 95%

confidence limits of 64.5 and 225.7, respectively.

Nong et al. (2006) modified the adult PBPK model developed by Tardif et al. (1995) to incorporate data
on age, body weight, liver volume, and hepatic CYP2E1 content from a study by Johnsrud et al. (2003) of
116 children (41 males, 75 females) ranging from newborn to 17 years of age. The model calculated
hepatic clearance normalized on hepatic CYP2EI content. The modified model, using child-specific data,
was used to simulate time courses of toluene concentrations in blood of individual children of varying
ages exposed by inhalation to 1 ppm toluene for 24 hours. The results indicated that the AUCs for
simulated toluene blood concentrations in these children varied by a factor of about 6, compared with a
factor of about 20 for the range of hepatic CYP2E1 contents. In neonates (<1 month old) with low and
high hepatic CYP2E1 content (<3.69 and >3.69 pmol/mg protein), 95% percentile simulated AUC values
were 3.9-fold and 2.5 higher than the 50 percentile AUC value for adults. The 95 percentile AUC
values in children in older age groups (1 month—1 year; 1-11 years; 12—17 years) were less elevated;
ratios of 95" percentile AUCs for children: the 50" percentile adult AUC value for these age groups were
1.57, 1.49, and 1.35, respectively.

Sari-Minodier et al. (2009) made further refinements of the Tardif et al. (2002) model to include a kidney
compartment, and different physiological parameters (alveolar air ventilation, cardiac output, and
fractions of total cardiac output to each compartment) for different levels of physical activity (measured
in watts of work, W). Also included were modified values for the fraction of toluene metabolized to
ortho-cresol (0.0012) and the ortho-cresol urinary excretion rate based on the best fit of simulations to
observed time course data for volunteers exposed to 50 ppm for 7 hours (Tardif et al. 1998). The revised
model was evaluated by comparing simulated values to observed data for concentrations of unchanged
toluene in blood and urine in six volunteers exposed to 5.3, 16.0, or 26.6 ppm toluene for 8 hours at rest
(Janasik et al. 2008), and for alveolar toluene concentrations and urinary ortho-cresol concentrations in

four volunteers exposed to 50 ppm for 7 hours with different scenarios of physical activity (Nadeau et
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al.2006). Sari-Minodier et al. (2009) considered the comparisons between simulated and empirical values
to be “satisfactory.” The modified model was used to simulate values for blood toluene concentration at
the end of an 8-hour work shift and urinary concentrations of toluene and ortho-cresol at the end of a
workweek under different levels of activity. The model predicted that these biological exposure indices
for toluene were increased by ~2—3-fold by 50 W activities versus 12.5 W resting activities at an air

concentration of 20 ppm toluene.

Thrall et al. (2002a) developed a human PBPK model for toluene with six compartments (lung, richly
perfused tissues, slowly perfused tissues, skin, fat, and liver) to simulate dermal exposure scenarios. The
model was modified from a model for rats of similar structure as described by Thrall and Woodstock
(2002). In these models, absorption to blood occurs though the lung and the skin, metabolism only occurs
in the liver, and the skin compartment represents exposed skin; unexposed skin is lumped in the slowly
perfused tissue compartment. Metabolic constants were the same as those used by Tardif et al. (1995).
Physiological parameters included 348 L/hour for cardiac output and alveolar ventilation. Blood flow to
compartments was distributed as percentages of cardiac output: liver 25%; fat 6%, richly perfused 49%;
slowly perfused 15%; and total skin 5%. Tissue volume as percentages of body weight were: 4% liver;
20% fat; 5% richly perfused; 52% slowly perfused; and 4% total skin. Partition coefficients were:

1.75 saline:air; 13.9 blood:air; 83.5 liver:air; 1021 fat:air; 27.7 muscle:air; and 43.0 skin:air. Dermal
exposures were simulated by an equation relating the rate of change in toluene concentration in the skin to
dermal flux and dermal perfusion. Body weight was an input so that that the model could be used to
estimate dermal permeability coefficients (Kp, a parameter for the dermal flux equation) for individual
subjects of varying body weights, by optimization of fit to exhaled breath data collected before, during,
and after subjects were dermally exposed to aqueous solutions of toluene. Estimated Kp values for six

subjects ranged from 0.004 to 0.020 cm/hour, with an average of 0.012 cm/hour (SD=0.007).

Benignus et al. (2006) combined a commercially available general whole-body human physiological
model (named QCP2004) with a human PBPK model modified from the Tardif et al. (1995) model. The
combined model (named GPAT for general physiology and toxicokinetic model) was developed to reduce
the calculational complexity associated with time-dependent changes in exposure concentrations and
human physical activity. The QCP2004 model provided estimates of physiological parameters required
by the PBPK model under varying levels of human physical activity. The Tardif et al. (1995) human
PBPK model was modified to include a brain compartment and new partition coefficients estimated by
Thrall et al. (2002b). QCP2004 model simulations for minute ventilation, cardiac output, and hepatic

blood flow were compared with observed data for these end points in humans with varying levels of



TOLUENE 244

3. HEALTH EFFECTS

physical activity (0—200 W). The simulated values for these physiological parameters were mostly
within 95% confidence limits for regression lines relating observed values and levels of activity from a
number of published studies for each physiological end point. Values for blood toluene concentrations
were simulated with the GPAT model and compared with published sets of observed values measured in
human subjects exposed to toluene for short periods (30—120 minutes) under varying levels of physical
activity. Simulated values and observed values for blood toluene concentrations in the published studies,
regardless of exposure concentration or activity level, were plotted and fitted to a linear regression model.
Comparison of an “identity line” (on which all points would lie if the model predicted perfectly) and the

regression line indicated that the identity line was within the 95% confidence limits of the regression line.

Animal Models. The four-compartment rat PBPK model for toluene developed by Tardif et al. (1993)
restricted metabolism to the liver compartment. The Km (0.55 mg/L) and Vmax (4.8 mg/hour/kg) values
were derived by fitting the model (in which all parameters were held constant except Vmax and Km) to
toluene uptake data for rats housed in closed chambers for 5 hours at several initial toluene concentrations
(75, 150, or 225 ppm) (Tardif et al. 1993). The model used 18.0 as the blood:air toluene partitioning
coefficient, and the following for partitioning between blood and tissue groups: 4.64 for liver and richly
perfused tissue, 1.54 for slowly perfused tissue, and 56.7 for adipose tissue. Reference rates for alveolar
ventilation (15 L/hour/kg) and cardiac output (15 L/hour/kg) were scaled by a factor of body weight to the
0.74 power. Model predictions of venous blood concentrations in rats during and after 5-hour exposures
to toluene concentrations of 75, 150, or 225 ppm compared favorably (by visual inspection) with

empirical data.

Tardif et al. (1993) linked the rat PBPK model for toluene to a similar PBPK model for xylene via the
metabolism term in the liver compartment to test if there was no metabolic interaction between these
compounds or if a metabolic interaction existed that could be described by competitive, noncompetitive,
or uncompetitive inhibitory interaction. A model with a competitive inhibition metabolic term provided
the best visual fit to empirical data for air concentrations of toluene and xylene during 5-hour exposures

of rats in a closed chamber to mixtures of toluene and xylene at several initial concentrations.

A five-compartment rat PBPK model developed by DeJongh and Blaauboer (1996) is similar in design to
the Tardif rat PBPK model except that it contains an additional compartment, (i.e., the brain, which was
assumed to be nonmetabolizing). The model used the same toluene partition coefficients used in the
Tardif et al. (1993) rat model; the brain:blood partition coefficient, 2.0, was estimated from a published

value for the human brain:air coefficient and the rat blood:air coefficient. Reference rates for alveolar
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ventilation (14 L/hour/kg) and cardiac output (14 L/hour/kg) were scaled by a factor of body weight to the
0.74 power. With other parameters in the model held constant, models with different published values of
Vmax and Km for toluene metabolism in rat liver from two in vivo and six in vitro rat studies were
compared for their ability to fit empirical data from several studies for toluene blood concentrations or
toluene brain concentrations in rats exposed to inhaled toluene. DeJongh and Blaauboer (1996) judged
that a Vmax of 4.31 mg/kg/hour and Km of 0.26 mg/L gave the overall best fit to the empirical data, but
noted that differences were generally small among predictions from models with the various values of

Vmax and Km.

Dejongh et al. (1998) used their rat PBPK model for toluene and similar models for 14 other volatile
organic chemicals to examine a hypothesis that the acute lethality of volatile organic chemicals is related
to their ability to distribute into the brain. Using these models to calculate the dose in the brain associated
with the LCso for the compounds, it was noted that the products of the LCso and their respective exposure
durations ranged by about 60-fold, whereas the PBPK-derived brain doses associated with the

LCso ranged by about 6-fold. Dejongh et al. (1998) concluded that this observation supports the
hypothesis that the acute lethality of volatile organic chemicals, including toluene, is directly related to

the extent of their distribution into the brain.

van Asperen et al. (2003) modified the five-compartment DeJongh and Blaauboer (1996) rat model with
slightly different metabolic constants (Vmax of 4 mg/kg/hour and Km of 0.2851 mg/L) and a modified
blood:air coefficient (13 versus 18 in the previous model). Other physiological parameters and partition
coefficients were identical to those in the Dejongh and Blaauboer (1996) model. The model with the
revised blood:air coefficient provided better fit of time-course data for blood and brain toluene
concentration in Wistar-derived rats exposed for 7.5 hours to a constant concentration of about 2,667 ppm
or five fluctuating peak concentrations of about 8,000 ppm for 0.5 hours separated by 1-hour intervals
without toluene. Blood and brain concentrations were determined several times during and after exposure
up to 24 hours after the start of exposure. The modified model was used to examine predicted brain dose-
effect relationships in a visual discrimination task in rats exposed to toluene via constant and fluctuating
exposure scenarios. Effects on end points measuring “disinhibition of responding” were most pronounced
in groups with the highest estimated brain concentrations at the time of testing, but a monotonic

relationship for increasing magnitude of effect and increasing brain concentration was not evident.

Thrall and Woodstock (2002) developed a rat PBPK model for toluene with six compartments (lung,

richly perfused tissues, slowly perfused tissues, skin, fat, and liver) to simulate dermal exposure
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scenarios. The rat model was adapted from the rat model developed by Tardif et al. (1993). In the
modified model, absorption to blood occurs though the lung and the skin, metabolism only occurs in the
liver, and the skin compartment represents exposed skin; unexposed skin is lumped in the slowly perfused
tissue compartment. Dermal exposures were simulated by an equation relating the rate of change in
toluene concentration in the skin to dermal flux and dermal perfusion. Body weight was an input so that
that the model could be used to estimate dermal permeability coefficients (Kp, a parameter for the dermal
flux equation) for individual rats of varying body weights. This was done by optimization of fit of the
model to exhaled breath data collected when rats were dermally exposed to aqueous solutions of toluene.
Metabolic constants were the same as those used by Tardif et al. (1993). Physiological parameters
included 5.4 L/hour for cardiac output and alveolar ventilation. Blood flow to compartments was
distributed as percentages of cardiac output: liver 25%; fat 5%, richly perfused 51%; slowly perfused
15%; and total skin 5%. Tissue volume as percentages of body weight were: 4% liver; 8% fat; 5% richly
perfused; 64% slowly perfused; and 10% total skin. Partition coefficients were: 1.2 saline:air;

18.0 blood:air; 83.5 liver:air; 1021 fat:air; 27.7 muscle:air; and 43.0 skin:air. The rat PBPK model was
used to estimate a Kp for each exhaled breath dataset; the average Kp value across datasets was

0.074 em/hour (SD=0.005).

Kenyon et al. (2008) developed a seven-compartment PBPK model for inhalation exposure of rats to
toluene that included compartments for the lung, brain, richly perfused tissues, slowly perfused tissues,
fat, gastrointestinal tract, and liver. Metabolism was restricted to the liver, and metabolic constants were
those determined by Tardif et al. (1993). Partition coefficients were those determined by Thrall et al.
(2002b). Values for cardiac output and alveolar ventilation were calibrated/optimized by fitting of the
model to time-course data for toluene blood concentrations in Long-Evans rats under three different
experimental conditions: “normal” rats with a diurnal cycle of being active and fed at night; “sedentary,
day-acclimated” rats acclimated to be fed and active during the light diurnal cycle, but not performing a
task; and “active, day-acclimated” rats acclimated to be fed and active during light hours and performing
a lever pressing task. Blood flow fractions to tissues and volumes of tissue compartments were based on
literature values for Long-Evans rats. The calibrated/optimized model was evaluated for its ability to
predict time-course data for blood and brain concentrations of toluene collected from rats in several other
pharmacokinetic studies under various physical activity and exposure conditions. Statistical analyses of
plots of predicted versus observed blood concentration data from five other studies indicated no
significant difference from a fitted regression line and a “unity” line. For predicted versus observed brain
concentration data from four studies, the fitted regression had a slope of 0.850 that was statistically

significantly less than the unity line slope of 1.0. Most of this discrepancy was attributed to brain
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concentration data from a single study of Wistar rats for which the model consistently overpredicted brain

concentration; when these data were excluded, the slope of the regression line was 1.01.

Oshira et al. (2011) modified the Kenyon et al. (2008) rat model for inhalation exposure to include
hepatic enzyme induction as an empirical step function. When the Kenyon et al. (2008) model was used
to simulate toluene brain concentrations during exposures of Long-Evans rats to 775 or 1,125 ppm for
24 hours, the model adequately described brain concentrations at 1 and 6 hours of exposure, but
overpredicted brain concentrations at 24 hours and at 6 hours after exposure ceased. The modified model
(which included graded fold increases of the maximum rate of toluene metabolism in the liver [VmaxC]
used in the original model) provided better predictions of brain concentrations at 24 and 30 hours after
exposure started. The modified model was used to predict brain concentrations of toluene during 1- and
24-hour exposures to several air concentrations and examined relationships between estimated brain
concentrations and effects on a trained behavior task (visual signal detection). The dose-effect
relationship for response latency in this task after 1 hour of exposure was shifted to the left on the dose
axis, compared with the 24-hour dose-effect relationship. The results are consistent with the hypotheses
that the rats developed a behavioral tolerance to toluene within 24 hours of exposure and that behavioral

effects from 24-hour exposures cannot be accurately extrapolated from 1-hour exposure data.

3.5 MECHANISMS OF ACTION
3.5.1 Pharmacokinetic Mechanisms

Absorption. In humans and animals, toluene is rapidly absorbed by inhalation exposure (Benignus et
al. 1984; Hjelm et al. 1988; Hobara et al. 1984b; Lof et al. 1993). Animal studies have shown that
toluene is absorbed less rapidly by the oral route (Ameno et al. 1992; Pyykko 1983; Sullivan and Conolly
1988), and dermal route (Dutkiewicz and Tyras 1968; Thrall and Woodstock 2002; Thrall et al. 2002a).
Studies with brush border membrane vesicles isolated from rat intestines and exposed to toluene indicate

that toluene absorption occurs through the lipid matrix of the membrane (Alcorn et al. 1991).

Distribution. Toluene has been identified in brain, liver, lung, and blood in humans following toluene
exposure (Paterson and Sarvesvaran 1983; Takeichi et al. 1986). Within the human brain, toluene has a
greater affinity for areas of the brain that contain lipid-rich white matter, such as the brain stem, rather
than the areas with larger amounts of grey matter (Ameno et al. 1992). The human data are supported by
animal studies where distribution of toluene was found to be characterized by uptake in lipid tissues

(brain and fat) immediately following inhalation exposure (Bergman 1983; Bowen et al. 2007; Campo
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1999; Ghantous and Danielsson 1986; Ikeda 1990; Nakajima et al. 2006; Kenyon et al. 2008; van
Asperen et al. 2003).

Metabolism. Studies of urinary metabolites in toluene-exposed humans have identified hippuric acid
(the glycine conjugate of benzoic acid) as the major urinary metabolite of toluene. Minor urinary
metabolites (in approximate order of decreasing abundance) include: the glucuronyl conjugate of benzoic
acid; sulfate and glucuronide conjugates of ortho- and para-cresol; S-benzylmercapturic acid; and
S-p-toluylmercapturic acid. CYP2E] is thought to be the principal enzyme responsible for catalyzing the
formation of benzyl alcohol from toluene, but other CYP forms capable of catalyzing this reaction include
CYP1Al, CYP1A1, CYP2A6, CYP2A13, CYP2B6, and CYP2C8 (Fukami et al. 2008; Nakajima et al.
1997). Benzyl alcohol is thought to be converted to benzoic acid by alcohol dehydrogenase and aldehyde
dehydrogenase. Hippuric acid formation from benzoic acid is catalyzed by acyl-CoA synthetase and
acyl-CoA:amino acid N-acyltransferase, whereas benzoyl glucuronide formation from benzoic acid is
catalyzed by UDP-glucuronyl transferase (Nakajima and Wang 1994). The formation of ortho- and
para-cresol is thought to be catalyzed from benzoic acid by CYP1A2, CYP2E1, and CYP2B6 through
epoxide intermediates (Nakajima et al. 1997). The liver appears to be the principal site of metabolism of
toluene, but evidence of metabolism in other tissues like the lung is available (Fukami et al. 2008;

Wheeler et al. 1992).

Excretion. In both humans and rats, up to about 75-80% of inhaled toluene that is absorbed can be
accounted for by urinary excretion of the principal metabolite, hippuric acid (Lof et al. 1993; Ogata 1984;
Tardif et al. 1998). Excretion of unchanged toluene and minor metabolites including S-benzyl
mercapturic acid, S-p-toluoyl mercapturic acid, and conjugates of ortho- and para-cresol account for less
than 5% of absorbed toluene, but assays for urinary levels of unchanged toluene and ortho-cresol can
provide reliable biomarkers of toluene exposure (ACGIH 2010; Ducos et al. 2008; Janisik et al. 2008,
2010). Excretion of nonmetabolized toluene in exhaled air can represent from 7 to 20% of absorbed
toluene, depending on exposure conditions (Carlsson 1982; Leung and Paustenbach 1988; Lof et al.
1993). Although the liver is expected to be the main site of metabolism of toluene, CYP2EI, one of the
principal isozymes catalyzing the initial reaction in the principal toluene metabolic pathway, has been
detected in human lung microsomes at concentrations about 10-fold less than in liver microsomes
(Wheeler et al. 1992). Under conditions in which the main pathway of toluene metabolism is inhibited by
co-exposure with ethanol, exhalation of nonmetabolized toluene can become a principal route of excretion

(Baelum et al. 1993).
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3.5.2 Mechanisms of Toxicity
3.5.2.1 Mechanisms of Neurotoxicity

Dysfunction of the central nervous system is a critical human health concern following acute,
intermediate, or chronic inhalation exposure to toluene. Therefore, the mechanisms of toluene toxicity
have been investigated predominately in the nervous system. Proposed mechanisms of toxicity include
altered membrane and membrane channel properties; direct damage to brain structures via lipid damage,
oxidative stress, and/or apoptosis; altered neurotransmitter synthesis, release, degradation, and receptor

binding; disruption of the hypothalamic-pituitary-adrenal axis; and neuroinflammation.

Mechanisms of Central Nervous System Depression and Narcosis. The mechanism by which acute
exposure to toluene brings about neurological effects such as central nervous system depression and
narcosis is generally thought to involve, at least in part, reversible interactions between toluene (the
parent compound and not its metabolites) and components (lipids or proteins) of nervous system
membranes. Support of parent-material involvement comes from the observation that pretreatment of rats
with phenobarbital increased the rate of in vivo toluene metabolism and shortened the time of recovery
from narcosis from single intraperitoneal doses of toluene (Ikeda and Ohtsuji 1971). Other support for
this hypothesis includes the transient nature of anesthesia from acute, high-level exposure to toluene and
the rapidity with which toluene-induced changes in brain biochemical variables can be measured. For
example, within 0.25—1 hour of intraperitoneal injection of 1-g/kg doses of toluene into rats, brain
synaptosomes showed decreased phosphatidylethanolamine content, altered phospholipid methylation
activities, altered outer membrane fluidity, and increased Na+-K+-ATPase activities (LeBel and Schatz
1988, 1989, 1990). Similarly, increased Na+-K+-ATPase activities were observed in brain homogenates
of rats sacrificed 15 minutes after an intraperitoneal injection of 35 mg/kg toluene or ortho-cresol
(Calderon-Guzman et al. 2005). In culture systems, decreased Mg++-ATPase activities were measured in
brain synaptosomes isolated from rat brains immediately following a 2-hour exposure to 2,000 ppm
toluene (Korpela and Tahti 1988); near-significant increases in calcium leakage were observed in
synaptosomes of PND 25-43 offspring exposed to 1,800 ppm for 6 hours/day from GD 7 to 20, compared
with unexposed offspring (Edelfors et al. 2002); and increased LDH and calcium leakage were observed
in a neuroblastoma cell line (SH-SY5Y) following in vitro toluene exposure (McDermott et al. 2007). On
a molecular scale, the acute anaesthetic actions of toluene and other agents have been postulated to
involve intercalation of toluene into the lipid bilayer of nerve membranes and/or reversible interactions

with proteins in the membrane (Franks and Lieb 1985, 1987).
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More recently, acute effects of toluene and other volatile organic chemicals on neuronal functions have
been proposed to involve interactions with voltage- and ligand-gated ion channels in nerve tissue. In
various cell preparations, toluene has been shown to disrupt currents mediated by GABA receptors
(Beckstead et al. 2000; Gmaz and McKay 2014), N-methyl-D-aspartate (Cruz et al. 1998, 2000, 2003),
nicotinic acetylcholine receptors (Bale et al. 2002, 2005), muscarinic acetyl choline receptors (Tsuga et al.
1999; Wu et al. 2002), voltage-sensitive Ca* channels (Shafer et al. 2005; Tillar et al. 2002), calcium-
activated and G-coupled potassium channels (Del Re et al. 2006), and gap junctions (Del Re and
Woodward 2005).

Mechanisms of Structural Brain Damage. Clinically obvious neurological impairment (e.g., gait and
speech abnormalities) and brain atrophy have been observed in several cases of chronic toluene-inhalation
abuse. MRI of the brain of solvent abusers (Filley et al. 1990; Rosenberg et al. 1988a, 1988b) suggests
preferential atrophy in lipid-rich regions of the brain. Rosenberg et al. (1988a, 1988b) found MRI
evidence of diffuse central nervous system demyelination in 6 toluene abusers with clinically obvious
neurological impairment, whereas Filley et al. (1990) noted that the degree of MRI-detected white matter
abnormality in 14 solvent abusers was correlated with neurological impairment. The observed changes in
MRI signals may be related to lipid compositional changes in the white matter, since these regions are
more lipid-rich than gray matter (Ameno et al. 1992). These observations are consistent with a hypothesis
that chronic exposure to high concentrations of toluene brings about structural changes in the brain related
to lipid compositional changes. Supporting evidence for this hypothesis includes observations of changed
phospholipid composition of rat brain synaptosomes following acute exposure to toluene (Lebel and
Schatz 1988, 1989, 1990), decreased phospholipid concentrations in the cerebral cortex of rats following
30 days of continuous exposure to 320 ppm (Kyrklund et al. 1987), degenerative changes and
ultrastructural damage in the hippocampus, frontal cortex, and brain stem (Kanter 2008a, 2008b, 2001,
2013), decreased or shrunken cells in the hippocampus (Gelazonia et al. 2006a; Gotohda et al. 2002;
Korbo et al. 1996; Zhvania et al. 2012), impaired dendritic outgrowth in the frontal cortex (Pascual and
Bustamante 2010), impaired neurite growth in neonatal rat cerebellar granular neurons stimulated with L1
cell adhesion molecule (suggesting impaired L1-lipid raft interactions) (White et al. 2016), and white
matter damage in the anterior commissure (Duncan et al. 2012). It is uncertain if toluene-induced
changes in membrane phospholipid content may be caused by increased breakdown of phospholipids or

inhibition of synthesis.

Brain damage may be mediated through apoptotic pathways. Increased apoptosis has been observed in

the rat brain following acute or intermediate-duration oral exposure to 650 mg/kg/day (Kamel and
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Shehata 2008). Following exposure to 1,500-1,800 ppm, 6 hours/day from GD 7 to 20, increased
apoptosis was observed in the cerebellum of rat pups at PNDs 21 and 27 (but not PNDs 11, 22, 24, or 90)
(Dalgaard et al. 2001; Ladefoged et al. 2004). No changes in hippocampal apoptosis were observed.
Additionally, a significant increase in caspase-3 activity was observed in the cerebellum on PND 6, but
not PNDs 22, 24, or 27, indicating increased caspase-3 mediated apoptosis (Ladefoged et al. 2004). A
study in rat astrocyte cultures also reported that observed apoptosis following in vitro toluene exposure
was caspase-dependent, and that stimulation of p42/44 mitogen activated protein kinase (MAPK) by

toluene functions to promote cell survival (Lin et al. 2002).

Damage to brain structures may also result from oxidative stress, as increased markers of oxidative stress
have been observed in the rat brain following acute- or intermediate-duration inhalation exposure to
concentrations as low as 10 ppm (Baydas et al. 2003, 2005; Burmistrov et al. 2001; Coskun et al. 2005;
Kodavanti et al. 2011, 2015; Royland et al. 2012). Increased markers of oxidative stress have also been
observed in rats following acute or intermediate-duration oral exposure to 650 mg/kg/day (Kamel and
Shehata 2008). Following gestational exposure to 1,800 ppm for 6 hours/day from GD 7 to 20, increased
reactive oxygen species were produced in response to in Vvitro exposure to toluene in cultured
synaptosomes from PND 25 to 43 offspring (Edelfors et al. 2002). Lipid peroxidation in rat brain was
also increased following intraperitoneal injections of toluene or its metabolites (ortho-, para-, and
meta-cresol) (Calderon-Guzman et al. 2005). This mechanism is plausible in humans, as increased
markers of oxidative stress have been observed in workers exposed to solvent mixtures (Halifeoglu et al.

2000; Kim et al. 2011; Won et al. 2011).

Mechanisms of Mild Neurological Impairment. Mechanistic understanding is poor of effects that have
been associated with intermediate and chronic exposure to toluene in workplace air such as increased
incidence of self-reported neurological symptoms (Guzelian et al. 1988; Matsushita et al. 1975; Orbaek
and Nise 1989; Ukai et al. 1993; Yin et al. 1987), performance deficits in neurobehavioral tests (Boey et
al. 1997; Eller et al. 1999; Foo et al. 1990; Kang et al. 2005; Matsushita et al. 1975; Orbaek and Nise
1989); hearing loss (Morata et al. 1997), changes in auditory and/or visual-evoked potentials (Abbate et
al. 1993; Vrca et al. 1995, 1996, 1997a, 1997b), and color vision loss (Campagna et al. 2001; Cavalleri et
al. 2000; Zavalic et al. 1998a, 1998b, 1998c¢), but several mechanistic actions have been postulated.

One mechanistic hypothesis postulates that repeated interaction of toluene with membrane proteins and/or
phospholipids in brain cells can change activities of enzymes involved in the synthesis and/or degradation

of neurotransmitters and that levels of neurotransmitters at particular sites in the brain may be involved in
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producing subtle neurological effects. Some evidence for this hypothesis comes from observations of
increased concentrations of dopamine, norepinephrine, and 5-hydroxytryptamine in rats exposed to
1,000—4,000 ppm for 30 minutes (Kim et al. 1998), 1,000 ppm for 8 hours (Rea et al. 1984), or up to

105 mg/kg/day in drinking water for 28 days (Hsieh et al. 1990b, 1991); decreased dopamine levels and
rates of turnover in several areas of the nucleus caudate in the brain of rats exposed to 80 ppm toluene,

6 hours/day for 3 days (Fuxe et al. 1982); increased levels of dopamine and noradrenaline in several brain
regions in rats exposed to 803,000 ppm, 6 hours/day for 3 days (Andersson et al. 1983b); decreased
activities of aromatic acid decarboxylase, an enzyme involved in synthesis of neurotransmitters, in the
brain stem of rats exposed to 250 or 1,000 ppm, 8 hours/day, 5 days/week for 4 weeks (Bjornaes and
Naalsund 1988); significantly increased dopamine levels, decreased levels of 3,4-dihydroxyphenylacetic
acid (DOPAC) and dihydroxyphenylalanine (DOPA), and altered monoamine neurotransmitter synthesis
(tyrosine and tryptophan hydroxylase enzyme activities) in rats exposed to 40 ppm toluene

104 hours/week for 16 weeks (Berenguer et al. 2003, 2004; Soulage et al. 2004); and significant localized
changes in dopamine and noradrenaline neurotransmitter levels and utilization in 8-week-old adult male
rats exposed to 80 ppm for 6 hours/day from PND 1 to 7, compared with controls (von Euler et al. 1989).
Altered neurotransmitter levels have also been reported in several animal studies at concentrations
modeling solvent abuse (>1,000 ppm) (Apawu et al. 2014; Alfaro-Rodriguez et al. 2011; Gerasimov et al.
2002¢; Koga et al. 2007; O’Leary-Moore et al. 2007, 2009; Ono et al. 1999; Paez-Martinez et al. 2008;
Tsuga and Honma 2000; Williams et al. 2005) and following toluene injection (Calderon-Guzman et al.
2005; Riegel et al. 2004; Win-Shwe et al. 2007b). Based on in vitro and in vivo microdialysis studies,
Riegel et al. (2007) suggested that observed increases in dopamine levels may result from direct
stimulation of dopamine neurons in the ventral tegmental area, resulting in increased dopamine release
into the nucleus accumbens of the mesolimbic system. Another in vivo microdialysis study reported
dose-related decreases in extracellular acetylcholine levels in the striatum and hippocampus following
intraperitoneal injections of 200-2,000 mg/kg toluene, which peaked 2—-3 hours post-injection (Honma
and Suda 2004). However, acetylcholine levels in striatal and hippocampal homogenates were
significantly increased, suggesting that decreased extracellular levels were due to decreased acetylcholine

release from nerve terminals.

Another mechanistic hypothesis postulates that repeated exposure to toluene may cause neurological
effects by changing the binding of neurotransmitters to membrane receptors. In support of this
hypothesis, persistent changes in brain-tissue dopamine D2 receptor binding and increased serum
prolactin levels were found in rats 17 days after exposure to 80 ppm toluene 6 hours/day, 5 days/week for

4 weeks (von Euler et al. 1993, 1994). It was speculated that the increase in serum prolactin level could
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be related to a possible interaction between toluene and the pituitary dopamine D2 receptor; this receptor
normally inhibits the release of prolactin into serum. Correlated with these biochemical changes was a
significantly increased locomotor activity (approximately 2-fold) in response to injections of apomor-
phine (a dopamine) and a significantly increased escape latency (indicating impaired spatial learning and
memory) in a water maze task, both observed 14—17 days after the 4-week toluene exposure (von Euler et
al. 1994). Whether or not this hypothesis is related to effects observed in occupationally exposed humans
is uncertain; Svensson et al. (1992b) did not find changes in serum prolactin levels in toluene-exposed
printing workers compared with controls. Additionally, in another animal study, no significant exposure-
related changes in serum prolactin levels in rats were reported with 4-week exposures to concentrations
up to 320 ppm (Hillefors-Berglund et al. 1995). There were also no changes in dopamine D3 receptor
binding 4 weeks after cessation of a 4-week exposure to 80 ppm toluene (von Euler et al. 2000).
However, there is some evidence of changes in glutamate and GABA binding in male rats exposed by
inhalation to toluene at concentrations of 50—1,000 ppm for 4 weeks or 500 ppm for 12 weeks (Bjornaes
and Naalsund 1988) and binding to muscarinic acetylcholine receptors in male rats following exposure to
>500 ppm for 6 hours (Tsuga and Honma 2000). Various alterations in receptor subunit levels were
observed in the mesolimbic system of the rat brain following exposure to 8,000 ppm 30 minutes/day for
10 days, including increases in GABA o1, NR1, NR2, and GIuR2/3 subunits in the medial prefrontal
cortex and decreased GABAaa1 and NR1 subunits in the substantia nigra (Williams et al. 2005).
Additionally, agonist binding to the GluN2B receptor subunit was significantly decreased in
mesocorticolimbic regions (nucleus accumbens, dorsal striatum, and caudal anterior cingulate cortex)

(Dick et al. 2015).

Further evidence of alterations in neurotransmitter systems comes from injection studies. Following
intraperitoneal injections of 250—750 mg/kg, rats showed dose-related increases in locomotor activity,
motor incoordination, and memory impairment during neurobehavioral testing (Lo et al. 2009).
Pretreatment with dopamine D1, D2, and D3 receptor antagonists (SCH23390, raclopride, nafadotride,
respectively) prevented locomotor effects, and all behavioral alterations were prevented with pretreatment
with d-serine, a co-agonist at the glycine binding site of NMDA receptors (Lo et al. 2009). Similarly, the
NMDA co-agonist, sarcosine, was able to attenuate neurobehavioral alterations in rats following
intraperitoneal injections of 250—750 mg/kg toluene (Chan et al. 2012) and the D2 antagonist remoxipride
was able to attenuate locomotor effects in rats following intraperitoneal injections of 600—1,200 mg/kg
toluene (Riegel and French 1999). Additionally, locomotor effects following an intraperitoneal injection
of 600 mg/kg were significantly attenuated when neurotransmission in the mesolimbic nucleus

accumbens was altered via 6-hydroxydopamine lesions (6-OHDA) or the mGlu2/3 receptor agonist
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LY379268 (Riegel et al. 2003). Observed increases in depressive-like behavior in the forced swim and
tail suspension tests, 1 and 4 days following intraperitoneal injection of 500 mg/kg toluene, were
prevented with administration of serotonin-reuptake inhibitors (fluoxetine and imipramine) (Yang et al.
2010). Decreased NMDA-mediated calcium signaling and NR2B subunits have been reported in
cerebellar granule cells cultured from rat pups following daily intraperitoneal injections of 200—

1,000 mg/kg/day from PND 4 to 10 (Chen et al. 2004, 2005). Following daily intraperitoneal injections
of 500 mg/kg/day toluene on PNDs 4-9 or 21-26, NMDA receptor-mediated excitatory postsynaptic
currents (EPSCs) were enhanced following electrical stimulation, but decreased in response to exogenous
NMDA in PND 30-38 hippocampal slices (Chen et al. 2011). However, paired-pulse facilitation of
NMDA currents was only observed in rats exposed to 500 mg/kg/day toluene from PND 4 to 9 (Chen et
al. 2011).

Significant decreases (28 or 47%) in rat brain GFAP induced by exposure to 1,000 ppm toluene,

6 hours/day for 3 or 7 days have been associated with increased serum levels of corticosterone (Little et
al. 1998). The decreases in GFAP were observed in the thalamus and hippocampus, regions of the brain
that are reported to be involved in controlling serum glucocorticoid levels and having high concentrations
of glucocorticoid receptors, respectively (Little et al. 1998). Little et al. (1998) postulated that decreases
in brain GFAP may be a consequence of toluene disruption of the hypothalamic-pituitary-adrenal axis
and/or hormonal homeostasis, but noted that the available evidence is inadequate to firmly establish cause
and effect. Decreased GFAP was also observed in neonatal rat brains following daily intraperitoneal
injections of 750 mg/kg from PND 4 to 10 (Burry et al. 2003) and in a dose-related manner in cultured
astrocyte precursor cells following in vitro exposure to toluene, suggesting that toluene exposure could
disrupt early brain development (Yamaguchi et al. 2002). Additionally, in vitro toluene exposure
inhibited proliferation of primary rat cortical astrocyte cultures in a dose-related manner (Burry et al.
2003). The possible mechanistic connections of these observations to toluene-induced changes in
neurobehavior are uncertain. In contrast, GFAP levels were significantly increased in the hippocampus,
cerebellum, and spinal cord of male rats exposed to 1,500 ppm, 4 hours/day for 4-10 days (Gotohda et al.
2000a, 2000b) and in the hippocampus, cortex, and cerebellum of male rats exposed to 3,000 ppm paint
thinner (66% toluene) 1 hour/day for 45 days (Baydas et al. 2003).

Alterations in adult neurogenesis in the subventricular zone of the lateral ventricle (SVZ) of the
hippocampus may contribute to cognitive impairments associated with toluene abuse. Exposure to
toluene in paradigms modeling abuse (500-6,000 ppm) led to an initial burst of neurogenesis, followed by

a decrease in both neurogenesis and cell survival in the SVZ in mice (Franco et al. 2014; Paez-Martinez et
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al. 2013). Seo et al. (2010) also reported a reduced rate of adult hippocampal neurogenesis in mice
following a single intraperitoneal injections of 500 mg/kg toluene. As reviewed by these study reports,
cognitive impairments and drug seeking behaviors have been associated with abnormalities in adult

hippocampal neurogenesis in animal models.

Numerous gene expression changes have been observed in brain tissues of rats and mice following acute
or intermediate inhalation exposure or injection; however, current understanding is inadequate to
determine the mechanistic significance of these findings. Genes demonstrating significantly altered
expression levels are involved in synaptic transmission and plasticity (Ahmed et al. 2007; Hester et al.
2011, 2012), memory (Win-Shwe and Fujimaki 2012; Win-Shwe et al. 2007a, 2010b, 2010c),
neurotrophic factors (Win-Shwe et al. 2010a; Gotohda et al. 2000b), and oxidative stress (Win-Shwe et al.
2010a). Results of these studies vary greatly, and indicate that gene expression changes are species-,
strain-, dose-, duration-, and lifestage-dependent. A series of studies suggest that neurobehavior may be
altered through neuroimmune effects, such as neuroinflammation, and that immune status may affect gene
expression changes in brain neuroinflammation (Win-Shwe et al. 2010a, 2011, 2012a, 2012b). Epigenetic
alterations (histone acetylation) were seen in the dentate gyrus of rats exposed to 1,000—6,000 ppm for

30 minutes or 10 days (30 minutes, 2 times/day) (Huerta-Rivas et al. 2012), and in the nucleus accumbens
and ventral tegmental area of rats exposed to 6,000 ppm for 10, 30-minute sessions over 8 days (Sanchez-

Serrano et al. 2011).

Mechanisms of Hearing Loss. There is evidence that hearing loss induced by inhalation exposure to
toluene is produced by toluene itself and not by its metabolites. Phenobarbital pretreatment, which
increases the rate of in vivo metabolism of toluene, prevented hearing loss in rats exposed to 1,500—
2,000 ppm toluene, 8 hours/day for 7 days (Pryor et al. 1991), rats exposed to 1,700-2,000 ppm toluene,
6 hours/day, 5 days/week for 6 weeks (Campo et al. 2008), and rats exposed to a single gavage dose of
1,500 mg/kg (Campo et al. 2008). Inhibition of P450 metabolism by SKF525-A in guinea pigs resulted in
altered auditory thresholds following exposure to 1,750 ppm toluene 6 hours/day, 5 days/week for

4 weeks; toluene administration alone did not change auditory thresholds (Waniusiow et al. 2009).
Acivicin pretreatment, which inhibits y-glutamyl transferase and the production of cysteine S-conjugates
during toluene metabolism, did not alter hearing loss in rats exposed to 1,750 ppm toluene 6 hours/day,
5 days/week for 4 weeks, suggesting that toluene-induced hearing loss is not mediated by the cysteine

S-conjugate metabolic pathway (Waniusiow et al. 2008).
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Multiple studies in animals indicate that hearing loss observed with occupational toluene exposure may be
due, in part, to direct damage to the OHCs of the cochlea that are responsible for amplifying incoming
sound waves prior to signal transduction (Campo et al. 1997, 1998; Johnson and Canlon 1994; Lataye and
Campo 1997, Lataye et al. 1999; Waniusiow et al. 2008). Phenobarbital pretreatment also reduced OHC
loss in rats exposed to 1,700-2,000 ppm toluene 6 hours/day, 5 days/week for 6 weeks, compared with
toluene-treatment alone (Campo et al. 2008). Additionally, rats that were given large gavage doses of
ethanol (4 g/kg/day) and daily inhalation exposure to toluene concentrations of 1,750 ppm 6 hours/day,

5 days/week for 4 weeks showed significantly greater hearing loss (as measured by BAEP) and OHC loss
in the ear than those exposed to toluene alone (Campo et al. 1998). Co-exposure to ethanol caused a
significant decrease in hippuric acid urinary excretion rates compared with exposure to toluene alone,
indicating that these large doses of ethanol inhibited the metabolism of toluene (Campo et al. 1998).

Since exposure to ethanol alone in this study did not affect hearing or OHC loss in the ear, ethanol
inhibition of toluene metabolism and subsequent potentiation of toluene-induced loss of hearing are

consistent with the idea that toluene itself is responsible for these effects.

Mechanistic understanding at the molecular and cellular level is limited regarding how toluene exposure
leads to a loss of OHCs in the ear and the degree to which toluene effects on neural cell membranes may
be involved. However, a series of recent papers propose that toluene modifies the response of protective
acoustic reflexes to loud noises via anticholinergic effects, which could potentially result in increased
noise-induced hearing loss (Campo et al. 2007; Lataye et al. 2007; Maguin et al. 2009; Venet et al. 2011).
Following an injection of 116.2 nM toluene directly into the carotid artery supplying the tested cochlea,
electrophysiological responses of OHCs (cochlear microphonic potentials; CMPs) to noise (65-95-dB
SPL) were significantly increased in an intensity-dependent manner in anesthetized rats (Campo et al.
2007; Lataye et al. 2007). This suggests that toluene affects: (1) endocochlear potential or OHC
membrane conductance; (2) how OHC stereocilia move; and/or (3) the inner- or middle-ear muscle reflex
via alterations in the efferent pathway (preventing protective reflexive actions). The intensity-dependent
increase suggests that the increased CMP amplitudes were due to altered inner-ear and/or middle ear
acoustic reflexes (Lataye et al. 2007). Since acoustic reflexes can be stimulated in both ears following
loud noises in one ear, further support for toluene-mediated alterations in acoustic reflexes comes from
increased CMP amplitudes following both ipsilateral (same side) and contralateral (opposite side) noise
stimulation (Campo et al. 2007). Additionally, toluene exposure did not alter CMPs in rats with severed
middle ear muscles (Campo et al. 2007); however, CMPs were not altered from baseline following noise
exposure prior to toluene injections, limiting the interpretation of these results. Since the auditory

efferent system is a cholinergic descending pathway, and toluene has been shown to alter currents in
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nicotinic acetylcholine receptors (Bale et al. 2002, 2005) and muscarinic acetylcholine receptors (Tsuga et
al. 1999; Wu et al. 2002), Campo et al. (2007) hypothesized that observed alterations in acoustic reflexes
in middle ear muscles result from anticholinergic actions of toluene. In support, CMP responses
following injections of antagonists of cholinergic receptors and antagonists of calcium-gated
acetylcholine channels were of similar magnitude to responses to toluene (Lataye et al. 2007; Maguin et
al. 2009). Another study examined noise-induced distortion product otoacoustic emissions (DPOAE) to
evaluate the effect of toluene exposure on noise-induced suppression of cochlear responses (Venet et al.
2011). Similar to CMP responses, DPOAE amplitude suppression to ipsilateral and contralateral stimuli
was decreased in rats injected with 116 nM toluene; however, no cochlear damage was observed (Venet
et al. 2011). Additionally, a clear dose-response effect was not observed, as contralateral noise-induced
suppression is increased in rats injected with 58 nM toluene, and no clear effects were observed at 58 nM
toluene with ipsilateral stimuli or 87 nM toluene with either ipsilateral and contralateral stimuli (Venet et

al. 2011).

Mechanisms of Vision Impairment. The molecular mechanism and pathogenesis of color vision
impairment (dyschromatopsia) associated with occupational and intentional abuse exposure to toluene
and other organic solvents are not clearly understood, but it has been postulated that toluene interference
with dopaminergic mechanisms of retinal cells or toxic demyelination of optic nerve fibers may be
involved (Muttray et al. 1997, 1999; Zavalic et al. 1998a, 1998b, 1998c). Alterations observed in VEPs
may be mediated through alterations in glutamatergic receptors, as treatment with MK801 (a non-
competitive antagonist of the NMDA receptor) prevented the reduction of VEP amplitude observed
following acute exposure to 2,000 ppm toluene (Bale et al. 2007).

3.5.2.2 Mechanisms of Toxicity to Other Systems

Mechanistic studies in other systems are limited, but suggested mechanisms are similar to those observed
for neurotoxicity, including altered membrane properties, apoptosis, oxidative stress, and gene expression

alterations.

Altered Membrane Properties. As observed in nervous system cultures, altered membrane properties
were reported following toluene exposure in Jurkat T cells, as evidenced by increased LDH and calcium

leakage (McDermott et al. 2007).
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Apoptosis and Oxidative Stress. As observed in nervous tissue, increased markers of oxidative stress
have been observed in liver, kidney, and testes in rats following acute or intermediate-duration oral
exposure to 650 mg/kg/day (Kamel and Shehata 2008). Additionally, increased apoptosis has been
observed in the liver, but not kidney or testes, in rats following intermediate-duration oral exposure to
650 mg/kg/day (Kamel and Shehata 2008). Additional evidence for oxidative stress in reproductive
organs include increased activities for glutathione peroxidase in ovaries of rats exposed to 500 ppm
toluene for 4 hours/day, 5 days/week for 1 month (Burmistrov et al. 2001), attenuation of sperm
parameter changes and testicular damage in rats exposed to 6,000 ppm toluene for 2 hours/day for

5 weeks following pre-treatment with antioxidant thymoquinone (Kanter 2011b), and increased 8-oxodG
formation in testes along with decreased sperm counts and serum testosterone in male rats given daily
intraperitoneal injections of 50 or 500 mg/kg for 10 days (Nakai et al. 2003). In another study, no
significant changes in testicular or epididymal levels of several markers of oxidative stress were observed

in rats exposed to 1,500 ppm 4 hours/day for 7 days (Tokunaga et al. 2003).

An in vitro study in human leukemia cells reports significant increases in apoptosis and dose-related (but
nonsignificant) increases in reactive oxygen species production (Sarma et al. 2011). In porcine proximal
tubular cells (LLC-PK1), both apoptosis and lipid peroxidation were significantly increased following in
Vitro exposure to toluene (Al-Ghamdi et al. 2003, 2004).

Gene Expression Changes in Tissues Other than the Brain. Changes in mRNA levels for genes
involved in oxidative stress thrombosis, vasoconstriction and inflammation were noted in rat cardiac
tissue following single gavage doses of 1,000 mg/kg toluene (Gordon et al. 2010). In a series of studies
from a single laboratory, intermediate-duration inhalation exposures of normal or allergy-challenged
(ovalbumin [OVA]-immunized and challenged) mice to toluene concentrations ranging from 5 to 90 ppm
have been reported to produce non-monotonic dose-related changes in the mRNA levels for inflammatory
cytokines, neurotrophins, neurotrophin receptors or other immune regulatory transcription factors in lung,
BAL fluid, thymus, or spleen (Fujimaki et al. 2009b, 2010, 2011; Liu et al. 2010; Yamamoto et al. 2009;
Win-Shwe et al. 2007a). As with the neurological gene expression studies, current understanding is

inadequate to determine the mechanistic significance of these findings.

3.5.2.3 Potential Mechanisms of Metabolite-mediated Toxicity

The postulated arene oxide intermediates formed in the metabolic pathway from toluene to ortho- or

para-cresol are highly reactive and expected to bind to cell proteins and RNA, thereby potentially leading
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to cellular dysfunction and degeneration. Studies with human and rat liver microsomes and tissue slices
showed that incubation with labeled toluene leads to incorporation of the label into microsomal proteins
and RNA in an NADP-requiring reaction (Chapman et al. 1990). It does not appear likely, however, that
this mechanism of action is the primary mode of toluene’s toxicity, especially at air concentrations below

100 ppm that are of occupational and public health concern, because:

(1) the liver is expected to be the main site of toluene metabolism,

(2) the pathway to the cresol isomers accounts for less than 1-5% of metabolized toluene (see
Section 3.4.3),

(3) results from animal studies and studies of toluene-exposed workers do not identify the liver as the
most sensitive target organ (see Section 3.2.1), and

(4) degenerative lesions in nervous tissues have not been detected by light microscopy in rats and
mice exposed to concentrations as high as 1,200 ppm 6.5 hours/day, 5 days/week for up to 2 years

(CIIT 1980; NTP 1990).

The available evidence, however, is not sufficient to discard the hypothesis that this mode of action (i.e.,
cellular degeneration caused by reactive metabolic intermediates) may play some role in toluene toxicity,

especially with repeated high-level exposures such as those experienced by toluene abusers.

3.5.3 Animal-to-Human Extrapolations

Many laboratory animal species have been used to describe toluene toxicity, but the most commonly used
species is the rat. As described in Section 3.4, the toxicokinetic data gathered from rat studies compare
favorably with the information available from human studies. In addition, neurological effects observed
in rats including changes in locomotor activity, changes in visual- and auditory-evoked brainstem
potentials, hearing loss, and changes in brain chemistry appear to be related to critical neurological effects
observed in humans after acute or repeated exposure to toluene including self-reported neurological
symptoms, impaired performance in neurobehavioral tests, hearing loss, and color vision impairment.
Given the availability of data for humans exposed by inhalation, MRLs for inhaled toluene are derived
without extrapolating from the available animal toxic-effects data. In contrast, acute- and intermediate-
duration MRLs for oral exposure to toluene are based on extrapolating effects in rats to humans (see

Section 2.3 and Appendix A).
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As discussed in Section 3.4.5, a number of PBPK models are available that describe the kinetics of
toluene after inhalation exposure for humans (Benignus et al. 2006; Fisher et al. 1997; Jonsson and
Johanson 2001; Sari-Minodier et al. 2009; Nong et al. 2006; Pierce et al. 1996, 1999; Tardif et al. 1995,
2002) and rats (DeJongh and Blaauboer 1996, 1997; Kenyon et al. 2008; Oshiro et al. 2011; Tardif et al.
1993; van Asperen et al. 2003). PBPK models to describe the kinetics of dermally applied aqueous
solutions of toluene are also available for humans (Thrall et al. 2002a) and rats (Thrall and Woodstock

2002), but models to describe kinetics following oral exposure to toluene have not been developed.

Benignus et al. (2007) used available PBPK models for inhaled toluene in humans (Benignus et al. 2006)
and rats (Kenyon et al. 2008) to examine the relative sensitivity of neurobehavioral end points in humans
and rats acutely exposed to inhaled toluene. End-point-specific dose-response relationships were
constructed relating brain concentrations (estimated with pertinent PBPK models) with the magnitude of
effect (expressed as a logistic function where a value of 1 means that the end point has been maximally
affected) from studies of toluene effects on neurobehavioral end points in humans and rats. A single
human dose-response relationship was constructed from six studies of choice reaction times in toluene-
exposed human subjects. This relationship was compared with relationships constructed from studies of
four neurobehavioral end points in toluene-exposed rats: VEPs, signal detection accuracy, signal
detection reaction time, and escape-avoidance correct response rate. The comparison showed that the
relationships for human choice reaction time and rat VEP were close to overlapping, consistent with
human and rat equivalence in sensitivity to these two types of neurobehavioral end points. The dose-
response relationships for the other rat neurobehavioral end points were shifted to the right on the brain
concentration x-axis and showed lower slopes in the following progression: rat signal detection reaction

time, rat signal detection accuracy, and rat escape-avoidance correct response rate.

Further development of a human PBPK model that includes partitioning of inhaled and ingested toluene
to the brain and a similarly designed rat PBPK model may be useful in improving extrapolation from the

oral exposure rat data in deriving oral MRLs for toluene.

3.6 TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine
system because of the ability of these chemicals to mimic or block endogenous hormones. Chemicals
with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate

terminology to describe such effects remains controversial. The terminology endocrine disruptors,
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initially used by Thomas and Colborn (1992), was also used in 1996 when Congress mandated the EPA to
develop a screening program for “...certain substances [which] may have an effect produced by a
naturally occurring estrogen, or other such endocrine effect[s]...”. To meet this mandate, EPA convened a
panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in
1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine
disruptors. In 1999, the National Academy of Sciences released a report that referred to these same types
of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to
convey the fact that effects caused by such chemicals may not necessarily be adverse. Many scientists
agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to
the health of humans, aquatic animals, and wildlife. However, others think that endocrine-active
chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist
in the natural environment. Examples of natural hormone mimics are the isoflavinoid phytoestrogens
(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992). These chemicals are derived from plants and are
similar in structure and action to endogenous estrogen. Although the public health significance and
descriptive terminology of substances capable of affecting the endocrine system remains controversial,
scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or
elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction,
development, and/or behavior (EPA 1997). Stated differently, such compounds may cause toxicities that
are mediated through the neuroendocrine axis. As a result, these chemicals may play a role in altering,
for example, metabolic, sexual, immune, and neurobehavioral function. Such chemicals are also thought
to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994;

Giwercman et al. 1993; Hoel et al. 1992).

Current data do not provide consistent evidence of endocrine disruption in toluene-exposed humans.
Most case studies of chronic abusers of toluene and other solvents have not reported effects on endocrine
organs, but there are reports of effects that may be associated with endocrine disruption in groups of
toluene-exposed workers including delayed time to pregnancy among wives of men exposed to mixed
organic solvents including toluene (Sallmen et al. 1998), increased incidence of spontaneous abortions in
female toluene-exposed electronics workers (Ng et al. 1992b), incidences of spontaneous abortion above
population norms in other small groups of toluene-exposed female workers or wives of male workers
(Lindbohm et al. 1992; Taskinen et al. 1989), and increased risk of preterm birth with increased
environmental levels of toluene (Poirier et al. 2015). However, small numbers and lack of adjustment for
possible confounding factors in some of these studies precludes drawing definite conclusions.

Additionally, studies of blood levels of reproductive hormones in repeatedly exposed workers or acutely
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exposed human subjects have not provided strong and consistent evidence of exposure-related effects

(Luderer et al. 1999; Svensson et al. 1992a, 1992b).

Similarly, evidence for endocrine effects in animals following acute- or intermediate-duration inhalation
exposure to toluene is not consistent across studies and does not clearly identify toluene as an endocrine-
disrupting chemical. Female rats exposed to 30 or 300 ppm toluene 6 hours/day, 5 days/week for 4 weeks
showed a mild reduction in follicle size of the thyroid in one study (Poon et al. 1994). Additionally,
increased adrenal weight and adrenocortical cell size, along with serum ACTH and corticosterone levels,
were observed in in male rats exposed to 1,500 ppm 4 hours/day for 7 days (Gotohda et al. 2005). This
exposure scenario was shown to cause, in companion studies, neuronal damage and an increase in
glucocorticoid receptors in the hippocampus, suggesting a possible disruption in the neuroendocrine axis
(Gotohda et al. 2000a, 2000b, 2002). However, results from several other studies in rats and mice found
no histological evidence of toluene-induced changes in endocrine organs including the thyroid, adrenal
glands, or pancreas following intermediate or chronic, oral or inhalation exposure (API 1985; Roberts et
al. 2003; NTP 1990; Von Oettingen et al. 1942), or dose-related changes in endocrine hormones
(Andersson et al. 1980, 1983Db).

There is limited evidence that exposure to toluene may damage the reproductive organs in animals, but
available data do not support that toluene effects reproductive performance. Effects on male reproductive
tissues have been observed in a few studies of animals exposed by inhalation to concentrations

>2,000 ppm (e.g., reduced sperm count, motility, and quality; and altered reproductive organ weight and
histology) (Kanter 2011b; Ono et al. 1996, 1999), but changes in sperm count and epididymis weight
were not accompanied by any change in indices of reproductive performance (e.g., fertility) in male rats
exposed to 2,000 ppm for 60 days before mating (Ono et al. 1996). Increased relative testicular weights
were reported in male mice exposed to 1,250 and 2,500 mg/kg/day by gavage for 13 weeks (NTP 1990).
However, no effects on the weight of the prostate, testes, uterus, or ovaries were observed in rats and
female mice exposed to 312-2,500 mg/kg/day (NTP 1990). Exposure of female rats to 3,000 ppm

8 hours/day for 7 days produced abundant vacuoles, lytic areas, and mitochondrial degeneration in the
antral follicles of the ovaries (Tap et al. 1996). However, no histopathological effects on the prostate,
testes, uterus, or ovaries were observed in rats and female mice gavaged with 312-2,500 mg/kg/day or
exposed to concentrations up to 2,500 ppm toluene for 6.5 hours/day for 14—15 weeks or up to 1,200 ppm
for 6-6.5 hours/day for 2 years (CIIT 1980; NTP 1990). Studies in rats exposed repeatedly by inhalation
to toluene, including a 2-generation reproductive toxicity study, have shown no evidence of adverse

effects on mating or fertility at tested concentrations as high as 1,200-2,000 ppm (API 1981, 1985; Ono
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et al. 1996; Roberts et al. 2003; Thiel and Chaboud 1997). In addition, the majority of numerous
gestational exposure studies reported no exposure-related changes in reproductive indices (API 1978,
1991; Bowen and Hannigan 2013; Bowen et al. 2005, 2007, 2009a, 2009b; Courtney et al. 1986;
Dalgaard et al. 2001; Gospe and Zhou 2000; Hass et al. 1999; Hougaard et al. 2003; Jones and Balster
1997; Klimisch et al. 1992; Ladefoged et al. 2004; NIOSH 1983; Ono et al. 1995; Roberts et al. 2007,
Saillenfait et al. 2007; Seidenberg et al. 1986; Thiel and Chahoud 1997; Warner et al. 2008).

There is evidence that toluene exposure can perturb the hypothalamic-pituitary axis in rats leading to
persistent increases in serum levels of prolactin. Elevated prolactin levels were reported in rats after
exposure to 80 ppm toluene 6 hours/day, 5 days/week for 4 weeks (Von Euler et al. 1994) or 80—

1,000 ppm 6 hours/day for 3 days (Andersson et al. 1983b). Von Euler et al. (1993, 1994) speculated that
the increase in serum prolactin level could be related to a possible interaction between toluene and the
pituitary dopamine D2 receptor which inhibits the release of prolactin into serum. However, in other
studies, no changes in prolactin levels were found in rats after exposure to 40-320 ppm 6 hours/day,

5 days/week for 4 weeks (Hillefors-Berglund et al. 1995), 500 ppm toluene 6 hours/day for 3 days, or
1,000 ppm 6 hours/day for 5 days (Andersson et al. 1980). In addition, a study of toluene-exposed
workers found no evidence for changed prolactin levels, compared with control subjects (Svensson et al.
1992a, 1992b).

No in vitro studies were located regarding endocrine disruption of toluene.

3.7 CHILDREN'S SUSCEPTIBILITY

This section discusses potential health effects from exposures during the period from conception to
maturity at 18 years of age in humans, when most biological systems will have fully developed. Potential
effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect
effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.

Relevant animal and in vitro models are also discussed.

Children are not small adults. They differ from adults in their exposures and may differ in their
susceptibility to hazardous chemicals. Children’s unique physiology and behavior can influence the

extent of their exposure. Exposures of children are discussed in Section 6.6, Exposures of Children.
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Children sometimes differ from adults in their susceptibility to adverse health effects from exposure to
hazardous chemicals, but whether there is a difference depends on the chemical(s) (Guzelian et al. 1992;
NRC 1993). Children may be more or less susceptible than adults to exposure-related health effects, and
the relationship may change with developmental age (Guzelian et al. 1992; NRC 1993). Vulnerability
often depends on developmental stage. There are critical periods of structural and functional
development during both prenatal and postnatal life that are most sensitive to disruption from exposure to
hazardous substances. Damage from exposure in one stage may not be evident until a later stage of
development. There are often differences in pharmacokinetics and metabolism between children and
adults. For example, absorption may be different in neonates because of the immaturity of their
gastrointestinal tract and their larger skin surface area in proportion to body weight (Morselli et al. 1980;
NRC 1993); the gastrointestinal absorption of lead is greatest in infants and young children (Ziegler et al.
1978). Distribution of xenobiotics may be different; for example, infants have a larger proportion of their
bodies as extracellular water, and their brains and livers are proportionately larger (Altman and Dittmer
1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 1966; Widdowson and Dickerson 1964). Past
literature has often described the fetus/infant as having an immature (developing) blood-brain barrier that
is leaky and poorly intact (Costa et al. 2004). However, current evidence suggests that the blood-brain
barrier is anatomically and physically intact at this stage of development, and the restrictive intracellular
junctions that exist at the blood-CNS interface are fully formed, intact, and functionally effective

(Saunders et al. 2008, 2012).

However, during development of the brain, there are differences between fetuses/infants and adults that
are toxicologically important. These differences mainly involve variations in physiological transport
systems that form during development (Ek et al. 2012). These transport mechanisms (influx and efflux)
play an important role in the movement of amino acids and other vital substances across the blood-brain
barrier in the developing brain; these transport mechanisms are far more active in the developing brain
than in the adult. Because many drugs or potential toxins may be transported into the brain using these
same transport mechanisms—the developing brain may be rendered more vulnerable than the adult.
Thus, concern regarding possible involvement of the blood-brain barrier with enhanced susceptibility of
the developing brain to toxins is valid. It is important to note however, that this potential selective
vulnerability of the developing brain is associated with essential normal physiological mechanisms; and

not because of an absence or deficiency of anatomical/physical barrier mechanisms.

The presence of these unique transport systems in the developing brain of the fetus/infant is intriguing;

whether these mechanisms provide protection for the developing brain or render it more vulnerable to
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toxic injury is an important toxicological question. Chemical exposure should be assessed on a case-by-
case basis. Research continues into the function and structure of the blood-brain barrier in early life

(Kearns et al. 2003; Saunders et al. 2012; Scheuplein et al. 2002).

Many xenobiotic metabolizing enzymes have distinctive developmental patterns. At various stages of
growth and development, levels of particular enzymes may be higher or lower than those of adults, and
sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and
Kearns 1997; NRC 1993; Vieira et al. 1996). Whether differences in xenobiotic metabolism make the
child more or less susceptible also depends on whether the relevant enzymes are involved in activation of
the parent compound to its toxic form or in detoxification. There may also be differences in excretion,
particularly in newborns given their low glomerular filtration rate and not having developed efficient
tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).
Children and adults may differ in their capacity to repair damage from chemical insults. Children also
have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly

relevant to cancer.

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others
may decrease susceptibility to the same chemical. For example, although infants breathe more air per
kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their
alveoli being less developed, which results in a disproportionately smaller surface area for alveolar

absorption (NRC 1993).

Data from controlled-exposure studies of volunteers, studies of occupationally exposed humans, case
reports of toluene abuse, and studies of animals after inhalation or oral exposure indicate that the nervous
system is a critical target of toluene toxicity (see Chapter 2 and Sections 3.2 for more details). The effects
of toluene have not been thoroughly studied in children, but the limited available data suggest that the
nervous system is also a likely target of toluene toxicity in children. There are numerous reports of
adolescents who repeatedly inhaled high levels (4,000-12,000 ppm) of toluene and developed persistent
central nervous system dysfunction (e.g., Byrne et al. 1991; Devasthasan et al. 1984; King et al. 1981).
Neurological effects reported following toluene inhalation exposure in young animals (neonatal-young
adult) are similar to those reported in adults, including changed levels of brain neurotransmitters
(O’Leary-Moore et al. 2009; von Euler et al. 1989); high frequency hearing loss (Pryor and Rebert 1992;
Pryor et al. 1984a); increased locomotor activity (Bowen et al. 2007; Samuel-Herter et al. 2013); impaired

motor coordination (Samuel-Herter et al. 2013); and altered pain perception (Castilla-Serna et al. 1991).
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Available information regarding age-related differences in toluene metabolism suggests that developing
fetuses and children at very early stages of development may be more susceptible to toluene toxicity than
adults, and that children past early neonatal periods may have the same capability as adults to clear
toluene from the body at low exposure levels. The capacity for metabolic detoxification of toluene is
expected to be low in the developing human fetus because several CYP isozymes are either absent or
expressed at very low levels (Leeder and Kearns 1997). However, rat studies indicate that levels of CYP
isozymes involved in toluene metabolism are rapidly increased following birth and suggest that
capabilities to carry out Phase I toluene metabolism at low exposure levels during neonatal periods may
exceed those at sexual maturity and pregnancy (Nakajima et al. 1992b). CYP2E1, one of the principal
CYP isozymes involved in the major toluene metabolic pathway (Nakajima et al. 1997; Tassaneeyakul et
al. 1996), is expressed several hours after birth in humans and continues to increase during the first year
of life (Vieira et al. 1996). Phase II enzymes involved in toluene metabolism (e.g., N-acetyl transferases,
UDP-glucuronyl transferases, and sulfotransferases) also show changes during human neonatal
development with adult activities present by 1-3 years of age (Leeder and Kearns 1997). There are other
physiological differences between adults and children (e.g., children have higher brain mass per unit of
body weight, higher cerebral blood flow per unit of brain weight, and higher breathing rates per unit of
body weight: see Snodgrass [1992]), but their contributions to possible age-related differences in

susceptibility to toluene toxicity are currently uncertain.

Results from animal studies indicating that younger animals may be more susceptible to toluene toxicity
than adults are restricted to markedly lower LDs, values for 14-day-old rats compared with adult rat
values (Kimura et al. 1971) and more severe high frequency hearing loss in young rats exposed to toluene
compared with adult rats (Pryor et al. 1984a). The human brain grows rapidly for the first 2 years life and
continues more slowly until full brain cell numbers, complete myelination of subcortical white matter,
and complete elaboration of dendrites and axons are attained at adulthood (Snodgrass 1992). It is
unknown if the relatively long period of development of the human brain may make juvenile humans

more susceptible to toluene toxicity than juvenile nonprimate animals.

Recent studies investigating age-related susceptibility to “binge” toluene exposure in rats do not clearly
support increased susceptibility in young versus adult rats. Following 15- or 30-minute exposures to
~5,000 ppm toluene, increased locomotor activity, altered exploration, and impaired motor coordination
and gait were observed in adolescent (1 month), young adult (2—3 months), adult (5—6 months) and older

adult (10—12 months) rats, with no apparent age-related effects (Samuel-Herter et al. 2013). However, the
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duration to recover from toluene-induced motor impairments was significantly longer in adolescent and
young adults (Samuel-Herter et al. 2013). Following exposure to 0, 2,000, 4,000, or 8,000 ppm toluene
for 20 minutes/day for 10 days, age- and sex-dependent increases in locomotion were observed in
adolescent (PND 28), young adult (PND 44), and adult (PND 70) rats; however, adolescent rats were not
identified as a susceptible group (Bowen et al. 2007). In the adolescent rats, increases were significant in
females from all exposure groups and males from the 4,000 and 8,000 ppm groups during week 2 of
exposure. In the young adult and adult rats, increases were significant in females from the 4,000 and
8,000 ppm groups and in males from the 8,000 ppm group during week 2 of exposure; these increases
were significantly greater in magnitude than observed changes in adolescents from the same dose groups.
Additionally, adult females and males from the 8,000 ppm group showed significantly increased
locomotor behavior during week 1, from day 1 and 3, respectively. These results suggest that while
effects may be observed at lower doses in adolescents, the effects may take longer to manifest and may be
smaller in magnitude, compared with adults (Bowen et al. 2007). Another study evaluated potential
differences in toluene-induced locomotor effects in adolescent (PND 28) and adult (PND 90) male rats
exposed to 0, 8,000, or 16,000 ppm for 12 days using three different exposure patterns: standard (two
15-minute exposures separated by a 105-minute break), rapid (two 15-minute exposures separated by a
15-minute break), and paced (six 5-minute exposures separated by 25-minute breaks) (Batis et al. 2010).
Locomotor activity was assessed during each exposure period and during a 30-minute “recovery” period
immediately following the final toluene exposure each day. While locomotor activity was significantly
altered in both exposure groups at both ages, subtle differences were noted. Adolescents displayed
greater toluene-induced locomotor activity on the first day and generally greater increases in activity over
all days than adults during toluene exposure; however, adults displayed greater toluene-induced
locomotor activity than adolescent in the “recovery” period following exposure on the first and
subsequent days. Age group differences were most pronounced in the paced “binge-like” exposure
protocol. The subtle age-related effects described in these studies may be mediated by age-dependent
neurochemical changes observed (O’Leary-Moore et al. 2009). Following acute, high-dose exposure to
8,000—12,000 ppm toluene, no significant changes were found in neurotransmitter, n-acetyl-aspartate
(NAA), choline-containing compounds, creatine, glutamate, glutamine, GABA, or lactate levels in
adolescent brains; however, decreased levels of choline and GABA in the frontal cortex and striatum,
decreased glutamine and NAA levels in the frontal cortex, and a wide-ranging increase in lactate were

observed in young adult brains (O’Leary-Moore et al. 2009).

Case reports of birth defects in solvent abusers suggest that high-level exposure to toluene during

pregnancy can be toxic to the developing fetus (Arnold et al. 1994; Erramouspe et al. 1996; Goodwin
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1988; Hersch 1988; Hersch et al. 1985; Lindemann 1991; Pearson et al. 1994). It is likely that the high
exposure levels experienced by pregnant solvent abusers (4,000 to 12,000 ppm) overwhelm maternal
mechanisms that protect the developing fetus from absorbed toluene at lower exposure levels.
Experiments with pregnant mice demonstrated that 10-minute exposures to 2,000 ppm resulted in low
uptake of toluene into fetal tissue and suggest that, at lower exposure levels, absorbed toluene is
preferentially distributed to maternal adipose tissue before distribution to the developing fetus (Ghantous
and Danielsson 1986). Following repeated inhalation exposure of pregnant rats to higher concentrations
(8,000 or 12,000 ppm) for 15, 30, or 45 minutes twice daily from GD 8 to 20, amniotic fluid
concentrations were ~<10% of concentrations in maternal blood samples, concentrations in fetal brain
were similar to maternal blood concentrations, and concentrations in placenta were higher (Bowen et al.

2007). Concentrations of toluene in fetal brain were less than concentrations in maternal brain.

The results from animal studies indicate that toluene did not cause maternal or developmental toxic
effects in animals at inhalation exposure levels <1,000 ppm administered for 6—7 hours/day during
gestation (API 1978, 1991, 1992; Jones and Balster 1997; Klimisch et al. 1992; Ono et al. 1995; Roberts
et al. 2007; Saillenfait et al. 2007; Thiel and Chahoud 1997; Tsukahara et al. 2009; Win-Shwe et al.
2012a, 2012b; Yamamoto et al. 2009) or at oral exposure levels of 1,800-2,350 mg/kg/day during the
period of organogenesis in two developmental screening studies (NIOSH 1983; Seidenberg et al. 1986).
With higher inhalation exposure levels (>1,000 ppm), predominant effects include retarded fetal growth
and skeletal development and altered development of behavior in offspring, and were almost always
accompanied by signs of maternal toxicity (API 1991, 1992; Bowen and Hannigan 2013; Bowen et al.
2005, 2009a; Callan et al. 2015; Dalgaard et al. 2001; Hass et al. 1999; Hougaard et al. 2003; Roberts et
al. 2007; Jones and Balster 1997; Ono et al. 1995; Saillenfait et al. 2007; Thiel and Chahoud 1997).
Other animal studies reported that continuous, 24-hour/day exposure during gestation caused maternal
body weight depression and effects on fetuses including depressed body weight and delayed skeletal
ossification at toluene concentrations as low as 133-399 ppm in rats, mice, and rabbits (Hudak and
Ungvary 1978; Ungvary and Tatrai 1985). In a comprehensive developmental toxicity study in rats, a
statistically significant increase in the incidence of a dilated renal pelvis in the left kidney was observed in
fetuses from dams exposed to 1,250 mg/kg/day on GDs 16—19 via gavage, compared with controls
(Warner et al. 2008). No changes were observed in any other developmental end point. However,
exposure of pregnant rats to gavage doses of 650 mg/kg/day toluene in corn oil on GDs 6—19 produced
offspring with decreased body weights, delayed ossification, smaller brain volumes, decreased forebrain
myelination per cell, and decreased cortical cell proliferation and migration (Gospe and Zhou 1998, 2000;

Gospe et al. 1996).
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Performance deficits in a few neurobehavioral tests were observed in one study in offspring of pregnant
mouse dams exposed by inhalation to 2,000 ppm, but not 200 or 400 ppm, for 60 minutes 3 times/day on
GDs 12-17 (Jones and Balster 1997). Performance deficits were not observed in offspring of pregnant rat
dams exposed by inhalation to up to 2,000 ppm for 6 hours/day during gestation (Hougaard et al. 2003;
Ono et al. 1995; Thiel and Chahoud 1997). Drinking water exposure during gestation and lactation at
doses of 106 mg/kg/day resulted in changes in postweaning open-field locomotor activity in rat offspring

(Kostas and Hotchin 1981).

In general, available information suggests that toluene is not a potent teratogenic agent with in utero
exposure, but can retard fetal growth and skeletal development and adversely influence development of
behavior of offspring at exposure levels above those that form the basis of the inhalation and oral MRLs

for toluene.

Transfer of toluene to nursing infants from breast milk of currently exposed mothers is expected to be a
possibility because of the lipophilicity of toluene and the relatively high lipid content of breast milk.
Elimination kinetics data for nonpregnant or nonlactating humans and rats following toluene exposure,
however, indicate that most absorbed toluene is rapidly eliminated from the body and that a much smaller
portion (that which gets into adipose tissues) is slowly eliminated (Janisik et al. 2008; Leung and
Paustenbach 1988; Lof et al. 1993; Nise et al. 1989; Pellizzari et al. 1992; Pierce et al. 1996, 1999, 2002;
see Section 3.4.4). Thus, mobilization during pregnancy or lactation of stored toluene from preconception

exposure does not appear to be a major concern.

Fisher et al. (1997) developed a human PBPK model that predicts transfer of toxicant via lactation from a
mother to a nursing infant and used the model to estimate the amount of toluene an infant would ingest
via milk if the mother was occupationally exposed to toluene at the ACGIH (1999) TLV (50 ppm)
throughout a workday. The model predicted that such an infant would have a daily oral intake of 0.46 mg
toluene/day. This value is below the U.S. EPA Health Advisory, 2.0 mg/day, for chronic ingestion of

1 L/day of toluene-contaminated water by a 10-kg child, a daily oral intake for a 10-kg child (8 mg/day)
associated with the acute oral MRL for toluene (0.8 mg/kg/day), and a daily oral intake for a 10-kg child
(2.0 mg/day) associated with the intermediate oral MRL for toluene (0.2 mg/kg/day). No human (or
animal) studies were located regarding in vivo distribution of toluene into breast milk or elimination
kinetics from breast milk, and the Fisher et al. (1997) PBPK model has not been validated with in vivo
data.
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3.8 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have
been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC

1989).

A biomarker of exposure is a xenobiotic substance or its metabolite(s) or the product of an interaction
between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within a compartment
of an organism (NAS/NRC 1989). The preferred biomarkers of exposure are generally the substance
itself, substance-specific metabolites in readily obtainable body fluid(s), or excreta. However, several
factors can confound the use and interpretation of biomarkers of exposure. The body burden of a
substance may be the result of exposures from more than one source. The substance being measured may
be a metabolite of another xenobiotic substance (e.g., high urinary levels of phenol can result from
exposure to several different aromatic compounds). Depending on the properties of the substance (e.g.,
biologic half-life) and environmental conditions (e.g., duration and route of exposure), the substance and
all of its metabolites may have left the body by the time samples can be taken. It may be difficult to
identify individuals exposed to hazardous substances that are commonly found in body tissues and fluids
(e.g., essential mineral nutrients such as copper, zinc, and selenium). Biomarkers of exposure to toluene

are discussed in Section 3.8.1.

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an
organism that, depending on magnitude, can be recognized as an established or potential health
impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of
tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial
cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung
capacity. Note that these markers are not often substance specific. They also may not be directly
adverse, but can indicate potential health impairment (e.g., DNA adducts). Biomarkers of effects caused

by toluene are discussed in Section 3.8.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability
to respond to the challenge of exposure to a specific xenobiotic substance. It can be an intrinsic genetic or

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the



TOLUENE 271

3. HEALTH EFFECTS

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are

discussed in Section 3.10, Populations That Are Unusually Susceptible.

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Toluene

In a number of field studies, correlations have been noted between workplace air toluene concentrations
and toluene concentrations in blood or urine, or hippuric acid or ortho-cresol concentrations in urine of
workers (see ACGIH 2001 and 2010 for reviews and citations of these studies). Other urinary biomarkers
of exposure that have been examined include benzyl alcohol (Ikeda et al. 2008; Kawai et al. 2007),
benzylmercapturic acid (Ikeda et al. 2008; Inoue et al. 2002, 2004, 2008; Maestri et al. 1997), and
S-p-toluylmercapturic acid (Angerer et al. 1998a; Cosnier et al. 2013, 2014; Ikeda et al. 2008; Inoue et al.
2008). A preliminary study also examined toluene concentration in saliva as a possible biomarker of
exposure, which showed a correlation coefficient with air concentrations of 0.77, compared with 0.93 for

urinary toluene concentration (Ferrari et al. 2008).

Currently, ACGIH (2010, 2013) recommends using a combination of three biomarkers to assess exposure
of workers to toluene: ortho-cresol and unchanged toluene levels in urine at the end of a workshift and
toluene levels in blood immediately prior to the last shift of a workweek. The recommendation was made
based on analyses of numerous field studies examining toluene blood concentrations and urinary
concentrations of ortho-cresol and toluene in workers exposed to varying workplace air concentrations of
toluene. Previously, the level of hippuric acid in urine at the end of a workshift was recommended as a
biomarker of exposure, but this recommendation was withdrawn because background urinary hippuric
acid from consumption of benzoate in foods and beverages is expected to mask contributions from
workplace exposure to toluene, especially at concentrations below 50 ppm (ACGIH 2001, 2010). Results
from studies comparing the effectiveness of various biomarkers at high (>50 ppm) and low (<10 ppm) air
concentrations indicate that toluene concentrations in blood or urine are more accurate at low air
concentration than urinary concentrations of examined metabolites (Ikeda et al. 2008; Inoue et al. 2008;

Kawai et al. 2008; Lovreglio et al. 2010; Takeuchi et al. 2002; Ukai et al. 2007).

3.8.2 Biomarkers Used to Characterize Effects Caused by Toluene

There are no specific biomarkers used to characterize the effects from toluene exposure. Changes in the
brain, which are detected through MRI or BAER techniques in combination with an exposure history, can
be used to evaluate the degree of central nervous system damage experienced by a known toluene abuser.

This approach does not appear to offer potential as a method of measuring the effects of short- or long-
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term, low-level exposures as are likely to occur with environmental releases. Micronuclei induction in
buccal cells and/or peripheral lymphocytes have been suggested as biomarkers of effect for solvent
exposure (Gonzalez-Yebra et al. 2009; Heuser et al. 2007; Pitarque et al. 2002); however, evidence for
micronuclei induction following exposure to toluene or mixed solvents is inconsistent (Gonzalez-Yebra et
al. 2009; Heuser et al. 2005, 2007; Moro et al. 2012; Nise et al. 1991; Pitarque et al. 2002) and induction
of micronuclei in these cells is not expected to be only produced by solvents. Similarly, altered gene
expression profiles in blood cells could potentially serve as biomarkers of effect, but human (Hong et al.
2016; Kim et al. 2011; Song and Ryu 2015) and animal studies (Ahmed et al. 2007; Fujimaki et al. 2009a,
2009b, 2011; Hester et al. 2011, 2012; Kodavanti et al. 2011; Liu et al. 2010; Royland et al. 2012; Takeda
et al. 2013; Win-Shwe et al. 2007a, 2010a, 2010b, 2010c, 2011; Yamamoto et al. 2009) have not
identified concentration-related gene expression changes in blood, nervous, or immune tissue following

toluene exposure. A detailed discussion of the effects of toluene exposure is included in Section 3.2.

3.9 INTERACTIONS WITH OTHER CHEMICALS

Alteration of toluene metabolism may influence toluene’s toxic effects because toluene metabolism
predominately represents a detoxification process (see Section 3.5.2). Hypothetically, compounds that
stimulate or inhibit metabolism of toluene may respectively decrease or increase toluene toxicity,
although the possible exhalation of unmetabolized toluene represents an alternate dispositional pathway
that may be utilized under conditions inhibiting mainstream toluene metabolism. Several metabolic
interactions between toluene and other chemicals have been studied. The results present evidence that
alteration of toluene metabolism may influence toluene toxicity and that toluene can influence the toxicity

of other chemicals.

Phenobarbital pretreatment, which increases the rate of in vivo metabolism of toluene by inducing CYP
isozymes, prevented hearing loss in rats exposed to 1,500-2,000 ppm toluene, 8 hours/day for 7 days
(Pryor et al. 1991), rats exposed to 1,700-2,000 ppm toluene, 6 hours/day, 5 days/week for 6 weeks
(Campo et al. 2008), and rats exposed to a single gavage dose of 1,500 mg/kg (Campo et al. 2008).
Conversely, rats that were given large gavage doses of ethanol (4 g/kg/day) and daily inhalation exposure
to toluene concentrations of 1,750 ppm, 6 hours/day, 5 days/week for 4 weeks showed significantly
greater changes in auditory-evoked brainstem potentials and OHC loss in the ear than those exposed to
toluene alone (Campo et al. 1998). Co-exposure to ethanol caused a significant decrease in hippuric acid
urinary excretion rates compared with exposure to toluene alone, indicating that these large doses of

ethanol inhibited the metabolism of toluene (Campo et al. 1998). Consistent with the idea that co-



TOLUENE 273

3. HEALTH EFFECTS

exposure to ethanol inhibits toluene metabolism are observations that ingestion of ethanol prolongs the
presence of toluene in blood in humans (Imbriani and Ghittori 1997; Wallen et al. 1984) and rats (Romer
et al. 1986). These results indicate that toluene-induced hearing loss is caused by toluene itself and not its
metabolites, and that workers exposed to toluene who regularly drink alcohol may be at greater risk of

developing toluene-related neurological problems than nondrinkers.

Concurrent chronic ethanol ingestion and acute toluene inhalation in rats was associated with a modest
elevation in plasma AST and increases in relative liver weight and liver triglycerides (Howell et al. 1986).
Toluene also antagonized the hypertriglyceridemia associated with chronic ethanol ingestion. This study
suggests that combined ethanol and chronic occupational toluene exposure may have the potential to

augment alcohol-induced fatty liver.

Benzene, xylene, and toluene are metabolized through cytochrome P-450 oxidation. Benzene is
converted to phenol, hydroquinone, catechol, and phenyl mercapturic acid; xylene is converted to methyl
hippuric acids, and toluene forms hippuric acid, ortho-cresol, and para-cresol. The excretion of
metabolites was investigated in four groups of workers who were exposed in the workplace to benzene or
toluene, to a mixture of both solvents, or to no solvents (Inoue et al. 1988). Analysis of the data on
excretion of urinary metabolites indicated that simultaneous exposure to both benzene and toluene
inhibited the microsomal metabolism of both compounds through the cytochrome P-450 system. Toluene
had more of an inhibitory effect on benzene metabolism than benzene had on toluene metabolism. This
observation was confirmed in rodent studies using 6-hour inhalation exposures to benzene, toluene, or a
mixture of both compounds, with pharmacokinetic modeling of the exposure data (Purcell et al. 1990).
Combinations of either 200 ppm toluene with 1,000 ppm benzene or 1,000 ppm toluene with 200 ppm
benzene were tested. The fit of the actual closed chamber concentrations for the individual chemicals
with the model results, suggests that the interaction of benzene and toluene are noncompetitive. The data
from studies of the benzene-toluene interaction may indicate that workers exposed to mixtures of both
solvents have a lower risk of benzene-induced leukopenia than workers exposed to benzene alone (Purcell
et al. 1990). Exposure to 50 ppm benzene and 50 or 100 ppm toluene, 6 hours/day on 8 separate days
(over a period of 15 days) caused a significant induction of hepatic CYP 2E1, which did not occur with
individual exposure to benzene or toluene (Wetmore et al. 2008). Additionally, rats exposed to 50 ppm
benzene plus 100 ppm toluene (but not 50 ppm toluene) showed a significant increase in the number of
micronucleated bone marrow cells and erythrocytes (~50—70%), compared with exposure to 50 ppm
benzene alone (Bird et al. 2010; Wetmore et al. 2008). Micronuclei induction in erythrocytes following

exposure to 50 ppm benzene plus 100 ppm toluene, 6 hours/day for 8 consecutive days was also
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significantly greater than exposure to 50 ppm benzene alone (~200%); however, it was ~70% less than
micronuclei induction by 150 ppm benzene alone (Bird et al. 2010). Exposure to toluene alone at 50 or
100 ppm did not induce micronuclei (Bird et al. 2010; Wetmore et al. 2008). Therefore, while these
findings are suggestive that toluene enhances benzene toxicity, there is not clear evidence for the

mechanism of joint toxic action.

Toluene and xylene are also often found together in mixtures such as paint thinners. Human exposure to
low levels of both solvents (50 ppm xylene, 40 ppm toluene) did not modify the conversion of either
substance to its urinary metabolites (Kawai et al. 1992b; Tardif et al. 1991). However, at higher
concentrations (80 or 150 ppm xylene, 95 or 150 ppm toluene), the blood and exhaled air concentrations
of both solvents were increased compared to the controls exposed to either solvent alone, indicating that
metabolism of both solvents was decreased by the coexposure paradigm (Tardif et al. 1991, 1992).
Similarly, coexposure of toluene, methyl ethyl ketone and isopropyl alcohol at low concentrations in rats
had no effect on the urinary excretion of hippuric acid, while high concentrations resulted in decreased
levels of hippuric acid (Uaki et al. 1995). Tardif et al. (1993) reported that a linked PBPK model for
toluene and xylene with a competitive inhibition metabolic term provided a better visual fit to empirical
data than non- or uncompetitive inhibition metabolic terms, using air concentrations of toluene and xylene
during 5-hour exposures of rats in a closed chamber to mixtures of toluene and xylene at several initial
concentrations. Using an interactions-based biological hazard index, PBPK-based model predictions
indicated that interactions between toluene, m-xylene, and ethylbenzene are not strictly additive
(especially at higher concentrations levels); however, competitive inhibition is expected to be negligible
at low individual solvent concentrations (e.g., 20 ppm) (Haddad et al. 1999). Toxicokinetic data from
volunteers acutely exposed to toluene, m-xylene, and ethylbenzene provided a good fit to predictions of

the Haddad et al. (1999) PBPK model (Marchand et al. 2015).

Toluene and n-hexane, which are used together in some glues and paints, are neurotoxic chemicals that
act by different modes at different sites. Toluene effects on the central nervous system are thought to be
facilitated by toluene itself, whereas n-hexane affects the peripheral nervous system through the
production of a toxic metabolite, 2,5-hexanedione (Ali and Tardif 1999). The initial metabolism of both
compounds has been demonstrated to principally involve CYP isozymes including CYP2E1 and CYP2B6
(Ali and Tardif 1999). Under in vitro conditions with rat liver microsomes, a noncompetitive inhibition
of each other’s metabolism was demonstrated (Perbellini et al. 1982). In studies comparing urinary
excretion of metabolites in rats exposed to mixtures of toluene and n-hexane or to each solvent alone, co-

exposure inhibited the urinary excretion of 2,5-hexanedione to a larger extent than the urinary excretion
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of toluene metabolites, hippuric acid, and ortho-cresol (Ali and Tardif 1999; Iwata et al. 1983; Perbellini
et al. 1982). The results from these studies suggest that toluene is a more effective inhibitor of n-hexane
metabolism than is n-hexane of toluene metabolism. However, in eight healthy male volunteers who
were exposed to combinations of toluene and n-hexane via feeding tubes at rates of 1.5 or 4 mg/minutes
and 0.3 or 1.0 mg/minutes, respectively, for 60 minutes, the high-dose of n-hexane significantly decreased
urinary hippuric acid excretion, but toluene exposure did not alter the urinary excretion of
2,5-hexanedione (Baelum et al. 1998). Co-exposure of rats to 1,000 ppm toluene and 1,000 ppm
n-hexane (12 hours/day for 16 weeks) decreased toxic effects of n-hexane on the peripheral nervous
system compared with exposure to 1,000 ppm n-hexane alone (Takeuchi et al. 1981). Another rat study
found confirming results in that co-exposure to 1,200 ppm toluene and 4,000 ppm n-hexane (14 hours/day
for 9 weeks) decreased n-hexane-induced effects on the peripheral nervous system compared with
n-hexane alone, and had only slight effects on toluene-induced hearing loss and motor dysfunction
compared with toluene alone (Pryor and Rebert 1992). Human and rat PBPK models have been
developed to model the combined exposure and disposition of inhaled toluene and n-hexane (Ali and
Tardif 1999; Yu et al. 1998). Model simulations predicted that co-exposure to n-hexane and toluene at
constant concentrations corresponding to their occupational exposure limits (50 ppm) would lead to only
a slight effect on the kinetics of their respective metabolism and disposition, but that the interaction could
change with fluctuations in worker activity loads and workplace air concentrations (Ali and Tardif 1999;
Yu et al. 1998). In support, n-hexane metabolism (as measured by end-of-shift free-2,5-hexanedione
levels in urine) was not modified by co-exposure to toluene in workers exposed to various solvent
mixtures in an adhesive tape factory at concentrations below occupational exposure limits, as determined

by multiple regression analysis (Kawai et al. 2000).

McDermott et al. (2008) examined potential interactions of in vitro solvent exposure on LDH leakage,
calcium levels, and glutathione redox status of human Jurkat T-cells. Nine binary mixtures of toluene,
n-hexane, and methyl ethyl ketone (MEK) were evaluated, using three exposure levels per solvent based
on concentration-response data for the individual solvents. The resulting data were analyzed using both
isobolographic and Berenbaum’s combination index analysis to test for interaction. The findings
indicated greater-than-additive interactions between toluene+n-hexane and toluene+MEK for both LDH
leakage and glutathione redox status (GSH and GSSG levels, GSH/GSSG ratio). Greater-than-additive
interactions were also observed between toluene+n-hexane for perturbations in calcium levels; however,
less-than-additive interactions were observed between toluene+MEK at higher MEK concentrations

(McDermott et al. 2008).
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An individual's drug therapy can have an influence on toluene toxicity. Haloperidol (an antipsychotic)
functions by blocking dopamine receptors in the brain. The combination of haloperidol with toluene
exacerbates dopamine depletion in several areas of the brain, thus changing the pharmacodynamics of the
haloperidol. Individuals who take haloperidol should be counseled by their physician if environmental or

occupational exposure to toluene is possible (von Euler et al. 1988b).

Studies in humans and rats indicate that the common analgesics, acetaminophen and aspirin, may inhibit
toluene metabolism and influence toluene toxicity. CYP2EI is involved in the initial step of the principal
metabolic pathway for toluene and acetaminophen, and represents a potential site for a competitive
metabolic interaction. Aspirin and one of the principal downstream metabolites of toluene, benzoyl
coenzyme A, are conjugated with glycine. When glycine pools are depleted by competition for glycine
by aspirin metabolism, toluene metabolism may be inhibited. In volunteers exposed for 4 hours to

300 mg/m* toluene (80 ppm) with or without doses (1,000 mg/70 kg=14.3 mg/kg) of acetaminophen
(paracetamol) or acetyl salicylic acid (aspirin), co-exposures with these analgesics increased the
concentration of toluene in the blood compared with exposure to toluene alone (Lof et al. 1990).
Acetaminophen co-exposure also significantly increased the area under the blood concentration versus
time curve and the apparent blood clearance of toluene, consistent with an inhibition of toluene
metabolism. Co-exposure of rats for 10 days to higher oral doses of aspirin (acetyl salicylic acid:

100 mg/kg, twice daily) and inhalation exposure to toluene (1,000 ppm, 14 hours/day) caused a more
severe loss of hearing (assessed 2—5 days or 4 months after cessation of exposure) compared with
exposure to toluene alone (Johnson 1992). Treatment with aspirin alone at these doses did not cause
hearing loss in the rats. These results are consistent with the hypothesis that high doses of aspirin may

potentiate toluene effects on hearing by inhibiting toluene metabolism.

The benzoic acid metabolite of toluene is conjugated with glycine to produce hippuric acid. Toluene
potentiation of developmentally toxic effects in rats from high doses of aspirin has been attributed to
metabolic competition for glycine pools (Ungvary et al. 1983). Pregnant rats that were given 250 mg/kg
acetyl salicylic acid on GD 12 and exposed to toluene at concentrations of 1,000, 2,000, or 3,600 mg/m?
(265, 531, or 956 ppm) on GDs 10—13 showed maternal effects (decreased food consumption and body
weight gain and increased relative liver weight) and fetal effects (retardation of skeletal development and
increased incidence of fetal malformations) that were more severe than those observed in rats exposed to
250 mg/kg acetyl salicylic acid alone. The effects were comparable in severity to those observed in rats
exposed to 500 mg/kg salicylic acid alone. In this study, no maternal or fetal effects were observed in a

group of rats exposed to 956 ppm toluene on GDs 10-13 without coexposure to acetyl salicylic acid. The
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maternal and fetal effects of co-exposure to acetyl salicylic acid and toluene were diminished to the
severity of the 250-mg/kg acetyl salicylic acid alone level when the administration of the acetyl salicylic

acid dose was preceded by two hours with a gavage dose of 5,000 mg/kg glycine.

3.10 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to toluene than will most persons
exposed to the same level of toluene in the environment. Factors involved with increased susceptibility
may include genetic makeup, age, health and nutritional status, and exposure to other toxic substances
(e.g., cigarette smoke). These parameters result in reduced detoxification or excretion of toluene, or
compromised function of organs affected by toluene. Populations who are at greater risk due to their
unusually high exposure to toluene are discussed in Section 6.7, Populations with Potentially High

Exposures.

One of the primary target organs of toluene is the central nervous system, and it is generally thought to be
due at least in part, to reversible interactions between toluene (the parent compound, not its metabolite)
and the lipid or protein components of nervous system membranes (mechanisms of toxicity are discussed
in detail in Section 3.5.2). The main pathway of toluene metabolism leads to the production of hippuric
acid, which is excreted in the urine. The predominant first step in human and rat metabolism of toluene is
catalyzed primarily by the CYP 2E1 isozyme. Later steps in this pathway involve the enzymes alcohol
dehydrogenase, aldehyde dehydrogenase, acyl-coenzyme A synthase, and acyl-coenzyme A:amino acid

N-acyl transferase (metabolism is discussed in detail in Section 3.4.3).

Environmental or genetic factors that decrease the capacity for metabolic detoxification of toluene are
likely to increase susceptibility. This is supported by experiments in which inhibiting or enhancing
toluene metabolism via CYP 2E1 respectively enhanced or inhibited toluene-induced hearing loss in rats
(Campo et al. 1998, 2008; Pryor et al. 1991). Chronic consumers of alcohol, and users of any medication
that interfered with toluene metabolism, would be likely to have an increased risk for this reason.
Additionally, smokers may have an increased risk of toxicity due to a possible repression of CYP 2EI via
epigenetic modifications (Jimenez-Garza et al. 2015). Differences in the relative efficiency of enzymes
found in ethnic populations may lead to differences in toluene susceptibility, as ethnic variations in the
occurrence of CYP isozymes, alcohol dehydrogenase, and aldehyde dehydrogenase are known to exist
(Kawamoto et al. 1995, 1996; Kim et al. 1997, 2015). For example, DNA damage in leukocytes from

Brazilian shoe workers exposed to solvent-based adhesive (mainly toluene, air concentration not reported)
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was significantly increased in workers with polymorphisms in the glutathione S-transferase P1 gene
(GSTP1; lle/Val or Val/Val) compared with GSTP1 lle/lle workers (Heuser et al. 2007). In Indian paint
workers exposed to toluene as the major solvent used in paint thinner, sister chromatid exchanges were
significantly increased in workers heterozygous or homozygous for the mutant allele of CYP1A1m2 or
CYP2EL1, compared with unexposed controls of the same genotype; however, sister chromatid exchanges
were not significantly increased in workers homozygous for the wild-type alleles, compared with
unexposed controls of the same genotype (Priya et al. 2015). Similarly, increased micronuclei in
Bulgarian shoe workers were only observed in workers with a null glutathione S-transferase M1 (GSTM1)
genotype, although sister chromatid exchanges were not associated with GSTM1genotype (or solvent-
exposure) (Pitarque et al. 2002). Additionally, in healthy South Korean males living in Ulsan City, which
houses several industrial complexes, urinary 8-OHdG and hippuric acid levels were only significantly
correlated in individuals with GSTM1-null, glutathione S-transferase T1(GSTT1)-null, and aldehyde
dehydrogenase 2 (ALDHZ2) *2/*2 genotypes (Kim et al. 2011). Genetic diversity of GSTM1
(null/present), glutathione S-transferase T1 gene (GSTT1, null/present), and CYP2E5 (C1/C1, C1/C2,
C2/C2 variants) was also evaluated in a study of Korean and foreign-born workers exposed to toluene at a
Korean printing company (Kim et al. 2015). The allelic frequency of the GSTM1 present genotype
ranged from 0.71 in Chinese workers to 0.15 in Vietnamese workers, with a frequency of 0.4-0.6 in
Korean, Sri Lankan, and Cambodian workers, and there was a slight, near-significant (p=0.081) positive
correlation between the presence of the GSTM1 gene allele and hippuric acid levels in the blood of
workers. For GSTT1 present genotype, the allelic frequency ranged from 0.75 in Indonesian workers to
0.18 in Chinese workers, with a frequency of 0.4-0.6 in Korean, Vietnamese, and Cambodian workers,
and there was a significant correlation between the presence of the GSTT1 gene allele and urinary
toluene/blood toluene ratio. For CYP2E5 C1 genotype, the allelic frequency ranged from 1.00 in Sri
Lankan workers to 0.55 in Vietnamese workers, with a frequency of 0.6-0.7 in Korean, Indonesian, and
Chinese workers; however, no correlation was found between toluene metabolism and the CYP2ES5 gene

allele in this study.

Studies in various inbred and outbred mouse strains indicate that genetic differences can lead to
differential susceptibility to various chemicals, particularly drugs of abuse (Crabbe et al. 1994, 2005).
Bowen et al. (2010) investigated the effects of acute toluene exposure on locomotor behavior in four
genetically divergent strains of mice, Balb/CBYJ, C57BL/6J, DBA/2J, and Swiss Webster. During a
30-minute exposure to 100, 2,000, 8,000, or 10,000 ppm toluene, all strains showed a qualitatively
biphasic increase in locomotor activity, compared with pre-exposure activity levels, which is consistent

with reports of initial increases in locomotion at lower concentrations followed by a decrease in activity at
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concentrations of 3,000-10,000 ppm (Bowen and Balster 1998; Conti et al. 2012; Kim et al. 1998; Lopez-
Rubalcava and Cruz 2000). However, while increased activity was observed in all exposure groups for
the inbred Balb/CBYJ, C57BL/6J, and DBA/2J mice, activity was not significantly increased in outbred
Swiss Webster mice until >2,000 ppm. Furthermore, when the mice were exposed to a 2,000-ppm
toluene challenge, following exposure to 8,000 ppm for 30 minutes/day for 14 days, DBA/2J mice
showed the greatest sensitization to toluene-induced locomotor effects among the four strains. Bowen et
al. (2010) concluded that genetic differences must account for the differential sensitivity to the effects of
toluene exposure, and suggested that inter-strain variations in the dopaminergic system may underlie the

observed differences.

Nutritional status may also affect susceptibility to toluene. Liver metabolism of toluene in rats fasted for
1 day was significantly increased compared with rats that had been fed (Nakajima and Sato 1979).
However, long-term malnutrition may increase susceptibility to the developmental effects of toluene.
Skeletal development in the fetuses of rats that were malnourished throughout pregnancy and injected
with 1.2 g/kg/day toluene was retarded to a significantly greater extent than in the fetuses of well-

nourished dams injected with toluene (da Silva et al. 1990).

Individuals with pre-existing medical conditions may also be more susceptible to the effects of toluene.
Individuals with pre-existing defects in heart rhythm may have a greater risk than healthy individuals for
experiencing tachycardia or cardiac fibrillation following exposure to high levels of toluene. The
presence of toluene in the air reduces the concentration of oxygen and can lead to hypoxia when exposure
concentrations are high. Thus, individuals with asthma or other respiratory difficulties may be at
increased risk with exposure to high atmospheric concentrations of toluene. Genetic predisposition for

hearing loss may increase the risk for toluene-induced ototoxicity (Johnson 1992; Li et al. 1992).

Both children and aging adults could potentially have increased susceptibility to toluene exposure.
Children’s susceptibility is discussed in Section 3.7. No studies investigating toluene exposure in aging
humans were located. A limited number of oral exposure studies in rats did not identify a clear pattern for
age-related susceptibility for toluene-induced changes in locomotor activity, oxidative stress markers,
cardiac biomarkers, or gene expression changes (Gordon et al. 2010; Kodavanti et al. 2011; MacPhail et

al. 2012; Royland et al. 2012).
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3.11 METHODS FOR REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects of
exposure to toluene. Because some of the treatments discussed may be experimental and unproven, this
section should not be used as a guide for treatment of exposures to toluene. When specific exposures
have occurred, poison control centers, board certified medical toxicologists, board-certified occupational
medicine physicians and/or other medical specialists with expertise and experience treating patients
overexposed to toluene can be consulted for medical advice. The following texts provide specific

information about treatment following exposures to toluene:

Gummin DD. 2014. Hydrocarbons. In: Goldfrank LR, Flomenbaum NE, Lewin NA, eds. Goldfrank's
toxicologic emergencies. 10th ed. New York, NY: McGraw-Hill, 1303-1322.

Leikin JB, Pauloucek FP. 2008. In: Leikin JB, Pauloucek FP, eds. 4th ed. Boca Raton, FL: CRC
Press, Taylor & Francis Group, 1195-1196.

Shannon MW, Borron SW, Burns MJ. 2007. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad
and Winchester's clinical management of poisoning and drug overdose. 4th ed. Philadelphia, PA: WB
Saunders, 1370-1374.

Additional relevant information can be found in the front section of this profile under QUICK

REFERENCE FOR HEALTH CARE PROVIDERS.

3.11.1 Reducing Peak Absorption Following Exposure

The absorption of toluene is rapid and virtually complete following acute inhalation and oral exposures.
Toluene appeared in the blood of 10 human subjects within 10—15 minutes of exposure to 78 ppm toluene
in the air, signifying rapid absorption through the lungs. When exposure occurs by the oral route, uptake
into the blood is expected to be slightly slower due to the time needed for transit to the small intestines.
Since toluene is absorbed across the lipid matrix of the cell membrane (Alcorn et al. 1991), some
absorption can occur from the mouth and stomach. However, most of the toluene will be absorbed
through the intestines due to large exposed surface area of the villi and microvilli. Other factors that will
influence uptake from the gastrointestinal tract are lipid content of the gastrointestinal contents and the
magnitude of the toluene exposure. Absorption of inhaled toluene is increased by exercise; therefore a
reduction of physical activity during exposure is likely to reduce absorption (Bushnell et al. 2007; Nadeau
et al. 2006; Rahill et al. 1996). However, there is no effective way to reduce peak absorption following
inhalation exposure. Emesis is contraindicated in cases of toluene ingestion due to the risk of aspiration.

Since gastric lavage is often associated with spontaneous emesis, and current data do not support that it is
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effective in reducing risk of pulmonary complications following hydrocarbon exposure, lavage is
generally not indicated following hydrocarbon exposure (Gummin 2014). Similarly, the use of activated
charcoal is generally not indicated for hydrocarbon exposure due to limited ability to reduce absorption
coupled with risk of stomach distension and predisposition to vomiting and aspiration. Activated

charcoal may be justified in cases of mixed chemical overdoses (Gummin 2014).

Following skin exposure, immediate washing of the skin with soap (if available) and water will reduce the
opportunity for dermal absorption; rinsing the skin with water alone may not be sufficient (Gummin
2014). If toluene is spilled on clothing, clothes should be removed promptly and safely discarded to
prevent further skin and/or inhalation exposure. If the eyes are affected, proper rinsing procedures should

be followed (Gummin 2014).

3.11.2 Reducing Body Burden

The total body burden of toluene is reduced by measures that increase the rate of metabolism and
excretion. Oxygen therapy, positive-pressure ventilation, high-frequency jet ventilation, and
extracorporeal membrane oxygenation have been used as emergency treatments in cases of severe
hydrocarbon toxicity, often associated with episodes of toluene abuse (Graham 1990; Gummin 2014).

These procedures promote the loss of unmetabolized toluene from the lungs.

Increased fluid consumption, which increases the rate of urine production and excretion, will help to
decrease the toluene body burden since toluene metabolites are water soluble and excreted in the urine. In
cases where kidney function has been impaired, renal dialysis has been used to remove toluene

metabolites from the body (Graham 1990).

3.11.3 Interfering with the Mechanism of Action for Toxic Effects

In cases where toluene has caused cardiac arrhythmias, management of dysrhythmias is critical.
Interventions may include evaluation and treatment of potential electrolyte and acid-base abnormalities as
well as administration of antiarrhythmic medications to control the heart beat (Graham 1990; Gummin
2014). No other medical practices for ameliorating the toxic effects of toluene were identified in the
available literature. When toluene exposures are unavoidable, as in the workplace, avoidance of alcohol
or medications that may inhibit metabolic disposition of toluene is another measure that can be taken to

reduce health risks from exposure.
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3.12 ADEQUACY OF THE DATABASE

Section 104(1)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the
Administrator of EPA and agencies and programs of the Public Health Service) to assess whether
adequate information on the health effects of toluene is available. Where adequate information is not
available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the
initiation of a program of research designed to determine the adverse health effects (and techniques for

developing methods to determine such health effects) of toluene.

The following categories of possible data needs have been identified by a joint team of scientists from
ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would
reduce the uncertainties of human health risk assessment. This definition should not be interpreted to
mean that all data needs discussed in this section must be filled. In the future, the identified data needs

will be evaluated and prioritized, and a substance-specific research agenda will be proposed.

3.12.1 Existing Information on Health Effects of Toluene

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to
toluene are summarized in Figure 3-5. The purpose of this figure is to illustrate the existing information
concerning the health effects of toluene. Each dot in the figure indicates that one or more studies provide
information associated with that particular effect. The dot does not necessarily imply anything about the
quality of the study or studies, nor should missing information in this figure be interpreted as a “data
need”. A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data
Needs Related to Toxicological Profiles (Agency for Toxic Substances and Disease Registry 1989), is
substance-specific information necessary to conduct comprehensive public health assessments.
Generally, ATSDR defines a data gap more broadly as any substance-specific information missing from

the scientific literature.

As shown in Figure 3-5, there is a considerable body of data on the health effects of toluene in humans
following acute, intermediate, and chronic inhalation exposures. It appears that clinical effects of high
concentrations on the major target organ, the central nervous system, have been well characterized.
However, many of the available reports lack quantitative information on exposure levels and there is still
much that must be learned about the ultra-structural molecular level of toxicity. There are some oral, but

essentially no dermal, data available; however, these are not expected to be the main routes by which
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Figure 3-5. Existing Information on Health Effects of Toluene
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humans are exposed to toluene. Figure 3-5 also shows that considerable animal toxicity data for

inhalation exposure are available. However, there are limited oral and dermal data from animal studies.

3.12.2 Identification of Data Needs

Acute-Duration Exposure. The acute effects of toluene exposure in humans have been well-studied,
and identify the nervous system as a critical acute toxicity target of toluene, with subtle neurological
effects at exposures >40 ppm in healthy individuals and as low as 15 ppm in clinically sensitive
individuals (Andersen et al. 1983; Baclum et al. 1985; Dick et al. 1984; Echeverria et al. 1991; Gamberale
and Hultengren 1972; Kobald et al. 2015; Little et al. 1999; Orbaek et al. 1998; Osterberg et al. 2000,
2003; Rahill et al. 1996; von Oettingen et al. 1942). Supporting data for neurological effects as a critical
acute effect are provided by studies of animals after inhalation exposure that consistently report altered
locomotor activity at exposure levels >500 ppm and cognitive deficits at concentrations as low as

125 ppm (Arito et al. 1988; Boyes et al. 2007; Bowen and Balster 1998; Bowen et al. 2010; Bruckner and
Peterson 1981a, 1981b; Bushnell et al. 1985; Conti et al. 2012; Cruz et al. 2001; Ghosh et al. 1989, 1990;
Hinman 1987; Hogie et al. 2009; Huerta-Rivas et al. 2012; Johnson 1992; Johnson et al. 1988; Kishi et al.
1988; Li et al. 1992; Little et al. 1998; Lopez-Rubalcava and Cruz 2000; McWilliams et al. 2000; Mullin
and Krivanek 1982; Paez-Martinez et al. 2003; Rebert et al. 1989b; Takeuchi and Hisanaga 1977; Taylor
and Evans 1985; Tomaszycki et al. 2013; Wood and Colotla 1990; Wood et al. 1983), as well as
numerous additional studies in animals following exposure to “binge-like” levels (1,000—12,000 ppm)
modeling human solvent abuse (Apawu et al. 2014; Bale et al. 2007; Batis et al. 2010; Beckley et al.
2013; Beyer et al. 2001; Bowen et al. 2007; Bushnell et al. 2007; Gerasimov et al. 2002c; Gmaz et al.
2012; Gotohda et al. 2000a, 2000b, 2002, 2007; Lammers et al. 2005b; O’Leary-Moore et al. 2007,
Oshiro et al. 2007; Paez-Marinez et al. 2008, 2013; Pascual and Bustamante 2010; Perit et al. 2012;
Riegel and French 2002; Samuel-Herter et al. 2013; Schiffer et al. 2006; Williams et al. 2005). Further
support is provided by acute oral exposure studies examining neurological effects in animals (Burns et al.
1994; Dyer et al. 1988; Gordon et al. 2007, 2010; Mehta et al. 1998). It is unlikely that additional
standard acute-duration exposure studies in animals would provide new key information on the toxicity of
toluene, but special studies that involve a range of exposure levels (including low levels) and employ
sensitive, behavioral, ultra structural, and biochemical measurements may be useful—especially if
findings are correlated with observed neurobehavioral alterations. Data for the dermal exposure route are
limited; however, this is not expected to be the main route of human exposure. Sufficient data for the oral
and inhalation routes were available to derive an acute inhalation MRL based on minimally adverse

neurological effects in volunteers with multiple chemical sensitivity exposed to 15 ppm for 20 minutes
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(Little et al. 1999) and an acute oral MRL based on changes in FEPs observed in mice exposed to

250 mg/kg toluene (Dyer et al. 1988).

Intermediate-Duration Exposure. The database is lacking studies on intermediate-duration
exposure in humans. Several studies are available on repeated-dose exposure of animals to toluene after
inhalation exposure. Similar to acute exposure studies, animal studies report neurological effects
following intermediate-duration inhalation exposure at concentrations ranging from 100 to 2,500 ppm
(API 1997; Arito et al. 1988; Boyes et al. 2015; Campo et al. 1997; Kyrklund et al. 1987; McWilliams et
al. 2000; NTP 1990; Pryor et al. 1984b; von Oettingen et al. 1942; Wiaderna and Tomas 2002; Wood and
Cox 1995). However, NOAELSs for intermediate, low-level inhalation exposure in air have not been
thoroughly investigated. Determination of these values would be valuable in evaluating the human health
risk, and could potentially be used to derive an intermediate-duration MRL for inhalation exposures.
Adequate oral intermediate-duration exposure studies have been conducted in rats and mice (Hsieh et al.
1989, 1990a, 1991; NTP 1990), and sufficient data were available to derive an intermediate-duration oral
MRL based on toluene-induced immune depression observed at 84—105 mg/kg/day (Hsieh et al. 1989,
1990a, 1991). Neurobehavioral alterations following intermediate-duration oral toluene exposure were
limited to increased open-field activity in young mice following pre- and postnatal exposure to 106
mg/kg/day toluene (Kostas and Otchin 1981). Intermediate-duration studies designed to assess
neurobehavioral alterations and/or mechanisms of neurotoxicity following oral exposure to toluene may
be useful in evaluating human health risk, and could potentially serve as a basis for the deriving the
intermediate-duration oral MRL. Studies following dermal exposure are lacking; however, this is not

expected to be the main route by which humans are exposed to toluene.

Chronic-Duration Exposure and Cancer. Numerous case reports have associated chronic toluene
abuse in humans at levels inducing narcosis and euphoria (4,000-12,000 ppm, as estimated by Gospe et
al. 1994) with persistent neurological damage (Aydin et al. 2002, 2003; Byrne et al. 1991; Caldemeyer et
al. 1996; Camarra-Lemarroy et al. 2015; Capron and Logan 2009; Deleu and Hanssens 2000; Devathasan
et al. 1984; Filley et al. 1990; Fyu et al. 1998; Gupta et al. 2011; Hormes et al. 1986; Hunnewell and
Miller 1998; Ikeda and Tsukagoshi 1990; Kamran and Bakshi 1998; King et al. 1981; Kiyokawa et al.
1999; Kucuk et al. 2000; Maas et al. 1991; Maruff et al. 1998; Meulenbelt et al. 1990; Miyagi et al. 1999;
Nomura et al. 2016; Papageorgiou et al. 2009; Poblano et al. 1996; Rosenberg et al. 1988a, 1988b, 2002;
Ryu et al. 1998; Suzuki et al. 1983; Uchino et al. 2002; Yamanouchi et al. 1995).
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Neurological alterations are also critical effects reported following occupational exposure. Self-reported
neurological symptoms and reduced ability in tests of cognitive and neuromuscular function have been
reported in humans occupationally exposed to average concentrations as low as 40—150 ppm (Boey et al.
1997; Eller et al. 1999; Foo et al. 1990; Kang et al. 2005; Matsushita et al. 1975; Murata et al. 1993;
Nordling Nilson et al. 2010; Orbaek and Nise 1989; Ukai et al. 1993; Yin et al. 1987). Studies of
occupationally exposed workers also indicate that chronic exposure to average concentrations as low as
50-130 ppm can damage hearing and color vision presumably involving, at least in part, effects on
neurological components of these systems (Abbate et al. 1993; Morata et al. 1997; Vrca et al. 1995, 1996,
1997a, 1997b; Zavalic et al. 1998a, 1988b, 1988c). Sufficient data for the inhalation route were available
to derive a chronic MRL based on a lack of adverse effects in subjective neurological symptoms,
performance on psychomotor tasks, color vision, and hearing in groups of German photogravure printers
occupationally exposed to toluene (Schéper et al. 2003, 2004, 2008; Seeber et al. 2004, 2005; Zupanic et
al. 2002).

The chronic effects of toluene have not been investigated in humans or animals following oral or dermal
exposures, and the carcinogenic potential has not been studied following dermal exposure; however, these

are not considered major routes of toluene exposure.

Genotoxicity. Available studies do not clearly identify toluene as a genotoxic agent. Findings from
human occupational exposure studies to predominantly toluene are inconsistent, and studies are limited by
lack of reporting of historical exposure levels and small cohort sizes (Bauchinger et al. 1982; Forni et al.
1971; Hammer 2002; Hammer et al. 1998; Maki-Paakkenen et al. 1980; Nise et al. 1991; Pelclova et al.
1990; Schmid et al. 1985). In vivo animal studies are limited, and findings are also inconsistent (API
1981; Dobrokhotov and Enikeev 1997; Liang et al. 1983; Martinez-Alfaro et al. 2010; Plappert et al.
1994; Wetmore et al. 2008). In vitro studies in bacteria and animal cells were almost exclusively negative
(Bos et al. 1981; Connor et al. 1985; Fluck et al. 1976; Gerner-Smidt and Friedrich 1978; Nakumura et al.
1987; Nestmann et al. 1980; NTP 1990; Zarani et al. 1999) with the exception of toluene-induced DNA
damage in human HL-60 cells (Sarma et al. 2011). To evaluate the potential of toluene to cause
chromosomal damage, additional well-designed in vivo studies using test material of known purity may
be valuable. These tests would aid in determining whether toluene itself has clastogenic potential or
whether the positive results that have been reported are due to impurities in the test material (animal
studies) or concurrent/previous exposure to other chemicals (human studies) (Bauchinger et al. 1982;
Dobrokhotov and Enikeev 1997; Hammer 2002; Hammer et al. 1998; Liang et al. 1983; Nise et al. 1991,
Pelclova et al. 1990; Schmid et al. 1985). Because it is believed that toluene toxicity may be mediated, at
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least in part, through a highly reactive and short-lived arene oxide intermediate, which interacts with
cellular proteins and RNA (Chapman et al. 1990), further studies of this interaction may provide useful

information.

Reproductive Toxicity. In general, available results from studies of toluene-exposed workers and
animals suggest that toluene is not a potent reproductive toxicant. There are a few reports that women
occupationally exposed to toluene, or wives of men similarly exposed, have an increased risk of
spontaneous abortions (Lindbohm et al. 1992; Ng et al. 1992b; Taskinen et al. 1989) or decreased
fecundity (Plenge-Boenig and Karmaus 1999), but a causal relationship is not established by these studies
due to small sample sizes evaluated, inability to define accurate exposure levels, failure to account for
potentially important confounding variables, and difficulty in validating self-reported data. One
population-based cohort study reported increased risk of preterm birth with increasing environmental
toluene exposure (Poirier et al. 2015); concurrent exposure to multiple pollutants (which were not
controlled for in statistical analyses) limits the conclusions that can be drawn from this study. In addition,
one study reported that toluene-exposed male workers showed decreasing plasma levels of LH, FSH, and
testosterone with increasing concentrations of toluene (8—<111 ppm) (Svensson et al. 1992a, 1992b).
Effects on male reproductive tissues have been observed in a few studies of animals exposed by
inhalation to concentrations >2,000 ppm (e.g., reduced sperm count, motility, and quality, and altered
reproductive organ weight and histology) (Kanter 2011b; Ono et al. 1996, 1999), but changes in sperm
count and epididymis weight were not accompanied by any change in indices of reproductive
performance (e.g., fertility) in male rats exposed to 2,000 ppm for 60 days before mating (Ono et al.
1996). A single study reported abundant vacuoles, lytic areas, and mitochondrial degeneration in the
antral follicles in the ovaries of female rats following a 7-day exposure to 3,000 ppm (Tap et al. 1996),
but no histological evidence of structural damage to the reproductive organs was noted in rats and mice
exposed orally for intermediate durations or by inhalation for intermediate or chronic durations (NTP
1990). No evidence for impaired reproductive performance or alterations in pregnancy outcomes was
found in the majority of animal assays at exposure levels as high as 12,000 ppm (inhalation) or

2,350 mg/kg/day (oral) (API 1978, 1991; Bowen and Hannigan 2013; Bowen et al. 2005, 2007, 2009a,
2009b; Courtney et al. 1986; Dalgaard et al. 2001; Gospe and Zhou 2000; Hass et al. 1999; Hougaard et
al. 2003; Jones and Balster 1997; Klimisch et al. 1992; Ladefoged et al. 2004; NIOSH 1983; Ono et al.
1995, 1996; Roberts et al. 2007; Saillenfait et al. 2007; Seidenberg et al. 1986; Thiel and Chahoud 1997)
(including a 2-generation study of rats exposed to up to 2,000 ppm, 6 hours/day [API 1985; Roberts et al.
2003]). However, continuous exposure of pregnant rabbits to 267 ppm during days 7-20 of pregnancy
produced maternal toxicity (decreased weight gain) and abortions in 4/8 does (Ungvary and Tatrai 1985)
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and exposure to 5,000 ppm 6 hour/day during days 6—15 of pregnancy resulted in increased post-
implantation loss and complete fetal resorption in 6/9 rats (API 1992). Additional studies of reproductive
end points in groups of occupationally exposed workers may be useful in discerning the possible
reproductive hazards of toluene in the workplace if large enough groups of workers are examined,
exposure levels can be accurately monitored, and confounding variables are accounted for or
minimalized. Another 2-generation reproductive study in another animal species (e.g., rabbits) may also

help to decrease uncertainty in defining no-effect levels for reproductive effects from toluene exposure.

Developmental Toxicity. Published reports of birth defects described in children born to women
who abused toluene or other organic solvents during pregnancy suggest that high-level exposure to
toluene during pregnancy can be toxic to the developing fetus (Arnold and Wilkins-Haug 1990; Arnold et
al. 1994; Erramouspe et al. 1996; Goodwin 1988; Hersh 1988; Hersh et al. 1985; Lindemann 1991;
Pearson et al. 1994; Wilkins-Haug and Gabow 1991a). Studies of developmentally toxic effects in
children of women exposed during pregnancy to much lower concentrations are restricted to a small study
of 14 Finnish women exposed to mixed solvents, suggesting that solvent exposure may increase risk for
central nervous system anomalies and neural tube closure defects (Holmberg 1979). The available human
data do not establish causality between low-level or occupational exposure to toluene and birth defects,
because of the small sample size and the mixed solvent exposure experienced by the subjects in the
Holmberg (1979) study and the lack of other studies of possible birth defects in children of women
exposed to toluene in the workplace. Additional studies of developmental end points in offspring of

mothers exposed to toluene in the workplace may help to clarify the potential for human health risk.

Results from several inhalation exposure studies of animals indicate that exposure to levels of toluene that
begin to produce maternal toxicity can cause fetal effects, including reduced fetal survival and retardation
of growth and skeletal development (API 1991, 1992; Dalgaard et al. 2001; Hass et al. 1999; Hougaard et
al. 2003; Hudak and Ungvary 1978; Jones and Balster 1997; Ono et al. 1995; Roberts et al. 2007;
Saillenfait et al. 2007; Thiel and Chahoud 1997; Ungvary and Tatrai 1985). No-effect levels in animals
for toluene effects on standard developmental end points range from about 133 ppm for a 24 hour/day
exposure protocol (Ungvary and Tatrai 1985) to 133-2,000 ppm with 3—6-hour/day protocols (API 1978,
1991, 1992; Jones and Balster 1997; Klimisch et al. 1992; Ono et al. 1995; Roberts et al. 2007; Saillenfait
et al. 2007; Thiel and Chahoud 1997). In animal studies of oral exposure during gestation, no
developmental effects were observed in pregnant mice exposed to oral doses of 1,800 or 2,350 mg/kg/day
in two developmental screening studies (NIOSH 1983; Seidenberg et al. 1986), but a statistically

significant increase in the incidence of a dilated renal pelvis in the left kidney was observed in fetuses
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from dams exposed to 1,250 mg/kg on GDs 16—-19 via gavage in a comprehensive developmental toxicity
study in rats (Warner et al. 2008). Exposure of pregnant rats to gavage doses of 650 mg/kg/day produced
offspring with decreased body weights, delayed ossification, smaller brain volumes, and decreased

forebrain myelination per cell compared with controls (Gospe and Zhou 1998, 2000; Gospe et al. 1996).

Results from studies of neurobehavioral end points in rats following in utero exposure to toluene suggest
that maternal exposure to airborne concentrations modeling solvent abuse (8,000-16,000 ppm, 15—

30 minutes/day) can impair behavioral development of rat offspring (Bowen and Hannigan 2013; Bowen
et al. 2005, 2009a; Callan et al. 2015). At lower exposure levels (<2,000 ppm), maternal exposure for

6 hours/day did not result in altered offspring behavior in rats (Hougaard et al. 2003; Ono et al. 1995;
Thiel and Chahoud 1997); however, maternal exposure to 2,000 ppm for 60 minutes 3 times/day can lead
to impaired behavioral development of mouse offspring (Jones and Balster 1997). Drinking water
exposure during gestation and lactation at doses of 106 mg/kg/day changes postweaning open-field

locomotor activity in rat offspring (Kostas and Hotchin 1981).

Additional studies of sensitive neurological end points, including neurobehavioral end points, in offspring
of toluene-exposed pregnant animals may better determine no-effect levels for toluene effects on
neurodevelopment. Inhalation exposure studies are likely to be of more relevance to human exposures of
concern than oral exposure studies. Developmental effects have not been investigated following dermal

exposure; however, this is not expected to be the main route of human exposure.

Immunotoxicity. Human studies of immunological end points in toluene-exposed subjects do not
identify consistent or strong evidence for toluene effects on immune system end points such as counts of
blood lymphocytes or levels of blood immunoglobulins (Little et al. 1999; Pelclova et al. 1990; Stengel et
al. 1998; Yin et al. 1987) or development of autoimmune disorders (Chaigne et al. 2015; Diot et al. 2002;
Marie et al. 2014). In animal studies, evidence for toluene effects on the immune system following
inhalation exposure are limited to the finding of decreased resistance to mortality from respiratory
infection by S. zooepidemicus in a study of mice exposed for 3 hours to toluene concentrations as low as
2.5 ppm (Aranyi et al. 1985). However, animal data using the oral route of exposure provide some
evidence of impaired immune function following intermediate-duration toluene exposure (Hsieh et al.
1989, 1990a, 1991), and these effects were used to derive an MRL of 0.2 mg/kg/day for intermediate-
duration oral exposure toluene. Accordingly, oral and inhalation studies in animals designed to clarify the
effect of toluene on the immune system, particularly on lymphocyte production and function, antibodies,

and interferons, may help determine if toluene was involved in the effects on immunity observed in
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occupationally exposed workers. Additional studies of the impact of toluene on disease resistance,

building on the work of Aranyi et al. (1985), may also be valuable.

Neurotoxicity. Effects on the human nervous system from inhalation exposure to toluene are well
documented (Abbate et al. 1993; Andersen et al. 1983; Baelum et al. 1985; Boey et al. 1997; Dick et al.
1984; Echeverria et al. 1991; Eller et al. 1999; Foo et al. 1990; Gamberale and Hultengren 1972; Kang et
al. 2005; Little et al. 1999; Matsushita et al. 1975; Morata et al. 1997; Murata et al. 1993; Nordling Nilson
et al. 2010; Orbaek and Nise 1989; Orbaek et al. 1998; Osterberg et al. 2000, 2003; Rahill et al. 1996;
Ukai et al. 1993; von Oettingen et al. 1942; Vrca et al. 1995, 1996, 1997a, 1997b; Yin et al. 1987; Zavalic
et al. 1998a, 1988b, 1988c) and are the basis for the acute and chronic inhalation exposure MRLs. The
central nervous system effects of toluene in animals have also been studied in detail via the inhalation
route of exposure (Arito et al. 1988; Boyes et al. 2007, 2016; Bowen and Balster 1998; Bruckner and
Peterson 1981a, 1981b; Bushnell et al. 1985; Conti et al. 2012; Cruz et al. 2001; Dashniani et al. 2014;
Ghosh et al. 1989, 1990; Hinman 1987; Hogie et al. 2009; Huerta-Rivas et al. 2012; Johnson 1992;
Johnson et al. 1988; Kishi et al. 1988; Li et al. 1992; Little et al. 1998; Lopez-Rubalcava and Cruz 2000;
McWilliams et al. 2000; Mullin and Krivanek 1982; Paez-Martinez et al. 2003, 2013; Rebert et al. 1989b;
Takeuchi and Hisanaga 1977; Taylor and Evans 1985; Tomaszycki et al. 2013; Wood and Colotla 1990;
Wood et al. 1983). Available data clearly indicate that the central nervous system is a target, but the
molecular mechanisms of toxicity have yet to be elucidated with certainty. Dose-response relationships
for central nervous system effects in humans and animals (rats and mice) have been established, but more
information concerning the reversibility of effects (especially when exposure is chronic) may be useful.
The effects of toluene on neurobehavioral function were used to derive an MRL of 2 ppm for acute
inhalation exposure (based on a study by Little et al. 1999) and a chronic-duration MRL of 1 ppm (based
on a series of studies by Schiper et al. 2003, 2004, 2008; Seeber et al. 2004, 2005; Zupanic et al. 2002).

The neurological effects of toluene via the oral route have not been extensively investigated, but the
available data support the inhalation data in identifying the nervous system as a critical target of toluene
toxicity following acute exposure. An acute MRL of 0.8 mg/kg/day was developed based on a change in
FEP waveforms in rats exposed to a single dose of toluene (Dyer et al. 1988). Neurobehavioral changes
following intermediate-duration oral toluene exposure were limited to increased open-field activity in
young mice following pre- and postnatal exposure to 106 mg/kg/day toluene (Kostas and Otchin 1981).
Intermediate-duration studies designed to assess neurobehavioral alterations and/or mechanisms of
neurotoxicity following oral exposure to toluene may be useful in evaluating human health risk, and could

potentially serve as a basis for the deriving the intermediate-duration oral MRL (which is currently based
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on immune depression). No data on dermal exposure are available, but this is not expected to be the main

route of human exposure.

Epidemiological and Human Dosimetry Studies. Additional studies of neurological and
reproductive end points in groups of toluene-exposed workers may decrease uncertainty in the chronic
MRL and may help determine if toluene represents a reproductive health hazard in humans at low
exposure levels. These studies will be most useful if groups of workers can be identified whose exposure
to other chemicals in the workplace is minimal, if adjustments for lifestyle confounding factors can be
made, and if personal air monitoring data are available. Earlier reports of increased risk of spontaneous
abortions (Lindbohm et al. 1992; Ng et al. 1992b; Taskinen et al. 1989) and altered plasma levels of male
sexual hormones (Svensson et al. 1992a, 1992b) in groups of toluene-exposed workers await confirmation

from further research.

Biomarkers of Exposure and Effect.

Exposure. Toluene and its metabolites are easily detected in the blood and urine (DeRosa et al. 1985;
Hjelm et al. 1988; Kono et al. 1985; Lof et al. 1990; Ogata et al. 1970). However, many toluene
metabolites are also produced by other naturally occurring or xenobiotic materials and, thus, are not
specific for toluene. Results from studies comparing the effectiveness of various biomarkers at high

(>50 ppm) and low (<10 ppm) air concentrations indicate that toluene concentrations in blood or urine are
more accurate at low air concentration than urinary concentrations of examined metabolites (Ikeda et al.

2008; Inoue et al. 2008; Kawai et al. 2008; Lovreglio et al. 2010; Takeuchi et al. 2002; Ukai et al. 2007).

Currently, ACGIH (2013, 2010) recommends using a combination of three biomarkers to assess exposure
of workers to toluene: ortho-cresol and unchanged toluene levels in urine at the end of a workshift and

toluene levels in blood immediately prior to the last shift of a workweek.

Other urinary biomarkers of exposure that have been examined include benzyl alcohol (Ikeda et al. 2008;
Kawai et al. 2007), benzylmercapturic acid (Ikeda et al. 2008; Inoue et al. 2002, 2004, 2008; Maestri et al.
1997), and S-p-toluylmercapturic acid (Angerer et al. 1998a; Ikeda et al. 2008; Inoue et al. 2008). A
preliminary study also examined toluene concentration in saliva as a possible biomarker of exposure,
which showed a correlation coefficient with air concentrations of 0.77, compared with 0.93 for urinary

toluene concentration (Ferrari et al. 2008). Additional studies may help determine whether these are
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reliable biomarkers of exposure that can improve the accuracy of monitoring workers’ exposure to

toluene.

Effect. There are no suitable biomarkers of effect except for changes in the brain found in chronic
solvent abusers with obvious neurological dysfunction (Filley et al. 1990; Rosenberg et al. 1988a).
Additional information on the mechanism of neurotoxicity may suggest a useful biomarker of either
exposure or effect. However, at this time, there is little to suggest that such biomarkers are present for

anything other than the abuse paradigm.

Absorption, Distribution, Metabolism, and Excretion. The absorption, distribution,
metabolism, and excretion of toluene in humans and animals following inhalation exposure are well
characterized (Ameno et al. 1992; Andersen et al. 1983; Angerer 1979; Angerer et al. 1998a; Baelum

et al. 1987, 1993; Benignus et al. 1981; Benoit et al. 1985; Bergman 1983; Bray et al. 1949; Bushnell et
al. 2007; Campo et al. 1999; Carlsson 1982; Carlsson and Ljungquist 1982; Chand and Clausen 1982;
Dossing et al. 1983c¢; Ducos et al. 2008; Furman et al. 1998; Ghantous and Danielsson 1986; Hjelm et al.
1988; Ikeda et al. 1990; Janasik et al. 2008, 2010; Kawai et al. 1992a, 1992b, 1993, 1996; Leung and
Paustenbach 1988; Lof et al. 1990, 1993; Maestri et al. 1997; Nadeau et al. 2006; Nakajima and Wang
1994; Nakajima et al. 1991, 1992a, 1992b, 1993, 1997, 2006; Ng et al. 1990; Nise et al. 1989; Ogata
1984; Pellizzari et al. 1992; Pierce et al. 1996, 1999, 2002; Paterson and Sarvesvaran 1983; Takeichi et al.
1986; Tardif et al. 1998; Tassaneeyakul et al. 1996; van Doorn et al. 1980; Wang and Nakajima 1992;
Zahlsen et al. 1992).

Limited data are available on the quantitative absorption and excretion of toluene by the oral and dermal
routes. Absorption of orally administered toluene has also been observed in rats, but oral absorption rates
appear to be slower than pulmonary absorption (Pyykko et al. 1977; Sullivan and Conolly 1988). Studies
of humans and animals indicate that dermal absorption of toluene is slow (Aitio et al. 1984; Dutkiewicz
and Tyras 1968; Thrall and Woodstock 2002; Thrall et al. 2002a), but can be significant (Aitio et al.
1984; Monster et al. 1993; Morgan et al. 1991; Sato and Nakajima 1978). Additional studies of dermal
uptake of toluene from solution may help to further quantify exposure by this pathway.

PBPK models are available that describe the kinetics of toluene after inhalation exposure for humans
(Benignus et al. 2006; Fisher et al. 1997; Jonsson and Johanson 2001; Mérk et al. 2014; Nong et al. 2006;
Pierce et al. 1996, 1999; Sari-Minodier et al. 2009; Tardif et al. 1995, 2002) and rats (DeJongh and
Blaauboer 1996, 1997; Kenyon et al. 2008; Oshiro et al. 2011; Tardif et al. 1993; van Asperen et al.
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2003). PBPK models to describe the kinetics of dermally applied aqueous solutions of toluene are also
available for humans (Thrall et al. 2002a) and rats (Thrall and Woodstock 2002), but models to describe
kinetics following oral exposure to toluene have not been developed. Further development of a human
PBPK model that includes partitioning of inhaled and ingested toluene to the brain and a similarly
designed rat PBPK model may be useful in improving extrapolation from the oral exposure rat data and in
comparing model-based predictions of human effect levels based on neurological effects in inhalationally-
exposed rats with observed effect levels in humans exposed to airborne toluene. Additional studies of the
appearance and elimination kinetics of toluene in breast milk may help to validate the human PBPK
model developed by Fisher et al. (1997) to estimate transfer of toluene to a nursing infant. It is unlikely
that such studies would be done with volunteers, but studies of nursing animals may provide pertinent

information if a similar rat PBPK model was developed.

Comparative Toxicokinetics. Available data suggest that there are species, age, gender, and strain
differences in the metabolism of toluene (Chapman et al. 1990; Inoue et al. 1984, 1986; Nakajima et al.
1992b). Further evaluation of these differences, and comparison of metabolic patterns in humans with
those of animals, may help determine the most appropriate species and strain of animal to use in
evaluating the risk of human exposure to toluene. Additional evaluation of human variability in

disposition of toluene is also warranted.

Methods for Reducing Toxic Effects. Oxygen therapy and positive pressure ventilation have been
used to reduce the toluene body burden (Graham 1990). Washing of toluene from exposed body surfaces
is beneficial. In cases where toluene has caused cardiac arrhythmias, interventions may include
evaluation and treatment of potential electrolyte and acid-base abnormalities as well as administration of
antiarrhythmic medications to control the heart beat (Graham 1990; Gummin 2014). Other than these
general guidelines, there is very little information available on methods of mitigating the toxic effects of
toluene. Additional data on the outcome of emergency response procedures would be beneficial. Studies
of the benefit of diet, ethanol absence, and controlled exposure to prescription or nonprescription drugs on
blood levels of toluene and its metabolites could provide information that would be helpful in

understanding the impact of these factors on the risks from occupational exposure.

Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and
developmental effects expressed either prenatally or during childhood, are discussed in detail in the

Developmental Toxicity subsection above.
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The effects of toluene have not been thoroughly studied in children or immature animals, but the effects
observed in juvenile toluene abusers (Byrne et al. 1991; Devasthasan et al. 1984; King et al. 1981) and
immature animals exposed to toluene (Bowen et al. 2007; Castilla-Serna et al. 1991; O’Leary-Moore et al.
2009; Pryor and Rebert 1992; Pryor et al. 1984a; Samuel-Herter et al. 2013; von Euler et al. 1989) are
consistent with effects observed in adults. Information regarding age-related differences in toluene
metabolism suggests that developing fetuses and children at very early stages of development may be
more susceptible to toluene toxicity than adults due to lower capabilities to metabolically detoxify
toluene, but, by 1-3 years of age, adult capabilities may be attained (Leeder and Kearns 1997; Nakajima
et al. 1992b, 1997; Tassaneeyakul et al. 1996; Vieira et al. 1996). An oral lethality study in rats (Kimura
et al. 1971) and a study of toluene-induced hearing loss in young rats (Pryor et al. 1984a) provide the only
health effect data suggesting that immature animals may be more susceptible than adult animals. Age-
series inhalation studies do not provide consistent evidence of increased neurobehavioral or
neurochemical alterations in juvenile or young adult rats, compared with adult rats (Batis et al. 2010;
Bowen et al. 2007; O’Leary-Moore et al. 2009; Samuel-Herter et al. 2013). Additional research on the
development of metabolic capabilities in newborn and very young children may lead to better

understanding of the susceptibility of children to toluene toxicity.

Studies with pregnant mice suggest that distribution of inhaled toluene to fetal tissue is limited due to
maternal metabolic detoxification and preferential distribution of nonmetabolized toluene to maternal
adipose tissue (Ghantous and Danielsson 1986). Data needs relating to both prenatal and childhood
exposures, and developmental effects expressed either prenatally or during childhood, are discussed in

detail in the Developmental Toxicity subsection above.

Transfer of toluene to infants from breast milk of nursing mothers who are concurrently exposed to
toluene in the workplace is expected to be a possibility and a concern (see Section 3.7). As discussed in
the Absorption, Distribution, Metabolism, and Excretion subsection above, additional studies of the
kinetics of elimination of toluene from nursing animals may provide pertinent information to better
predict the degree to which toluene may be transferred in breast milk from a toluene-exposed working
mother to her nursing infant. Monitoring studies of toluene in breast milk in groups of toluene-exposed

lactating women may also provide some pertinent information.

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs:

Exposures of Children.
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3.12.3 Ongoing Studies

Nine ongoing research efforts have been identified that may provide data related to the toxic actions of

toluene (RePORTER 2014, 2016). These projects are summarized in Table 3-7.

Human studies: Dr. Anneclaire De Roos of Drexel University is conducting metanalysis of 13 case-
control studies to determine if exposure to solvents, including trichloroethylene, perchloroethylene,
benzene, toluene, and xylene, is a risk factor for multiple myeloma. Dr. Brad Racette of Washington
University is conducting a retrospective, population-based study evaluating the potential association
between occupational solvent exposure (including toluene) and Parkinson Disease in Finland. Dr. Wynne
Schiffer of the University of Minnesota is conducting a study on functional and structural changes in the

adolescent brain following solvent abuse.

Animal studies: Dr. Jacob Thomas Beckley of the Medical University of South Carolina is evaluating
short- and long-term effects of acute toluene exposure on neuroplasticity, and Dr. Matthew Tracy of
Virginia Commonwealth University is evaluating neurobehavioral changes associated with toluene

exposure in mice.

Toxicokinetic studies: Dr. Wayne L. Backes of Louisiana State University Medical Center is continuing

his efforts to better characterize the P450 monooxygenase system.

Mechanistic studies: Dr. Keith Shelton of Virginia Commonwealth University is investigating the
neuropharmacological mechanisms of action of toluene (and other intentionally solvents) in mice,
focusing on toluene’s modulatory effects on the GABA receptor. Dr. John Woodward of the Medical
University of South Carolina is also investigating the neuropharmacological mechanisms of action of

toluene, specifically in the glutamatergic system.
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Investigator Affiliation Research description  Sponsor
Backes, W Louisiana State Toxicological National Institute of
University Medical significance of Environmental Health
Center, New Orleans, alkylbenzene Sciences
Louisiana metabolism
Beckley, JT Medical University of Neuroplasticity National Institute on
South Carolina, associated with acute Drug Abuse
Charleston, South toluene inhalation
Carolina
De Roos, AJ Drexel University, Multiple myeloma National Institute of
Philadelphia, consortium study of Environmental Health
Pennsylvania occupational exposures Sciences
and family history
Racette, BA Washington University Risk of Parkinson National Institute of
St. Louis, Missouri Disease associated Environmental Health
with solvent exposures  Sciences
in Finland
Schiffer, WK University of Imaging the causes and National Institute on
Minnesota, consequences of Drug Abuse
Minneapolis, Minnesota adolescent inhalant
abuse
Shelton, KL Virginia Commonwealth Discriminative stimulus  National Institute on
University, Richmond, effects of abused Drug Abuse
Virginia inhalants
Tracy, M Virginia Commonwealth Acute and chronic National Institute on

Woodward, JJ

University, Richmond,
Virginia

Medical University of
South Carolina,
Charleston, South
Carolina

effects of inhalants in
intracranial-self-
stimulation (ICSS)
Neural actions of
toluene

Drug Abuse

National Institute on
Drug Abuse

Source: RePORTER 2014, 2016
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4.1 CHEMICAL IDENTITY

Information regarding the chemical identity of toluene is located in Table 4-1.

4.2 PHYSICAL AND CHEMICAL PROPERTIES

Information regarding the physical and chemical properties of toluene is located in Table 4-2.
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Table 4-1. Chemical Identity of Toluene
Characteristic Information Reference
Chemical name Toluene HSDB 2010
Synonym(s) Methylbenzene; phenylmethane; benzene, Haynes et al. 2013;
methyl-; toluol; methylbenzol HSDB 2010
Registered trade name(s) Methacide; Antisal 1A HSDB 2010
Chemical formula C7Hs Haynes et al. 2013;
HSDB 2010
Chemical structure CI—!3 Haynes et al. 2013;
HSDB 2010
Identification numbers:
CAS registry 108-88-3 Haynes et al. 2013
NIOSH RTECS XS5250000 RTECS 2014
EPA hazardous waste U220 HSDB 2010
OHM/TADS 7216928 NFPA 1994
DOT/UN/NA/IMCO shipping UN 1294 HSDB 2010
IMCO 3.2 HSDB 2010
HSDB 131 HSDB 2010
NCI CO7272 HSDB 2010

CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North
America/lnternational Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; HSDB =
Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for Occupational
Safety and Health; NFPA = National Fire Protection Association; OHM/TADS = Oil and Hazardous
Materials/Technical Assistance Data System; RTECS = Registry of Toxic Effects of Chemical Substances
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Table 4-2. Physical and Chemical Properties of Toluene
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Property Information Reference
Molecular weight 92.13 Fabri et al. 2012
Color Colorless Haynes et al. 2013
Physical state Liquid Haynes et al. 2013
Melting point -94.991°C Fabri et al. 2012
Boiling point 110.625°C Fabri et al. 2012
Density:
at 20°C 0.8631 g/cm? Fabri et al. 2012
Vapor density 3.1 (air=1) HSDB 2010
Odor Sweet, pungent, benzene-like odor HSDB 2010
Odor threshold:
Water 0.024-0.17 mg/L WHO 2004
Air 2.14 ppm (8 mg/m3) HSDB 2010
Solubility:
Water at 25°C 526 mg/L HSDB 2010
Organic solvent(s) Miscible with alcohol, chloroform, HSDB 2010
ether, acetone, glacial acetic acid,
and carbon disulfide
Partition coefficients:
Log Kow 2.73 HSDB 2010
Log Koc 1.57-2.25 HSDB 2010
Vapor pressure at 25°C 28.4 mm Hg HSDB 2010
Henry's law constant: 6.64x10-% atm-m3/mol HSDB 2010
Autoignition temperature 480°C (896°F) HSDB 2010
Flashpoint 4°C (40°F, closed cup); 16°C (open HSDB 2010
cup)
Flammability limits 1.1-7.1% HSDB 2010
Conversion factors ppm (v/v) to mg/m3 in
air (20°C) 1 ppm=3.76 mg/m?3 HSDB 2010
Explosive limits 1.27% lower limit Fabri et al. 2012; HSDB

2010

v/v = volume for volume


http:ppm=3.76
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5.1 PRODUCTION

Table 5-1 lists the facilities in each state that manufacture or process toluene, the intended use, and the
range of maximum amounts of toluene that are stored on site. There are currently 2,198 facilities that
produce, process, or use toluene in the United States. The data listed in Table 5-1 are derived from the
Toxics Release Inventory (TRI1S5 2016). Only certain types of facilities were required to report.

Therefore, this is not an exhaustive list.

Toluene is produced from the catalytic reforming of refinery streams, with part of the catalytic reformate
converted to benzene-toluene-ethylbenzene-xylene (BTEX). Approximately 15% of the toluene produced
is separated out of pyrolysis gasoline during the manufacture of ethylene and propylene, ~4% is from
separation of coal tar, and ~1% is recovered as a byproduct of styrene manufacture. However, while the
largest concentrations of toluene are recovered from catalytic reformate or pyrolysis gasoline, most of the

toluene produced is unrecovered (Ozokwelu 2006).

Toluene is widely used and is produced by a large number of domestic chemical and petroleum
companies. The 18 companies that currently produce or supply toluene in the United States are: Alon
USA Energy, Inc.; BASF FINA Petrochemicals LP, BP America, Inc.; CITGO Petroleum Corporation;
ConocoPhilips; The Dow Chemical Company; Equistar Chemical, LP; ExxonMobil Chemical Company;
Flint Hills Resources LP; Frontier El Dorado Refining Company; Houston Refining LP; HOVENSA,
LLC; Husky Energy Inc.; Marathon Petroleum Company LLC; Shell Chemical LP; Sunoco, Inc.; Total
Petrochemicals USA, Inc.; and Valero Energy Corporation (SRI2010).

5.2 IMPORT/EXPORT

U.S. general imports of toluene in 2012 were estimated at 430 million pounds (195,000 metric tons)
(USITC 2013b). Exports during the same year were estimated at 670 million pounds (300,000 metric
tons) (USITC 2013a).

5.3 USE

All nonisolated toluene is used in a BTEX mixture added to gasoline to improve octane ratings. Nearly

half of the isolated toluene is used to produce benzene from hydrodealkylation processes. Twenty percent
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Table 5-1. Facilities that Produce, Process, or Use Toluene

Minimum Maximum

Number of amount on site  amount on site
State? facilities  in pounds® in pounds® Activities and uses®
AK 7 10,000 499,999,999 1,3,4,5,6,7,9,12,13
AL 45 100 9,999,999 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14
AR 21 0 49,999,999 1,2,3,56,7,9,10,11,12, 14
AZ 22 100 49,999,999 1,2,3,4,5,7,8,9, 10, 11, 12
CA 112 0 499,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
(010) 25 0 999,999,999 1,2,3,5,7,8,9,10,11,12, 13
CT 23 100 49,999,999 1,5,7,9,10, 11,12
DE 7 1,000 9,999,999 1,2,3,7,9,10, 11,12, 13, 14
FL 43 100 49,999,999 1,2,3,5,7,9, 10,11,12, 14
GA 53 0 9,999,999 1,5,6,7,8,9, 10, 11,12, 13
GU 2 1,000 9,999,999 7,9
HI 9 100 9,999,999 1,2,3,4,5,6,7,9,12,13, 14
1A 42 100 9,999,999 1,2,3,4,5,7,9, 10, 11,12, 13, 14
ID 4 100 9,999,999 7,8,9 11
IL 114 0 999,999,999 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14
IN 91 0 499,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
KS 41 0 999,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 14
KY 46 1,000 49,999,999 1,3,4,5,6,7,8,9,10, 11,12, 13, 14
LA 82 0 999,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
MA 44 1,000 49,999,999 1,2,4,5,7,8,9, 10, 11,12
MD 16 1,000 49,999,999 1,5,6,7,9, 10, 11, 12
ME 5 100,000 49,999,999 2,3,4,7,9,12
MI 99 0 49,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
MN 33 1,000 49,999,999 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14
MO 50 100 9,999,999 1,5,7,8,9, 10, 11, 12, 14
MP 2 100 9,999,999 7,9
MS 29 0 499,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
MT 7 10,000 49,999,999 1,2,3,4,5,6,7,8,9,12, 13, 14
NC 65 0 9,999,999 1,2,3,5,6,7,8,9, 10, 11,12, 13, 14
ND 14 100 49,999,999 1,2,3,4,5,6,7,9,11,12,13, 14
NE 22 100 99,999 1,2,3,5,7,9, 10, 11,12, 13, 14
NH 6 100 999,999 2,3,7,8,10, 11,12
NJ 44 1,000 99,999,999 1,2,3,4,5,6,7,9,10,11,12, 14
NM 8 100 49,999,999 1,3,4,6,7,9, 11,12
NV 11 100 9,999,999 1,5,7,9, 10, 11,12
NY 68 0 499,999,999 1,2,3,4,5,7,8,9,10, 11,12, 14
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Table 5-1. Facilities that Produce, Process, or Use Toluene

Minimum Maximum

Number of amount on site  amount on site
State? facilities  in pounds® in pounds® Activities and uses®
OH 140 0 99,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
OK 35 0 49,999,999 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14
OR 24 0 49,999,999 1,5,7,8,9, 10,11, 12
PA 94 100 499,999,999 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14
PR 12 10,000 99,999,999 2,3,56,7,8,9 10,13
RI 11 1,000 49,999,999 1,5,7,9,10, 11,12
SC 43 0 9,999,999 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14
SD 10 1,000 999,999 7,9,10, 11
TN 63 100 9,999,999 1,2,3,5,6,7,8,9, 10, 11,12, 13, 14
TX 260 0 499,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
uT 16 0 99,999,999 1,2,3,4,5,6,7,8,9,12
VA 47 0 49,999,999 1,2,5,6,7,8,9, 10, 11,12
VI 2 100,000 9,999,999 1,5,9, 12
VT 2 1,000 99,999 7,10, 12
WA 25 100 99,999,999 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14
Wi 60 0 9,999,999 1,2,5,6,7,8,9,10,11,12,13
A% 20 0 49,999,999 1,3,4,5,6,7,8,9,10, 11,12, 13
wy 8 10,000 49,999,999 1,2,3,4,6,7,8,9,10,12, 13, 14

3Post office state abbreviations used.
bAmounts on site reported by facilities in each state.
CActivities/Uses:

1. Produce 6. Impurity

2. Import 7. Reactant

3. Onsite use/processing 8. Formulation Component
4. Sale/Distribution 9. Article Component

5. Byproduct 10. Repackaging

Source: TRI15 2016 (Data are from 2015)

11. Chemical Processing Aid
12. Manufacturing Aid

13. Ancillary/Other Uses

14. Process Impurity
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of toluene is used in the production of xylene, 12% is used as a solvent in paints, coatings, gums, resins,
rubber, and vinyl organosol, and 10% is used for miscellaneous use, such as for the synthesis of organic
chemicals, for use as a denaturant, and for the production of drugs that may be abused. The other 8% is

used in the production of toluene diisocyanate (TDI) (Ozokwelu et al. 2006; HSDB 2010).

5.4 DISPOSAL

Toluene is regulated by the Resource Conservation and Recovery Act (RCRA) as a hazardous waste
(U220 and F005-spent solvents including toluene) and is therefore subject to RCRA regulations as stated
in 40 CFR 261.33 (see Chapter 8). These regulations include standards for storage, transport, and

disposal of toluene.

Toluene, or a combination of solvent containing toluene at 10% by volume before use, is regulated by
federal laws (State of California 2005). The spent toluene, or toluene that is no longer available except
after reprocessing, contains additional constituents that prevents its reuse as a solvent (U.S. DOE 1991).
Toluene can be disposed of by controlled incineration. Toluene is a good candidate for liquid injection
incineration, rotary kiln incineration, and fluidized bed incineration. Toluene may also be disposed of by
atomizing it in a suitable combustion chamber. After treatment at a spill site or waste management

facility, toluene sludge can be disposed of at a secure landfill (HSDB 2010).

According to data from the TRI, 1,122,841 pounds of toluene were transferred off-site in 2012, including
releases to publically owned treatment works (POTW) (TRI15 2016).

Toluene is listed as a toxic substance under Section 313 of the Emergency Planning and Community
Right to Know Act (EPCRA) under Title III of the Superfund Amendments and Reauthorization Act
(SARA) (EPA 2006). Disposal of wastes containing toluene is controlled by a number of federal and

state regulations (see Chapter 8).
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6.1 OVERVIEW

Toluene has been identified in at least 990 of the 1,832 hazardous waste sites that have been proposed for
inclusion on the EPA National Priorities List (NPL) (ATSDR 2015). However, the number of sites in
which toluene has been evaluated is not known. The frequency of these sites can be seen in Figure 6-1.
Of these sites, 983 are located within the United States, 5 are located in the Commonwealth of Puerto

Rico, and 2 are located in the Virgin Islands.

The majority of toluene released to the environment partitions to air. Large amounts of toluene enter the
environment each year from production, use, and disposal of industrial and consumer products that

contain toluene. The largest source of toluene emissions occurs during the production, transport, and use
of gasoline. Small amounts are released in industrial waste water discharges and land disposal of sludges

and petroleum wastes.

Toluene in the atmosphere is degraded by reaction with hydroxyl radicals, with a typical half-life of
approximately 13 hours (Howard et al. 1991). Toluene in soil or water rapidly volatilizes to air, and that
which remains is subject to microbial degradation. As a result of volatilization and degradation occurring

in air, soil, and water, toluene levels are not expected to build up in the environment over time.

The concentrations of toluene in air have been found to be quite low in remote areas, but are higher in
suburban and urban areas. The automobile emissions are the principal source of toluene in ambient air,
with levels fluctuating in proportion to automobile traffic. Levels of toluene in the air are usually higher
in urban areas that are heavily congested with traffic (21.4-98.1 ppbv or 80.5-368.9 pg/m?). Levels in
the same study were much lower in the outdoor air in less-congested urban areas (1.95 ppbv or 7.3 ug/m?)
(Baltrenas et al. 2011). Toluene is also a common indoor contaminant, and indoor air concentrations are
often several times higher than outside air. This is likely due to release of toluene from common
household products (paints, paint thinners, adhesives, and nail polish in which it is used as a solvent) and

from cigarette smoke.
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Figure 6-1. Frequency of NPL Sites with Toluene Contamination
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Toluene is occasionally detected in drinking water supplies due to industrial water discharges or from
contaminated surface water, but occurrence is not widespread and levels are generally much lower than
levels found in the air. In contrast, toluene is a very common contaminant of water and soil in the vicinity

of hazardous waste sites.

The most likely pathway by which the general population may be exposed to toluene is by breathing
contaminated air. Since most people spend a large fraction of the day indoors, indoor air levels are likely
to be the dominant source. Higher exposure levels might occur for individuals living near a hazardous
waste site or an industrial source of toluene emissions, but these exposures can be estimated only on a

site-by-site basis.

Toluene exposure may also occur in the workplace, especially in occupations such as printing or painting,
where toluene is used as a solvent. Gas service station workers can be exposed to toluene from the
gasoline. Petroleum and coke plant workers may also be exposed to higher levels of toluene than the

general population.

6.2 RELEASES TO THE ENVIRONMENT

The Toxics Release Inventory (TRI) data should be used with caution because only certain types of
facilities are required to report (EPA 2005). This is not an exhaustive list. Manufacturing and processing
facilities are required to report information to the TRI only if they employ 10 or more full-time
employees; if their facility is included in Standard Industrial Classification (SIC) Codes 10 (except 1011,
1081, and 1094), 12 (except 1241), 20-39, 4911 (limited to facilities that combust coal and/or oil for the
purpose of generating electricity for distribution in commerce), 4931 (limited to facilities that combust
coal and/or oil for the purpose of generating electricity for distribution in commerce), 4939 (limited to
facilities that combust coal and/or oil for the purpose of generating electricity for distribution in
commerce), 4953 (limited to facilities regulated under RCRA Subtitle C, 42 U.S.C. section 6921 et seq.),
5169, 5171, and 7389 (limited S.C. section 6921 et seq.), 5169, 5171, and 7389 (limited to facilities
primarily engaged in solvents recovery services on a contract or fee basis); and if their facility produces,
imports, or processes >25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds of a TRI

chemical in a calendar year (EPA 2005b).

According to the Toxics Release Inventory (TRI), in 2015 approximately 25 million pounds (11 million

kg) of toluene was released to the environment from 2,198 manufacturing or processing facilities in the



TOLUENE 308

6. POTENTIAL FOR HUMAN EXPOSURE

United States (TRI15 2016). The most recent TRI data continues to reflect a decline in the total amount
of toluene released from facilities required to report to the TRI. Total on- and off-site releases of toluene
were approximately 57, 48, 42, 36, 30, 32, 29, 27, and 25 million pounds in 2005, 2006, 2007, 2008,
2009, 2010, 2011, 2012, and 2015, respectively (TRI15 2016). Table 6-1 lists the amounts released from
these facilities to air, water, land, and publicly owned treatment works (POTWs). Table 6-1 also shows
that ~1% of the total released was injected deep underground and that ~1.1 million pounds of toluene
were transferred off-site (TRI15 2016). The relative proportions of the material transferred off-site that
were recycled or entered environmental media are not stated. Releases of toluene to the environment

have decreased when compared to data from 1997.

6.2.1 Air

Estimated releases of 22 million pounds (~10,000 metric tons) of toluene to the atmosphere from
2,198 domestic manufacturing and processing facilities in 2015, accounted for nearly 90% of the
estimated total environmental releases from facilities required to report to the TRI (TRI15 2016). These

releases are summarized in Table 6-1.

EPA's National Emission Inventory (NEI) database contains data regarding sources that emit criteria air
pollutants and their precursors, and hazardous air pollutants (HAPs) for the 50 United States, Washington
DC, Puerto Rico, and the U.S. Virgin Islands. The NEI database derives emission data from multiple
sources, including state and local environmental agencies, the TRI database, computer models for on-road
and off-road emissions, and databases related to EPA's Maximum Achievable Control Technology
(MACT) programs to reduce emissions of HAPs. Data downloaded from the 2011 NEI (see Table 6-2)
indicated that the total emission of toluene was approximately 1,730,000,000 pounds (785,000 tons), with
the biggest contribution arising from consumer and commercial solvent use (EPA 2013a). Nearly all
toluene entering the environment is released directly to air or partitions to the atmosphere due to its
relatively high vapor pressure (EC 2003). A major source of toluene emissions arises from gasoline use,
which typically includes emissions from motor vehicle exhaust, gasoline storage tanks, filling stations,
petroleum spills, etc. (EC 2003; Verschueren 1977). The emission rate of toluene from motor vehicle
traffic in a Los Angeles roadway tunnel was found to be 748 mg/L of gasoline consumed (Fraser et al.
1998). In addition, the global release from automobile exhaust is estimated to be around 3—8 metric tons
per year, and the emission factors from gasoline were 2.22x10°-8.46x10 Ib/vehicle mile traveled for

evaporation from automobile fuel tanks and automobile exhaust emissions (EPA 1994).
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Table 6-1. Releases to the Environment from Facilities that Produce, Process, or
Use Toluene?

Reported amounts released in pounds per year®

Total release

On-and
State¢ RFd Aire Waterf Uls Land®  Other On-sitel Off-sitek  off-site
AK 7 11,916 8 0 162 0 12,087 0 12,087
AL 47 400,857 3 0 767 19,877 400,861 20,643 421,504
AR 18 99,591 45 2,051 1 351 101,687 352 102,038
AZ 23 86,726 0 0 384 926 86,976 1,060 88,036
CA 112 197,493 49 20 837,096 5,629 1,032,978 7,309 1,040,287
CO 23 88,923 0 0 342 0 89,173 92 89,265
CT 25 55,484 59 0 59 0 55,543 59 55,602
DE 7 12,944 5 0 0 0 12,949 0 12,950
FL 43 212,880 27 0 200 23,975 212,907 24,175 237,082
GA 50 618,693 45,625 0 1,003 5,260 664,318 6,263 670,581
GU 2 5,418 0 0 13 0 5,418 13 5,431
HI 10 24,888 20 1 10 0 24,909 10 24,919
1A 44 325,450 2 0 135 1,321 325,452 1,456 326,908
ID 4 11,862 0 0 5,412 0 11,862 5,412 17,274
IL 118 615,479 662 2,537 1,989 9,312 616,345 13,634 629,979
IN 90 1,368,943 481 0 118,177 222,875 1,461,549 248,927 1,710,476
KS 39 543,168 115 494 8,235 262 544,198 8,076 552,275
KY 47 1,302,536 1,725 0 931 10,526 1,304,528 11,190 1,315,718
LA 80 1,086,098 794 4,228 85,957 1,833 1,165,289 13,621 1,178,909
MA 49 235,372 5 0 48 34,534 235,377 34,582 269,959
MD 13 8,754 27 0 1 500 8,781 501 9,282
ME 5 3,530 1 0 22 685 3,532 707 4,239
MI 98 1,169,092 68 50 34,769 15,358 1,169,372 49,965 1,219,337
MN 34 436,827 12 0 3,357 0 436,838 3,357 440,195
MO 52 180,166 51 0 1,160 3,811 180,227 4,961 185,188
MP 2 1,108 0 0 0 0 1,108 . 1,108
MS 32 342,669 411 0 2,710 47 343,080 2,757 345,837
MT 5 50,563 3 0 4,714 3,238 50,568 7,950 58,518
NC 63 1,049,367 6 0 3,756 47,278 1,049,373 51,034 1,100,407
ND 14 39,787 1 1 19 3 39,792 19 39,811
NE 21 20,843 0 0 18,685 20,838 20,843 39,523 60,366
NH 5 9,796 0 0 0 3 9,796 3 9,799
NJ 48 124,496 619 110 1,251 11,771 125,115 13,133 138,248
NM 9 41,455 0 0 227 2,887 41,455 3,114 44,569
NV 12 308,684 0 0 24,711 0 333,395 No data 333,395
NY 68 355,382 21 0 733 3,247 355,405 3,978 359,382
OH 150 633,201 41 1,699 22,455 63,229 633,601 87,024 720,626

OK 32 858,559 522 762 308 9,897 859,474 10,574 870,048
OR 26 95,837 9 0 36,643 889 129,378 4,000 133,378
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Table 6-1. Releases to the Environment from Facilities that Produce, Process, or
Use Toluene?

Reported amounts released in pounds per year®

Total release

On-and

State¢ RFd Aire Waterf Uls Land®  Other On-sitel Off-sitek  off-site
PA 93 1,507,854 415 0 14,884 12,556 1,508,269 27,440 1,535,709
PR 13 31,776 0 0 0 0 31,776 No data 31,776
RI 10 15,433 12 0 0 7,277 15,445 7,277 22,722
SC 44 2,330,401 260 8 43 24,855 2,330,688 24,879 2,355,567
SD 9 61,382 0 0 0 0 61,382 No data 61,382
TN 66 1,124,815 87 0 1,126 2,444 1,124,978 3,494 1,128,472
X 259 1,604,315 1,219 246,601 34,441 66,292 1,862,139 90,730 1,952,869
uT 16 75,632 5 0 161 598 75,692 704 76,396
VA 46 814,544 160 0 44,429 6,847 814,704 51,276 865,980
VI 2 11,352 0 0 91 0 11,441 1 11,442
VT 2 1,790 0 0 0 0 1,790 No data 1,790
WA 24 237,705 13 0 1,875 15 238,356 1,252 239,608
Wi 60 948,096 0 0 8,121 228,570 951,876 232,911 1,184,786
wv 16 273,150 324 0 1,694 1,346 273,488 3,026 276,513

Wy 11 40,531 5 0 391 o 40,549 378 40,927

Total 2,198 22,113,612 53,918 258,562 1,323,699 871,163 23,498,112 1,122,841 24,620,953

aThe TRI data should be used with caution since only certain types of facilities are required to report. This is not an
exhaustive list. Data are rounded to nearest whole number.

bData in TRI are maximum amounts released by each facility.

°Post office state abbreviations are used.

dNumber of reporting facilities.

®The sum of fugitive and point source releases are included in releases to air by a given facility.

fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWSs) (metal
and metal compounds).

9Class | wells, Class II-V wells, and underground injection.

hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface
impoundments, other land disposal, other landfills.

iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for
disposal, unknown

iIThe sum of all releases of the chemical to air, land, water, and underground injection wells.

KTotal amount of chemical transferred off-site, including to POTWs.

RF = reporting facilities; Ul = underground injection

Source: TRI15 2016 (Data are from 2015)
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Table 6-2. 2011 NEI Total National Emissions of Toluene

Emission source Emissions in tons

Agriculture, livestock waste 2.566
Bulk gasoline terminals 1,989.817
Commercial cooking 646.584
Dust, construction dust 0.149
Fires, agricultural field burning 5,788.053
Fires, prescribed fires 24,784.188
Fires, wildfires 30,548.719
Fuel combustion, commercial/institutional, biomass 4.724
Fuel combustion, commercial/institutional, coal 0.230
Fuel combustion, commercial/institutional, natural gas 75.153
Fuel combustion, commercial/institutional, oil 4.905
Fuel combustion, commercial/institutional, other 3.239
Fuel combustion, electric generation, biomass 509.470
Fuel combustion, electric generation, coal 92.209
Fuel combustion, electric generation, natural gas 325.570
Fuel combustion, electric generation, oil 10.029
Fuel combustion, electric generation, other 17.986
Fuel combustion, Industrial boilers, ices, biomass 157.859
Fuel combustion, Industrial boilers, ices, coal 3.036
Fuel combustion, Industrial boilers, ices, natural gas 407.576
Fuel combustion, Industrial boilers, ices, oil 19.987
Fuel combustion, Industrial boilers, ices, other 31.980
Fuel combustion, residential, natural gas 52.243
Fuel combustion, residential, oil 1.146
Fuel combustion, residential, other 0.038
Fuel combustion, residential, wood 4,118.312
Gas stations 31,251.987
Industrial processes, cement manuf 26.102
Industrial processes, chemical manuf 2,094.087
Industrial processes, ferrous metals 58.466
Industrial processes, mining 6.779
Industrial processes, NEC 2,533.374
Industrial processes, non-ferrous metals 39.259
Industrial processes, oil and gas production 9,281.628
Industrial processes, petroleum refineries 710.439
Industrial processes, pulp and paper 111.692
Industrial processes, storage and transfer 2,487.106
Miscellaneous non-industrial NEC 7,290.227
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Table 6-2. 2011 NEI Total National Emissions of Toluene

Emission source Emissions in tons
Mobile, aircraft 463.492
Mobile, commercial marine vessels 39.694
Mobile, locomotives 187.259
Mobile, non-road equipment, diesel 1,857.913
Mobile, non-road equipment, gasoline 144,745.874
Mobile, non-road equipment, other 4.067
Mobile, on-road diesel heavy duty vehicles 1,567.312
Mobile, on-road diesel light duty vehicles 44.951
Mobile, on-road gasoline heavy duty vehicles 10,911.517
Mobile, on-road gasoline light duty vehicles 194,777.346
Solvent, consumer and commercial solvent use 282,997.039
Solvent, degreasing 365.751
Solvent, dry cleaning 0.330
Solvent, graphic arts 4,271.392
Solvent, industrial surface coating and solvent use 58,964.001
Solvent, non-industrial surface coating 37,149.628
Waste disposal 3,232.753
Sum 867,067.23

NEC = not elsewhere classified; NEI = National Emission Inventory

Source: EPA 2013a
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BTEX emissions are primarily due to incomplete combustion of petroleum fuels from gasoline and
volatilization of BTEX-based solvents and thinners. BTEX is often studied together because these
chemicals comprise 60% of the water-soluble fraction of gasoline (CCME 2004). Toluene, along with the

other aromatic hydrocarbons, is added to gasoline to raise the octane rating (Ozokwelu 2006).

Toluene is used in paints, solvents, adhesives, inks, and similar products and is also released to air upon
use. Toluene is also emitted from building and finishing materials in newly constructed apartments.
Indoor air exposure to a chemical that is generated at the source (from paints, varnishes, and adhesives)
can be of a greater risk than ambient air exposure. Toluene was found at mean concentrations of

63.03 pg/m’ (lower floor), 66.06 pug/m* (middle floor), and 27.16 pg/m? (highest floor) in newly
constructed apartment buildings in Korea that had been finished with vinyl wallpaper and plywood. The
outdoor concentration of toluene in the same study was 11.05 pg/m®. Calculated mean emission rates for
toluene were 4,168 pg/hour (lower floor), 4,171 pg/hour (middle floor), and 7,356 pg/hour (highest
floor). The authors suggest that an increase in the ventilation on the highest floor may lead to an increase

in emissions from the inner surfaces (Sim et al. 2010).

Toluene may also be released during disposal processes. Based on information from 40 medical waste
incinerators in the United States and Canada, emission factors for toluene were reported to range from
37.3 to 178 (mean=113) pg/kg waste for uncontrolled emissions and 177-3,000 (mean=1,920) pg/kg
waste for controlled emissions (Walker and Cooper 1992). Toluene emissions from coal-fired power
stations (119 pug/m?) were reported to be far less than toluene emissions from diesel engines (167—

287 ug/m?) and automobiles (15,700-370,000 pg/m*);all measurements were obtained at standard

temperature and pressure (20°C and 1 atmosphere pressure) (Garcia et al. 1992).

6.2.2 Water

Estimated releases of ~54,000 pounds (~245 metric tons) of toluene to surface water from 2,198 domestic
manufacturing and processing facilities in 2015, accounted for about 0.2% of the estimated total
environmental releases from facilities required to report to the TRI (TRI15 2016). These releases are

summarized in Table 6-1.

Toluene may be released to water from industrial discharges and urban wastes, or by spills and leakage of

gasoline. However, these releases are believed to comprise only a small fraction of the amount of toluene
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released to air (EPA 1983b). Emissions into the water and soil sometimes lead to re-emission of toluene

into the air (EC 2003).

Toluene can be released to groundwater following large surface spills of BTEX-containing components
such as diesel fuel or conventional gasoline. For example, Gross et al. (2013) analyzed groundwater data
following surface spills associated with hydraulic fracturing operations in the state of Colorado. The
mean concentration of toluene in 218 groundwater samples associated with surface spills was 750 pg/L
and the 95" percentile concentration was 1,900 pg/L. Some individual samples inside the excavation

areas of the spill sites had levels as high as 10,000 pg/L.

6.2.3 Sail

Estimated releases of 1.3 million pounds (~590 metric tons) of toluene to soils from 2,198 domestic
manufacturing and processing facilities in 2015, accounted for about 5% of the estimated total
environmental releases from facilities required to report to the TRI (TRI15 2016). An additional
~258,500 pounds (~117 metric tons), constituting ~1% of the total environmental emissions, were

released via underground injection (TRI15 2016). These releases are summarized in Table 6-1.

Release of toluene to land may occur in association with gasoline spills, leaking underground gasoline
storage tanks, or land disposal of municipal sludges or refinery wastes. Releases of BTEX to the soil also
occur from accidents and spills during transportation and pesticide applications (CCME 2004). In some
cases, releases might be significant on a local scale; however, the total amount of toluene released to the

environment in soil is considered to be negligible (EPA 1983b).

6.3 ENVIRONMENTAL FATE
6.3.1 Transport and Partitioning

Toluene is a volatile liquid at room temperature. Due to its high vapor pressure (28.4 mmHg at 25°C),
the majority of toluene released to the environment partitions to air. As discussed in Section 6.2, most
toluene is released directly into air, and that which is released to surface water or soil tends to volatilize
quickly (EC 2003). Toluene rapidly volatilizes from surface water to air, with a half-life on the order of a
few hours at 25°C; however, the volatilization rate is dependent upon conditions of the water body (e.g.,
depth, current) and the atmosphere (e.g., wind speeds). Laboratory studies also indicate that surfactants

can affect volatilization of toluene from water (Anderson 1992).
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The rate of volatilization from soils depends on temperature, humidity, and soil type; however, under
typical conditions, toluene rapidly volatilizes from soils based on its Henry’s Law constant and vapor

pressure (CCME 2004; HSDB 2010).

Toluene is expected to have high to moderate mobility in soil; the soil adsorption coefficient (Koc) values
of 37-178 indicate that toluene is not expected to be strongly bound to the soil (HSDB 2010). Humidity
interferes with the adsorption of toluene vapors into soils, with sorption primarily occurring with water

vapor rather than toluene in low humidity (Chen and Wu 1998).

Adsorption of toluene to soil is possible under certain conditions. Distilled water removed 9-40% of the
toluene adsorbed to samples of five different soils of low organic content within 24 hours, but after

7 days, some of the toluene still remained adsorbed to the soil samples (Pavlostathis and Mathavan 1992).
Sorption of toluene can also be dependent on the size of the particles in soils. BTEX was adsorbed more
in montmorillonite or illite clays, and less in kaolinite (Site 2001). A gravimetric method indicated that
adsorption of gas phase toluene on loam or clay occurs in two stages: fast diffusion and adsorption in
macropores, followed by slower diffusion and adsorption in intragrain micropores (Arocha et al. 1996).

Temperature is also inversely related to adsorption (Site 2001).

Although the organic carbon content of aquifer materials is an important determinant of toluene migration
in groundwater, other factors may be important as well (Larsen et al. 1992). For example, information
from waste sites and U.S. coastal plain aquifers indicates that many site-specific hydro geologic factors
can have unpredictable effects on toluene migration (Adams and Golden 1992). In addition, the presence
of other gasoline components (benzene, xylene) can impact toluene migration. Competitive sorption
between these gasoline components decreases the interaction between toluene and soil, thereby allowing

it to move more quickly through the aquifer (Stuart et al. 1991).

Toluene is expected to have a low tendency to bioconcentrate in the fatty tissues of aquatic organisms
based on its measured BCF values (Franke et al. 1994). The bioconcentration factor (BCF) values were

reported to be 8, 13, and 90 in herring, eels, and golden ide fish, respectively (EC 2003).
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6.3.2 Transformation and Degradation
6.3.2.1 Air

Toluene in the atmosphere is rapidly degraded by reaction with hydroxyl radicals to yield cresol and
benzaldehyde, which in turn undergo ring cleavage to yield simple hydrocarbons (Davis et al. 1979;
Hoshino et al. 1978; Kenley et al. 1973). The estimated rate constant for this process is about 0.6—
2.4x107 sec™!, which corresponds to an atmospheric half-life of around 13 hours. The actual half-life may
range from 10 to 104 hours depending on atmospheric conditions (Howard et al. 1991). Toluene is also
oxidized by reaction with nitrogen dioxide, oxygen, and ozone, but the rates of these reactions are two or
more orders of magnitude less than for the hydroxyl radical (Altshuller et al. 1971; Dilling et al. 1976;
Wei and Adelman 1969). Benzyl nitrate and nitrotoluene are formed through the reaction of atmospheric
toluene with nitrogen oxides (Atkinson 1990). Secondary organic aerosol products from the

photoxidation of toluene include carbonyl products (Cao and Jang 2008).

Processes for removing toluene from the air include adsorption, thermal and catalytic combustion,
phytocatalytic combustion, and biological methods. Biological methods include biotrickling filters,
which are filters that move the polluted air and a recycled liquid through a packed bed for the creation of
a biofilm. These biofilms facilitate the degradation of toluene in the air for pollution control (Cox et al.
2000). Experiments have been conducted in which Acinetobacter genospecies, a toluene-degrading
bacteria, was isolated from a trickle bed air biofilter (TBAB). This newer bacteria showed excellent
degradation capabilities. Biofilters are a relatively inexpensive way to eliminate toluene in the air (Hori

etal. 2001).

Recently, non-thermal plasma techniques have become prevalent innovative techniques in removing
volatile organic compounds from the air. Toluene was removed in a non-thermal reactor at room
temperature with a 93% removal efficiency. The experiment yielded decomposition products that

included ozone, carbon dioxide, nitric oxide, and nitrogen dioxide (Mista and Kacprzyk 2008).

6.3.2.2 Water

There is potential for rapid degradation of toluene in water, especially if there is an electron acceptor
available for oxidation (Evans et al. 1991). In surface waters, the biodegradation half-life of toluene was
estimated to range from 4 to 22 days and the biodegradation half-life of toluene in groundwater was

estimated to range from 7 to 28 days (Howard et al. 1991).
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However, groundwater sometimes contains low amounts of dissolved oxygen. Anaerobic degradation of
toluene, in this case, is an important fate process in the water (Evans et al. 1991). The biodegradation of
toluene in groundwater can be enhanced by the presence of alternative electron acceptors, such as sulfate,
nitrate, potassium, bicarbonate, and phosphate (Acton and Barker 1992; Armstrong et al. 1991; Hutchins
1991, Evans et al. 1991). Complete mineralization is possible under the right conditions. Edwards et al.
(1992) found that toluene was completely mineralized to carbon dioxide and biomass by an aquifer-
derived microorganism that used sulfate as a terminal electron acceptor. The authors found that toluene
degradation stopped when the sulfate was removed, and started back up again once the sulfate was added

again.

Microbial degradation in contaminated groundwater is also dependent on the depth and placement of the
contamination. For instance, toluene degraders, related to Geobacter spp., Desulfocapsa spp., and
Sedimentibacter spp. exist primarily in the biogeochemical gradient zone underneath contaminated plume
cores. BTEX was found to exist with sulfate and those anaerobic toluene degraders in that gradient zone

in a contaminated tar oil plume (Winderl et al. 2007).

Toluene can also be removed in aerobic conditions. In a laboratory study, toluene was removed from
waste water by being stripped in an air stripping tank and subsequently degraded by Pseudomonas putida
in a bioreactor (Dahlan et al. 1999). In a modified closed bottle study (OECD method 301D) referred to
as a BOD»s study (the biochemical oxygen demand after a 28-day incubation period), toluene degradation
was observed at 93% after 14 days at a concentration of 50 mg/L and was reported to be readily

biodegradable (Lapertot and Pulgarin 2006).

6.3.2.3 Sediment and Soil

Biodegradation of BTEX in soils can be affected by pH, temperature, and salinity. The bacteria
responsible for degrading BTEX have a reduced growth rate at highly acidic and alkaline conditions, low
and high temperatures, and salty conditions (You et al. 2013). Soils contaminated specifically with
toluene can be effectively remediated with a combination of soil vapor extraction and bioremediation.
Soils are required to have an organic matter content <14% in order for soil vapor extraction to be

effective (Soares et al. 2013).



TOLUENE 318

6. POTENTIAL FOR HUMAN EXPOSURE

It was discovered that the concentration of toluene in bioremediation practices has an effect on microbial
compositions (Hubert et al. 1999). Addition of large numbers of bacterial cells to toluene-contaminated
soils may have no benefit if the concentration of toluene is too low for the bacteria to maintain metabolic
activity (Roch and Alexander 1997). Likewise, toluene degradation by bacterial cells is dependent on the
types of bacteria. Growth of one strain exposed to a small concentration of toluene (0.01%) was

negligible when compared to another strain (Hubert et al. 1999).

In aerobic soils, oxygen acts as the terminal electron acceptor in degradation of the ring cleavage
products. Under anaerobic conditions, nitrogen or sulfate can act as the terminal electron acceptor (Beller
et al. 1992a, 1992b; Dolfing et al. 1990; Evans et al. 1991). Under favorable conditions (presence of
electron acceptors, nutrients, and oxidizable compounds), laboratory studies show that BTEX compounds
are also degraded by bacteria in anaerobic (Langenhoff et al. 1996) or oxygen-limited environments
(Lovley 1997; Olsen et al. 1995). Under sulfate-reducing conditions, less than 10% of the toluene carbon
was metabolized to benzylsuccinic acid and benzylfumaric acid, whereas >80% was mineralized to
carbon dioxide (Beller et at. 1992a). The half-life for biodegradation in soil under laboratory conditions
may be as short as 1 hour (Claus and Walker 1964). Based on data from the aerobic degradation of
toluene in water, the biodegradation half-life of toluene in soils is expected to range from 4 to 22 days
(Howard et al. 1991). Soil biodegradation is not impeded by adsorption (Robinson et al. 1990). The
wood-degrading, white-rot fungus, Phanerochaete chrysoporium, mineralizes 50% of 2 ppm aqueous
solutions of toluene or BTEX compounds to carbon dioxide within 5 days. Non-ligninolytic conditions

are favored (Yadav and Reddy 1993).

6.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

Reliable evaluation of the potential for human exposure to toluene depends in part on the reliability of
supporting analytical data from environmental samples and biological specimens. Concentrations of
toluene in unpolluted atmospheres and in pristine surface waters are often so low as to be near the limits
of current analytical methods. In reviewing data on toluene levels monitored or estimated in the
environment, it should also be noted that the amount of chemical identified analytically is not necessarily
equivalent to the amount that is bioavailable. The analytical methods available for monitoring toluene in

a variety of environmental media are detailed in Chapter 7.
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6.4.1 Air

Ambient air levels of toluene are typically reported as micrograms per cubic meter of air (ug/m?) or part
per billion by volume (ppbv); 3.76 ng/m? of toluene is equivalent to 1.00 ppbv (see Chapter 4).
Occasionally, monitoring data will be reported as parts per billion of carbon (ppbC). The unit ppbC is

equivalent to ppbv multiplied by the number of carbons of the analyte.

The EPA Air Quality System (AQS) contains monitoring data of criteria air pollutants and HAPs.
Detailed air monitoring data for toluene in various cities/counties in the United States for 2015 are shown
in Table 6-3. Table 6-4 summarizes the annual mean percentile distributions of toluene for years 2010—
2015 (EPA 2016). Daily arithmetic mean concentrations of toluene ranged from 0.29 to 45.9 ppbC
(0.041-6.56 ppbv) in 2015, which were similar to the concentrations measured in a study that analyzed
the levels of toluene and 87 other volatile substances during a 1997-2001 sampling period from 13 semi-
rural to urban locations in the United States. The states included Maine, Massachusetts, New Jersey,
Pennsylvania, Ohio, Illinois, and California (Pankow et al. 2003). The arithmetic mean and median
concentrations at these 13 locations were 0.22-2.7 and 0.10-2.4 ppbv (0.83-10.2 and 0.38-9.0 pg/m?),
respectively. The measured concentrations exhibited seasonal trends, with the highest levels typically
observed during the winter months, particularly in the more urban sampling locations. Older studies have
reported toluene levels of 0.9—-70.1, 0.06—195, and 2.2—751.5 ppbv (3.4-263.6, 0.23—-733.2, and 8.3—
2,825.6 pg/m’) in rural (Khalil and Rasmussen 1992), urban (Armstrong et al. 1991; Chan et al. 1991b;
Evans et al. 1992; Kelly et al. 1993), and source-dominated air samples, respectively (Guldberg 1992;
Kelly et al. 1993).

In a study conducted by Iovino et al. (2009), the authors found that the average toluene concentration in
the Naples, Italy metropolitan area was 35.0 pg/m?® (9.31 ppbv). The average concentration near suburban
areas was 16.2 pg/m? (4.31 ppbv) and the average concentration far from suburban areas was 15.3 pg/m?

(4.07 ppbv). Higher toluene levels in the outdoor air can be due to location and proximity to urban areas.

Toluene was detected at 1.95 ppbv (7.33 pg/m?) in the outdoor air of the urban zone near a crude oil
refinery located in Lithuania. This level was similar to the levels of toluene found in urban areas of
European cities; however, there were much higher levels of toluene (21.4-98.1 ppbv or 80.5-369 pg/m?)

in the traffic congested areas in those same cities (Baltrenas et al. 2011).
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Table 6-3. Toluene Levels in Ambient Air?
Daily arithmetic
Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Phoenix-Mesa-Scottsdale, AZ 32 1.13 0.86 0.88
Phoenix-Mesa-Scottsdale, AZ 57 0.91 0.80 0.64
Phoenix-Mesa-Scottsdale, AZ 6 0.84 0.52 0.86
Phoenix-Mesa-Scottsdale, AZ 15 0.57 0.22 0.53
Phoenix-Mesa-Scottsdale, AZ 1 0.45 0.00 0.45
Phoenix-Mesa-Scottsdale, AZ 14 0.08 0.03 0.08
Phoenix-Mesa-Scottsdale, AZ 45 0.06 0.04 0.05
San Francisco-Oakland-Hayward, CA 29 0.51 0.40 0.46
San Francisco-Oakland-Hayward, CA 5,473 0.37 0.53 0.19
San Francisco-Oakland-Hayward, CA 30 0.67 0.47 0.58
San Francisco-Oakland-Hayward, CA 30 0.75 0.86 0.34
San Francisco-Oakland-Hayward, CA 30 0.49 0.41 0.31
San Francisco-Oakland-Hayward, CA 4,197 0.10 0.06 0.08
Chico, CA 30 0.41 0.27 0.42
San Francisco-Oakland-Hayward, CA 30 0.21 0.17 0.16
San Francisco-Oakland-Hayward, CA 29 0.36 0.33 0.28
San Francisco-Oakland-Hayward, CA 29 0.14 0.08 0.14
San Francisco-Oakland-Hayward, CA 30 0.18 0.17 0.1
San Francisco-Oakland-Hayward, CA 29 0.68 0.76 0.55
San Francisco-Oakland-Hayward, CA 30 0.26 0.22 0.22
San Francisco-Oakland-Hayward, CA 5,318 0.21 0.22 0.14
Fresno, CA 30 0.43 0.42 0.25
Fresno, CA 144 0.09 0.08 0.06
Fresno, CA 144 0.12 0.12 0.09
El Centro, CA 30 0.98 1.06 0.61
Bakersfield, CA 30 0.72 0.63 0.63
Bakersfield, CA 29 0.72 0.58 0.57
Bakersfield, CA 140 0.31 0.26 0.20
Bakersfield, CA 24 0.23 0.18 0.17
Los Angeles-Long Beach-Anaheim, CA 56 0.77 0.48 0.66
Los Angeles-Long Beach-Anaheim, CA 30 0.81 0.61 0.74
Los Angeles-Long Beach-Anaheim, CA 40 0.65 0.44 0.57
Los Angeles-Long Beach-Anaheim, CA 26 0.79 0.47 0.66
Los Angeles-Long Beach-Anaheim, CA 59 0.87 0.56 0.72
Los Angeles-Long Beach-Anaheim, CA 30 0.84 0.62 0.60
Los Angeles-Long Beach-Anaheim, CA 57 0.85 0.60 0.63
Los Angeles-Long Beach-Anaheim, CA 58 0.43 0.45 0.29
Los Angeles-Long Beach-Anaheim, CA 52 0.46 0.20 0.49
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Daily arithmetic

Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Madera, CA 32 0.09 0.10 0.04
San Francisco-Oakland-Hayward, CA 28 0.47 0.34 0.50
San Francisco-Oakland-Hayward, CA 30 0.07 0.12 0.04
Napa, CA 29 0.48 0.39 0.37
Sacramento-Roseville-Arden-Arcade, CA 30 0.26 0.19 0.22
Riverside-San Bernardino-Ontario, CA 43 0.50 0.42 0.43
Riverside-San Bernardino-Ontario, CA 25 0.82 0.58 0.73
Riverside-San Bernardino-Ontario, CA 57 0.73 0.50 0.63
Sacramento-Roseville-Arden-Arcade, CA 136 0.27 0.47 0.09
Sacramento-Roseville-Arden-Arcade, CA 16 0.13 0.08 0.10
Sacramento-Roseville-Arden-Arcade, CA 77 0.31 1.17 0.09
San Diego-Carlsbad, CA 31 0.45 0.37 0.32
San Diego-Carlsbad, CA 32 0.81 0.97 0.51
San Francisco-Oakland-Hayward, CA 28 0.35 0.27 0.34
San Francisco-Oakland-Hayward, CA 5 0.51 0.37 0.48
San Francisco-Oakland-Hayward, CA 30 0.37 0.29 0.30
Stockton-Lodi, CA 30 0.45 0.40 0.34
San Francisco-Oakland-Hayward, CA 29 0.85 0.69 0.48
San Jose-Sunnyvale-Santa Clara, CA 60 1.04 0.66 0.90
San Jose-Sunnyvale-Santa Clara, CA 30 0.65 0.62 0.45
San Jose-Sunnyvale-Santa Clara, CA 27 0.82 0.72 0.57
Vallejo-Fairfield, CA 30 0.41 0.42 0.26
Santa Rosa, CA 30 0.25 0.18 0.21
Oxnard-Thousand Oaks-Ventura, CA 81 0.21 0.19 0.13
Oxnard-Thousand Oaks-Ventura, CA 28 0.73 2.41 0.28
Oxnard-Thousand Oaks-Ventura, CA 140 0.1 0.1 0.09
Denver-Aurora-Lakewood, CO 42 1.22 0.71 1.15
Glenwood Springs, CO 54 0.76 0.33 0.72
Glenwood Springs, CO 46 0.92 1.44 0.65
Glenwood Springs, CO 52 0.61 0.61 0.40
Glenwood Springs, CO 26 4,53 10.24 0.79
Glenwood Springs, CO 20 5.25 10.48 1.20
Glenwood Springs, CO 6 0.59 0.20 0.55
Glenwood Springs, CO 51 0.58 0.38 0.46
Glenwood Springs, CO 2 0.40 0.12 0.48
Grand Junction, CO 50 0.81 0.56 0.71
Greeley, CO 40 1.01 0.60 0.99
Hartford-West Hartford-East Hartford, CT 1,962 0.32 0.27 0.22



TOLUENE

6. POTENTIAL FOR HUMAN EXPOSURE

Table 6-3. Toluene Levels in Ambient Air2

322

Daily arithmetic

Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
New Haven-Milford, CT 2,012 0.76 1.12 0.36
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 36 0.32 0.68 0.19
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 54 0.54 0.36 0.37
Washington-Arlington-Alexandria, DC-VA-MD-WV 2,043 0.25 0.31 0.15
Washington-Arlington-Alexandria, DC-VA-MD-WV 59 0.35 0.19 0.31
Washington-Arlington-Alexandria, DC-VA-MD-WV 31 0.41 0.13 0.37
Washington-Arlington-Alexandria, DC-VA-MD-WV 60 0.28 0.38 0.21
Miami-Fort Lauderdale-West Palm Beach, FL 50 1.61 1.96 1.33
Miami-Fort Lauderdale-West Palm Beach, FL 46 0.95 0.47 0.93
Miami-Fort Lauderdale-West Palm Beach, FL 31 0.69 1.19 0.43
Miami-Fort Lauderdale-West Palm Beach, FL 47 1.50 0.66 1.45
Tampa-St. Petersburg-Clearwater, FL 59 0.19 0.06 0.18
Orlando-Kissimmee-Sanford, FL 29 0.28 0.13 0.25
Tampa-St. Petersburg-Clearwater, FL 59 0.25 0.18 0.19
Tampa-St. Petersburg-Clearwater, FL 57 0.34 0.18 0.31
Tampa-St. Petersburg-Clearwater, FL 17 0.34 0.19 0.29
Macon, GA 22 0.08 0.04 0.09
Savannah, GA 20 0.12 0.08 0.11
Douglas, GA 29 0.05 0.12 0.03
Atlanta-Sandy Springs-Roswell, GA 21 0.07 0.03 0.07
Atlanta-Sandy Springs-Roswell, GA 33 0.38 0.23 0.31
Atlanta-Sandy Springs-Roswell, GA 44 0.28 0.21 0.27
Atlanta-Sandy Springs-Roswell, GA 29 0.35 0.23 0.39
Atlanta-Sandy Springs-Roswell, GA 22 0.46 0.26 0.46
Atlanta-Sandy Springs-Roswell, GA 25 0.09 0.08 0.09
Atlanta-Sandy Springs-Roswell, GA 29 0.06 0.03 0.06
Atlanta-Sandy Springs-Roswell, GA 24 0.22 0.1 0.20
Chicago-Naperville-Elgin, IL-IN-WI 60 0.34 0.26 0.28
Chicago-Naperville-Elgin, IL-IN-WI 54 0.33 0.16 0.30
Chicago-Naperville-Elgin, IL-IN-WI 54 0.45 0.22 0.40
St. Louis, MO-IL 32 0.43 0.38 0.35
Louisville/Jefferson County, KY-IN 48 6.56 10.11 2.01
Chicago-Naperville-Elgin, IL-IN-WI 6,900 0.22 0.67 0.15
Chicago-Naperville-Elgin, IL-IN-WI 52 0.26 0.24 0.19
Chicago-Naperville-Elgin, IL-IN-WI 55 0.18 0.21 0.13
Chicago-Naperville-Elgin, IL-IN-WI 54 0.39 0.41 0.26
Chicago-Naperville-Elgin, IL-IN-WI 41 0.35 0.32 0.29
Chicago-Naperville-Elgin, IL-IN-WI 56 0.49 0.40 0.31
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Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Indianapolis-Carmel-Anderson, IN 57 0.66 0.71 0.33
Indianapolis-Carmel-Anderson, IN 7,862 0.41 0.66 0.19
Chicago-Naperville-Elgin, IL-IN-WI 57 0.14 0.15 0.09
Evansville, IN-KY 57 0.34 0.34 0.21
Terre Haute, IN 57 0.19 0.1 0.16
Cedar Rapids, IA 30 0.29 0.20 0.22
Cedar Rapids, IA 30 0.32 0.24 0.23
Des Moines-West Des Moines, IA 30 0.28 0.19 0.21
Des Moines-West Des Moines, IA 30 0.32 0.23 0.26
Davenport-Moline-Rock Island, IA-IL 30 0.29 0.39 0.21
Davenport-Moline-Rock Island, IA-IL 30 0.29 0.24 0.24
Huntington-Ashland, WV-KY-OH 60 0.30 0.17 0.29
Carter, KY 60 0.10 0.03 0.10
Lexington-Fayette, KY 53 0.26 0.19 0.20
Paducah, KY-IL 59 0.11 0.05 0.10
Paducah, KY-IL 60 0.09 0.03 0.08
Paducah, KY-IL 29 0.10 0.05 0.09
Paducah, KY-IL 59 0.14 0.10 0.12
Baton Rouge, LA 463 0.25 0.21 0.16
Baton Rouge, LA 59 0.24 0.13 0.21
Baton Rouge, LA 1,480 0.36 0.37 0.26
Baton Rouge, LA 48 0.42 0.28 0.36
Baton Rouge, LA 473 0.11 0.07 0.10
Baton Rouge, LA 55 0.11 0.04 0.10
Baton Rouge, LA 853 0.18 0.13 0.14
Baton Rouge, LA 56 0.18 0.09 0.16
Portland-South Portland, ME 3,415 0.08 0.06 0.06
Baltimore-Columbia-Towson, MD 1,948 0.42 0.43 0.28
Baltimore-Columbia-Towson, MD 60 0.55 0.53 0.41
Baltimore-Columbia-Towson, MD 59 0.67 0.55 0.54
Baltimore-Columbia-Towson, MD 54 0.23 0.09 0.20
Washington-Arlington-Alexandria, DC-VA-MD-WV 222 0.35 0.28 0.30
Washington-Arlington-Alexandria, DC-VA-MD-WV 59 0.37 0.16 0.34
Washington-Arlington-Alexandria, DC-VA-MD-WV 59 0.28 0.15 0.26
Baltimore-Columbia-Towson, MD 53 0.31 0.21 0.26
Boston-Cambridge-Newton, MA-NH 59 0.21 0.13 0.17
Boston-Cambridge-Newton, MA-NH 15 0.21 0.12 0.24
Boston-Cambridge-Newton, MA-NH 59 0.36 0.19 0.31
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Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Boston-Cambridge-Newton, MA-NH 29 0.33 0.15 0.31
Midland, MI 60 0.83 0.98 0.53
Midland, MI 59 0.48 0.65 0.29
Midland, MI 59 0.41 0.75 0.24
Midland, MI 57 0.57 0.38 0.50
Detroit-Warren-Dearborn, Ml 30 0.33 0.19 0.31
Detroit-Warren-Dearborn, Mi 60 0.37 0.28 0.30
Detroit-Warren-Dearborn, Ml 45 0.08 0.08 0.08
Detroit-Warren-Dearborn, Ml 10 0.08 0.07 0.09
Detroit-Warren-Dearborn, Ml 55 0.74 0.36 0.65
Detroit-Warren-Dearborn, Ml 53 1.12 0.56 0.96
Detroit-Warren-Dearborn, Ml 49 0.68 0.40 0.57
St. Louis, MO-IL 60 0.35 0.25 0.27
Manchester-Nashua, NH 2,479 0.07 0.05 0.06
Manchester-Nashua, NH 15 0.09 0.02 0.09
Boston-Cambridge-Newton, MA-NH 2,579 0.12 0.09 0.10
Boston-Cambridge-Newton, MA-NH 15 0.19 0.08 0.17
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 61 1.63 1.10 1.43
New York-Newark-Jersey City, NY-NJ-PA 59 0.22 0.10 0.19
New York-Newark-Jersey City, NY-NJ-PA 563 0.18 0.18 0.11
New York-Newark-Jersey City, NY-NJ-PA 55 0.13 0.07 0.11
New York-Newark-Jersey City, NY-NJ-PA 60 0.49 0.22 0.46
Gallup, NM 13 0.15 0.11 0.12
Albany-Schenectady-Troy, NY 46 0.47 0.33 0.39
New York-Newark-Jersey City, NY-NJ-PA 56 0.40 0.22 0.31
New York-Newark-Jersey City, NY-NJ-PA 49 0.38 0.19 0.30
New York-Newark-Jersey City, NY-NJ-PA 54 0.40 0.22 0.30
New York-Newark-Jersey City, NY-NJ-PA 60 0.29 0.17 0.24
Buffalo-Cheektowaga-Niagara Falls, NY 50 0.30 0.17 0.27
Buffalo-Cheektowaga-Niagara Falls, NY 56 0.30 0.23 0.26
Buffalo-Cheektowaga-Niagara Falls, NY 55 0.32 0.23 0.27
Buffalo-Cheektowaga-Niagara Falls, NY 50 0.28 0.16 0.24
Buffalo-Cheektowaga-Niagara Falls, NY 58 0.31 0.25 0.26
Camden, NJ 56 0.08 0.15 0.04
New York-Newark-Jersey City, NY-NJ-PA 51 0.45 0.26 0.36
Rochester, NY 54 0.22 0.16 0.20
New York-Newark-Jersey City, NY-NJ-PA 57 0.37 0.21 0.33
New York-Newark-Jersey City, NY-NJ-PA 57 0.42 0.31 0.31
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Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Corning, NY 30 0.08 0.06 0.06
Asheville, NC 55 0.46 0.35 0.31
Asheville, NC 15 0.60 0.42 0.49
Winston-Salem, NC 58 0.34 0.27 0.30
Winston-Salem, NC 9 0.24 0.1 0.20
Sanford, NC 57 0.14 0.08 0.13
Sanford, NC 55 0.14 0.08 0.13
Charlotte-Concord-Gastonia, NC-SC 57 0.43 0.34 0.34
Charlotte-Concord-Gastonia, NC-SC 13 0.46 0.34 0.33
Montgomery, NC 58 0.12 0.10 0.09
Montgomery, NC 9 0.08 0.02 0.09
Wilmington, NC 57 0.18 0.15 0.16
Wilmington, NC 5 0.28 0.08 0.26
Raleigh, NC 57 0.32 0.26 0.23
Cincinnati, OH-KY-IN 27 0.31 0.22 0.36
Cincinnati, OH-KY-IN 29 0.59 0.85 0.33
Cincinnati, OH-KY-IN 30 0.38 0.23 0.30
Cincinnati, OH-KY-IN 30 1.18 0.90 1.00
Cincinnati, OH-KY-IN 56 0.46 0.33 0.39
Oklahoma City, OK 59 0.24 0.1 0.22
Oklahoma City, OK 39 0.32 0.17 0.29
Oklahoma City, OK 39 0.41 0.19 0.37
Oklahoma City, OK 60 0.35 0.20 0.28
Tulsa, OK 60 0.64 0.35 0.62
Tulsa, OK 59 0.94 1.05 0.67
Tulsa, OK 60 0.53 0.30 0.47
Portland-Vancouver-Hillsboro, OR-WA 52 0.82 0.90 0.59
Portland-Vancouver-Hillsboro, OR-WA 27 0.74 0.62 0.56
Portland-Vancouver-Hillsboro, OR-WA 54 0.53 0.36 0.40
La Grande, OR 42 0.29 0.18 0.24
Portland-Vancouver-Hillsboro, OR-WA 15 0.67 0.38 0.52
Gettysburg, PA 42 0.12 0.08 0.09
Pittsburgh, PA 34 0.37 0.14 0.36
Reading, PA 26 0.24 0.14 0.24
Pittsburgh, PA 39 0.19 0.14 0.1
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 42 0.58 0.49 0.42
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 42 0.36 0.24 0.28
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 42 0.51 0.28 0.44
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Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Erie, PA 38 0.16 0.11 0.14
Lancaster, PA 40 0.85 0.46 0.75
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 41 0.23 0.14 0.18
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 44 0.37 0.20 0.33
Allentown-Bethlehem-Easton, PA-NJ 41 0.32 0.15 0.31
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 679 0.26 0.18 0.22
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 20 0.38 0.24 0.33
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 59 0.43 0.29 0.36
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 13 0.30 0.35 0.21
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 32 0.33 0.22 0.27
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 59 0.21 0.18 0.17
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 45 0.32 0.20 0.31
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 59 0.52 0.44 0.40
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 59 0.34 0.24 0.29
Springville, PA 39 4.01 3.16 4.20
Lewisburg, PA 33 0.19 0.08 0.18
Pittsburgh, PA 43 0.34 0.20 0.32
Pittsburgh, PA 39 0.20 0.10 0.18
Pittsburgh, PA 39 0.33 0.15 0.33
Scranton-Wilkes-Barre-Hazleton, PA 29 0.28 0.93 0.09
York-Hanover, PA 45 0.34 0.14 0.32
Providence-Warwick, RI-MA 58 0.08 0.04 0.07
Providence-Warwick, RI-MA 58 0.38 0.23 0.33
Providence-Warwick, RI-MA 56 0.53 0.26 0.47
Providence-Warwick, RI-MA 546 0.26 0.26 0.17
Providence-Warwick, RI-MA 59 0.27 0.16 0.23
Providence-Warwick, RI-MA 56 0.26 0.16 0.24
Dallas-Fort Worth-Arlington, TX 7,607 0.39 0.62 0.23
Dallas-Fort Worth-Arlington, TX 57 0.28 0.24 0.20
Dallas-Fort Worth-Arlington, TX 55 0.21 0.19 0.16
Odessa, TX 2,273 0.54 0.77 0.30
Dallas-Fort Worth-Arlington, TX 59 0.07 0.05 0.06
El Paso, TX 7,118 0.91 1.71 0.39
Houston-The Woodlands-Sugar Land, TX 7,551 0.59 0.95 0.30
Houston-The Woodlands-Sugar Land, TX 7,082 0.71 1.50 0.34
Houston-The Woodlands-Sugar Land, TX 7,280 0.44 0.94 0.23
Houston-The Woodlands-Sugar Land, TX 59 0.32 0.23 0.28
Houston-The Woodlands-Sugar Land, TX 55 0.30 0.22 0.28



TOLUENE 327
6. POTENTIAL FOR HUMAN EXPOSURE
Table 6-3. Toluene Levels in Ambient Air2
Daily arithmetic
Number mean Standard
of concentration deviation Median
Sampling location® samples (ppbv) (ppbv)  (ppbv)
Marshall, TX 57 0.12 0.05 0.12
Beaumont-Port Arthur, TX 7,662 0.35 0.51 0.21
Beaumont-Port Arthur, TX 7,494 0.27 0.38 0.17
Dallas-Fort Worth-Arlington, TX 52 0.11 0.06 0.10
Corpus Christi, TX 60 0.16 0.11 0.14
Dallas-Fort Worth-Arlington, TX 7,289 0.40 0.47 0.24
Dallas-Fort Worth-Arlington, TX 57 0.24 0.12 0.20
Dallas-Fort Worth-Arlington, TX 59 0.14 0.08 0.12
Laredo, TX 49 0.67 0.34 0.55
Ogden-Clearfield, UT 50 0.58 0.42 0.49
Ogden-Clearfield, UT 49 0.70 0.43 0.59
Burlington-South Burlington, VT 60 0.04 0.03 0.04
Burlington-South Burlington, VT 30 0.35 0.14 0.35
Burlington-South Burlington, VT 29 0.36 0.15 0.34
Rutland, VT 30 0.42 0.23 0.36
Washington-Arlington-Alexandria, DC-VA-MD-WV 57 0.16 0.10 0.13
Richmond, VA 60 0.33 0.18 0.28
Richmond, VA 60 0.25 0.17 0.21
Richmond, VA 30 0.31 0.28 0.21
Richmond, VA 59 0.21 0.18 0.14
Virginia Beach-Norfolk-Newport News, VA-NC 57 0.22 0.15 0.19
Seattle-Tacoma-Bellevue, WA 56 0.31 0.22 0.24
Beaver Dam, WI 59 0.05 0.07 0.01
Milwaukee-Waukesha-West Allis, WI 27 0.39 0.20 0.37
Milwaukee-Waukesha-West Allis, WI 55 0.29 0.13 0.26

aData were originally reported in units of parts per billion carbon, but converted to parts per billion volume to facilitate

comparison with other data.
bState post office abbreviations used.

ppbC = parts per billion (carbon) = ppbv multiplied by the number of carbons in the analyte

Source: EPA 2016



TOLUENE 328
6. POTENTIAL FOR HUMAN EXPOSURE

Table 6-4. Percentile Distribution of Annual Mean Toluene Concentrations (ppbv)
Measured in Ambient Air at Locations Across the United States?

Year Number of U.S. locations 25th 50th 75th 95th Maximum
2010 430 0.26 0.41 0.65 1.28 8.14
2011 399 0.23 0.36 0.55 1.14 2.55
2012 391 0.24 0.37 0.57 1.31 32.05
2013 362 0.22 0.33 0.52 1.07 4.67
2014 345 0.19 0.30 0.86 0.96 3.87
2015 291 0.22 0.34 0.51 0.95 6.56

aData were originally reported in units of parts per billion carbon, but converted to parts per billion volume to facilitate
comparison with other data.

ppbC = parts per billion (carbon) = ppbv multiplied by the number of carbons in the analyte

Source: EPA 2016
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BTEX vehicle emissions from motor exhaust and emissions from the handling, distribution and storage of
petrol are a major contributor of atmospheric toluene. Toluene concentrations in India were found to
range from 3.26 to 13.68 ug/m* (0.867-3.64 ppbv) in air samples collected from busy traffic sites (Deole
et al. 2004). Toluene levels near an airport were found to be comparable to the atmospheric toluene levels
of the neighborhoods near the airport; however, levels were about 70% lower for areas further from the
airport. Toluene is generated from kerosene evaporation and combustion from the jet fuel in airplanes

(Jung et al. 2011).

In Rome, Italy, the annual average concentrations of toluene in the air decreased from 100 pg/m?

(26.6 ppbv) in 1997 to 10.2 pg/m>(2.71 ppbv) in 2008. This reduction of toluene in the air was attributed
to the decrease of total aromatic hydrocarbons in gasoline, the prevalence of low emission cars, and the
increase in refilling stations with closed-loop gasoline vapor systems (Ciarrocca et al. 2012).
Concentrations of toluene in air from the inside of vehicles have been reported to range from 0.56 to

42.0 ppbv (2.1-157.9 pg/m?) (Chan et al. 1991a; Lawryk and Weisel 1996; Weisel et al. 1992).

Levels of toluene can be much greater in indoor air as compared to outdoor air depending upon the
presence of potential exposure sources. For example, Curry et al. (1994) measured the indoor air
concentrations of toluene during normal in home use of nail lacquer products at five different residences
in California. The mean toluene levels measured in air during the nail lacquer application ranged from
3,200 to 9,200 pg/m? (850-2,400 ppbv), while the post-application concentrations ranged from 200 to
1,700 pg/m?® (50-450 ppbv). Toluene was not detected in any of the air samples above the detection
limits of 200 pg/m? (50 ppbv) in air prior to the nail lacquer application.

Hamidin et al. (2013) reported that toluene concentrations in the internal garages and residential indoor
air of 32 homes in Brisbane, Australia were much higher than toluene concentrations in the outdoor
ambient air. The average toluene concentration in residential indoor air was 10.7 pg/m? (2.84 ppbv),

25.5 pg/m? (6.78 ppbv) in internal garages, and 2.3 ug/m? (0.61 ppbv) in outdoor ambient air.

Toluene levels in indoor air from 16 newspaper stands located in Bari, Italy were shown to be
substantially higher than the corresponding outdoor air levels (Caselli et al. 2009). The weekly mean
concentrations of toluene in indoor air and outdoor air at these 16 stands are provided in Table 6-5, along
with the indoor/outdoor (I/O) ratio of these levels at each site. The authors concluded that toluene levels
were much higher inside the newspaper stands than outside because of the ink used to print the

newspapers (Caselli et al. 2009).
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Table 6-5. Weekly Mean Toluene Concentrations (ug/m?3) in Indoor Air at
16 Newspaper Stands and the Corresponding Outdoor Air Levels?
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Newspaper stand Mean indoor air level (ug/m®) Mean outdoor air level (ug/m®) 1/O ratio

0O NOoO O WDN -~

[(e]

10
11
12
13
14
15
16

1,485.6
366.6
766.9
644.3
455.8

1,170.7
614.7
444.6
703.6
913.9
935.2
729.8
585.8

1,055.5
693.3
858.4

11.6

7.6
17.8

8.5
11.1
11.9
13.3
16.7

7.8
20.5
16.4
14.4
10.4
14.2
12.9

8.6

128
48
43.1
76
41.1
88.0
46.2
26.6
90
44.6
57.0
50.7
56.3
74.3
53.7

100

aThe first eight sites are enclosed environments, with sites 2, 5, and 8 possessing air conditioning systems. The final

eight sites closely resemble partially enclosed kiosks.

1/0 = indoor/outdoor

Source: Caselli et al. 2009
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Massolo et al. (2010) analyzed toluene levels in indoor versus outdoor air at different locations in La
Plata, Argentina. The ratio of I/O toluene levels were 1.10. 1.79, 3.11, and 3.45 for industrial, urban,
semi-rural, and residential locations, respectively. Both indoor and outdoor levels were highest for the
industrialized locations characterized by petrochemical plants and urban locations with heavy vehicular

traffic.

Indoor and in-vehicle toluene levels appear to be affected by seasonal changes (Montgomery and Kalman
1989; Weisel et al. 1992). Shields et al. (1996) compared indoor and outdoor levels of volatile organic
compounds (VOCs) measured in three types of commercial buildings (telecommunication offices, data
centers, and administrative offices) across the United States. The averaged I/O ratios for toluene were

1.6, 4.9, and 2.2 for telecommunication offices, data centers, and administrative offices, respectively.

Ventilation differences between the types of buildings were shown to be a major factor in differences
between /O ratios for toluene and other VOCs at these facilities. Mukerjee et al. (1997) reported the
variation of toluene levels in indoor and outdoor air by season of the year in the Lower Rio Grande
Valley. Median indoor air levels were 4.80 ug/m?* (1.28 ppbv) and median outdoor levels were

3.10 pg/m? (0.824 ppbv) during the spring months. The median levels were reported as 7.70 pg/m?
(2.05 ppbv) for indoor air and 1.15 pg/m? (0.306 ppbv) for outdoor air during the summer months.

In several studies, indoor (home or office) toluene concentrations ranged from 0.7 to 24.2 ppbv (3—

91.0 pg/m?) due mostly to infiltration from auto emissions (Chan et al. 1991b; Hodgson et al. 1991; Kelly
et al. 1993; Michael et al. 1990; Shields and Weschler 1992). Toluene was among the volatile organic
compounds detected in the emissions from sponge rubber carpet cushions (Schaeffer et al. 1996). Indoor
toluene can also originate from household products (paints, thinners, glues, etc.) and smoking. The
indoor toluene concentrations in a household with smoking residents were found to be greater than those

in a nonsmoking household (Montgomery and Kalman 1989).

Volatilization from contaminated tap water is another source of indoor toluene. Efficiencies of toluene
volatilization have been estimated for sources such as the kitchen sink (13—-26%), residential washing
machines (24-99%), residential dishwashers (96-98%), and household showers (61-77%) (Howard and
Corsi 1996, 1998; Howard-Reed et al. 1999; Moya et al. 1999). Toluene was found to be emitted at a rate
0f 40,000 ppb during the charbroiling of hamburger meat over a natural gas fired grill (Schauer et al.
1999).
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Very high concentrations of toluene (53.2-38,038 ppbv or 2.00x10>-143x10° pg/m?) were detected in gas
from municipal landfills in Finland (Assmuth and Kalevi 1992). Toluene can enter nearby homes by

diffusion and pressure-driven transport from soil (Hodgson et al. 1988).

6.4.2 Water

Toluene was one of the most frequently detected volatile organic compounds in a comprehensive survey
conducted by the United States Geological Survey (USGS) from 1985 to 2001 of private and public
groundwater wells used for drinking water (USGS 2006). Toluene was detected in about 10% of

1,676 aquifer samples analyzed at an assessment level of 0.02 ppb. It was detected in about 2% of
3,457 samples analyzed at an assessment level of 0.2 ppb (Carter et al. 2008; USGS 2006). The median
concentration of toluene was 0.032 ppb for all of the samples having positive detections. Toluene was
detected in less than 20% of the samples of groundwater taken from alluvial aquifers beneath Denver,

Colorado, a major urban center, at a maximum concentration of 1 ppb (Bruce and McMahon 1996).

Toluene was detected in 10 out of 931 samples collected from May 1999 to October 2000 in the USGS
National Survey of volatile organic compound contaminants of groundwater and surface water sources
used for drinking water supplies (USGS 2003). It was more often detected in surface water sources (1.9%
detection frequency) as compared to groundwater sources (0.53% detection frequency) and reservoirs

(1.0% detection frequency) at the minimum reporting level of 0.2 ppb.

In addition to the groundwater in the United States, toluene was also found in the groundwater near the
Tehran Automobile Industry waste water treatment plant. Toluene was detected with trichloroethylene,
tetrachloroethylene, and other volatile organic compounds. The concentration of toluene in the
groundwater was not provided (Dobaradaran et al. 2010). Toluene was detected at concentrations of
6,400 and 6,900 ppb in two groundwater sampling wells at a hazardous waste site (Armstrong et al.

1991).

The USGS sampled storm water runoff from 16 cities and metropolitan areas from 11 different states
during the period of 1991-1995 (USGS 2000). Toluene and total xylenes were the most frequently
detected compounds in the collected samples. Toluene was identified in 137 out of 592 samples at levels

ranging from 0.2 to 6.6 ppb.
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6.4.3 Sediment and Soil

No studies were located regarding levels of toluene in typical urban, suburban, or rural soils. Toluene has
been occasionally detected in sediments of surface waters at concentrations averaging 5 ppb (Staples et al.
1985). Toluene was detected in the sediment of lower Passaic River, New Jersey, in the vicinity of
combined sewer overflow outfalls (Iannuzzi et al. 1997). The concentrations ranged from 4.0 to 250 ppb.
In the absence of continuous releases from a waste site, it is expected that toluene would not persist for

long periods in soil, due to its volatility, susceptibility to biodegradation, and water solubility.

6.4.4 Other Environmental Media

The concentration of toluene in commercial foodstuffs has not been thoroughly studied. Although the
data are limited, toluene is not likely to be found in food (CEPA 1999). Toluene was detected in eggs
stored in polystyrene containers that contained toluene (Matiella and Hsieh 1991). Cigarette smoke
releases toluene. Grob (1965) estimated that about 80 ug of toluene is released per cigarette. Toluene
was detected in a variety of household items including automotive products, household cleaners/polishes,
paint-related products, fabric and leather treatments, lubricants and adhesives (Sack et al. 1992). The

levels of toluene in these products varied from 1.8 to 23.3% by weight.

6.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

Available data indicate that for the general population, inhalation of toluene is likely to be the main route
of exposure. Likewise, the main source of toluene is from vehicle exhaust, although the use of paints,
varnishes, lacquers, shoe polishes, and cigarette smoke can contribute to levels indoors and personal
exposures (Alexopoulos et al. 2006). The geometric mean and selected percentiles of toluene in whole-
blood concentrations (in ng/mL) for the U.S. population from the National Health and Nutrition
Examination Survey (NHANES) for 2001-2002, 2003—-2004, and 2005-2006 are provided in Table 6-6
(CDC 2013). In addition, toluene was found in 91% of adipose tissue samples from the National Human
Adipose Tissue survey. The maximum concentration of toluene in the samples was 250 ppb (HSDB

2010).

The total daily exposure of office workers to volatile organic compounds, including toluene, was analyzed
in a study conducted in Milan, Italy. Personal pollutant exposure levels of workers to toluene were
30.9 pg/m? (8.22 ppbv) from the home, 32.5 pg/m? (8.64 ppbv) from the office, and 43.6 ng/m?

(11.6 ppbv) from commuting. It was found that the levels of toluene in the workers in the summer (21.5—
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Table 6-6. Geometric Mean and Selected Percentiles of Blood Toluene in Whole
Blood Concentrations (in mg/L) for the U.S. Population from NHANES

Geometric
mean 50t 75t 9oth 95t Sample
Survey (95% CI) percentile percentile percentile percentile size
Total 2001-2002 0.156 (0.122— 0.160 (0.120— 0.340 (0.260— 0.670 (0.480— 10.06 (0.700— 954
0.198) 0.220) 0.430) 0.950) 10.43)
2003-2004 0.114 (0.100- 0.096 (0.087— 0.220 (0.180— 0.430 (0.380— 0.680 (0.560— 1,336
0.129) 0.110) 0.260) 0.550) 0.880)
2005-2006 0.137 (0.123- 0.120 (0.110— 0.230 (0.200— 0.550 (0.481—- 0.814 (0.702— 3,050
0.152) 0.130) 0.262) 0.640) 0.937)
12-19 Years age 2005-2006 0.110 (0.098- 0.100 (0.094—- 0.170 (0.150— 0.280 (0.240- 0.400 (0.300—- 907
0.122) 0.120) 0.180) 0.310) 0.610)
20-59 Years age 2001-2002 0.156 (0.122— 0.160 (0.120— 0.340 (0.260— 0.670 (0.480— 10.06 (0.700— 954
0.198) 0.220) 0.430) 0.950) 10.43)
20-59 Years age 2003-2004 0.114 (0.100- 0.096 (0.087— 0.220 (0.180— 0.430 (0.380- 0.680 (0.560— 1,336
0.129) 0.110) 0.260) 0.550) 0.880)
20-59 Years age 2005-2006 0.147 (0.133—0.120 (0.110- 0.260 (0.210— 0.594 (0.505- 0.900 (0.730—- 1,505
0.163) 0.137) 0.340) 0.720) 10.10)
260 Years age 2005-2006 0.124 (0.100- 0.114 (0.097- 0.190 (0.167— 0.520 (0.370— 0.720 (0.600— 638
0.154) 0.138) 0.230) 0.600) 0.814)
Males 2001-2002 0.165 (0.130— 0.170 (0.120— 0.360 (0.260— 0.780 (0.580— 10.22 (0.850— 450
0.209) 0.230) 0.520) 10.06) 10.43)
Males 2003-2004 0.128 (0.112— 0.110 (0.096— 0.250 (0.190- 0.500 (0.380— 0.730 (0.590— 647
0.148) 0.130) 0.310) 0.660) 10.10)
Males 2005-2006 0.152 (0.139—- 0.130 (0.120—- 0.280 (0.240— 0.640 (0.550— 0.920 (0.790— 1,441
0.166) 0.140) 0.330) 0.720) 10.10)
Females 2001-2002 0.147 (0.114— 0.150 (0.110— 0.320 (0.240— 0.550 (0.400— 0.810 (0.530— 504
0.190) 0.220) 0.390) 0.740) 10.63)
Females 2003-2004 0.101 (0.086— 0.085 (0.070— 0.190 (0.150— 0.410 (0.340— 0.580 (0.480— 689
0.118) 0.100) 0.230) 0.500) 0.750)
Females 2005-2006 0.124 (0.107- 0.110 (0.097— 0.190 (0.170— 0.470 (0.380— 0.690 (0.550- 1,609
0.144) 0.130) 0.230) 0.550) 0.880)
Mexican/American 2001-2002 0.136 (0.106— 0.140 (0.080— 0.270 (0.210— 0.550 (0.400— 0.990 (0.500— 219
0.176) 0.210) 0.340) 0.980) 10.30)
Mexican/American 2003—2004 0.084 (0.074— 0.076 (0.064— 0.120 (0.100—- 0.280 (0.170— 0.400 (0.310— 253
0.096) 0.091) 0.170) 0.410) 0.620)
Mexican/American 2005-2006 0.110 (0.097— 0.110 (0.096— 0.160 (0.140— 0.240 (0.220— 0.340 (0.290— 737
0.125) 0.120) 0.170) 0.290) 0.460)
Non-Hispanic 2001-2002 0.137 (0.089- 0.150 (0.070— 0.310 (0.200— 0.690 (0.390— 10.15 (0.660— 194
blacks 0.210) 0.200) 0.460) 10.19) 10.69)
Non-Hispanic 2003-2004 0.105 (0.077- 0.095 (0.070— 0.200 (0.130— 0.440 (0.290- 0.620 (0.480— 297
blacks 0.144) 0.130) 0.330) 0.620) 0.710)
Non-Hispanic 2005-2006 0.139 (0.120- 0.120 (0.099- 0.230 (0.190- 0.450 (0.370— 0.670 (0.550— 796
blacks 0.161) 0.140) 0.290) 0.550) 0.830)
Non-Hispanic 2001-2002 0.165 (0.125- 0.170 (0.120- 0.350 (0.270— 0.710 (0.450— 10.14 (0.710— 467
whites 0.217) 0.240) 0.450) 10.12) 10.63)
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Table 6-6. Geometric Mean and Selected Percentiles of Blood Toluene in Whole
Blood Concentrations (in mg/L) for the U.S. Population from NHANES

Geometric
mean 50t 75t 9oth 95t Sample
Survey (95% CI) percentile percentile percentile percentile size

Non-Hispanic
whites
Non-Hispanic
whites

2003-2004 0.123 (0.110— 0.100 (0.092—- 0.240 (0.210— 0.500 (0.400- 0.750 (0.590- 685

0.139) 0.120) 0.280) 0.590) 0.940)
2005-2006 0.144 (0.125- 0.130 (0.110— 0.260 (0.210— 0.600 (0.510— 0.880 (0.760— 1,291
0.166) 0.140) 0.330) 0.710) 0.990)

ClI = confidence interval; NHANES = National Health and Nutrition Examination Survey

Source: CDC 2009
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34.3 pg/m?; 5.72-9.12 ppbv) were lower than levels of toluene in the winter (37.6-53.7 ug/m?; 10.0—

14.3 ppbv). Toluene levels in nonsmokers, as compared to smokers, were about the same. In addition,
personal exposure levels to toluene were much higher from cars (145.7 pg/m?; 38.8 ppbv) than subways
(39.3 ug/m?; 10.4) and buses (44.1 ug/m?; 11.7 ppbv) (Carrer et al. 2000). In a similar study, the personal
exposures of traffic police officers in Milan, Italy to toluene were found to be 42.5 pg/m? (11.3 ppbv).
Mean toluene and BTEX levels were higher in the afternoon shifts (Cattaneo et al. 2010).

Personal exposure was the highest when a vehicle was used as the main source of transportation, when a
vehicle was used in work, when the participants had a roommate who smoked, in cities, near gas stations,
and near busy roads. Levels were 71.6 pg/m*(19.0 ppbv), 72.5 ug/m? (19.3 ppbv), 64.0 pg/m?

(17.0 ppbv), 64.0 ug/m* (17.0 ppbv), 91.9 pg/m? (24.4 ppbv), and 65.5 ug/m? (17.4 ppbv), respectively
(Alexopoulos et al. 2006). Other transportation-related toluene exposure pathways include inhalation of
volatile organic compounds from contaminated air in aircraft cabins (2—135 ppbv for toluene) (Dechow et

al. 1997) and breathing air in long road tunnels (97-167.6 ppbv) (Barrefors 1996).

In an industry-sponsored study, personal inhalation exposures to toluene during the application of nail
lacquers in residences ranged from approximately 1,030 to 2,820 pg/person/day (Curry et al. 1994). The
mean toluene levels measured in the breathing zone during the nail lacquer application ranged from
3,200 to 9,200 pg/m? (850-2,400 ppbv), while the post-application concentrations ranged from below the
detection limits of 200 pg/m® to 1,700 ug/m? (50450 ppbv). Toluene concentrations were monitored

1 hour before application; no toluene was detected in air prior to the nail lacquer application. During-
application, sampling started with the first application and ended when the nails were dry. Post-
application sampling started 1 hour after the nails were dry for the post-application sample group 1, and

2 hours after the nails were dry for the post-application sample group II.

In an occupational study, workers from gasoline service stations had a geometric mean personal exposure
level of 153.1 ppbv (576 ug/m?), and the geometric mean concentration in the workplace air was reported
as 99.3 ppbv (373 pg/m?). Toluene exposure may also occur in printing industry where toluene is used as
a solvent for inks and dyes. Occupational exposure may also occur during paint stripping operations
(Vincent et al. 1994), coke plant operations (Bieniek et al. 2004), and commercial painting (Burstyn and
Kromout 2002). Assuming that a worker inhales 10 m® of air while on the job, and that 50% of the
inhaled toluene is absorbed, a workplace concentration of 53.2 ppmv would correspond to an exposure

level of 1,000 mg/day. The toluene burden of rotogravure (printing process) workers measured with
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personal monitoring tubes was found to be higher, ranging from 56 to 451 mg/m® (15-120 ppmv) than air

concentrations monitored during the workday (Hammer et al. 1998).

Exposure could be higher near heavily traveled roadways or point sources of toluene, and could also be
increased by frequent use of home products containing toluene. Runners who exercise near highways
may be exposed to higher levels of BTEX. Concentrations of toluene in the blood were significantly
increased post-exercise in a running study near a roadway. The runners ran for 20 minutes. The mean
blood concentrations were 1.4 ng/mL (1.4 ppb) pre-exercise and 2.8 ng/mL (2.8 ppb) post-exercise with a
mean increase of 1.4 ng/mL (1.4 ppb). The concentration of toluene in the air was measured as 52 pg/m?
(13.8 ppbv) at the start of the route, 60 ug/m?* (16 ppbv) at the middle of the route, and 52 pg/m?

(13.8 ppbv) at the distant end of the route (Blair et al. 2010). An Alaskan study compared the
concentration of toluene in blood before and after pumping of regular and oxygenated gasoline in
February (Backer et al. 1997). The median concentration of toluene in blood before pumping gasoline
was found to be 0.38 ppb (ng/mL). A greater increase was detected in the blood concentration of toluene
after pumping oxygenated gasoline (0.85 ppb) than after pumping regular gasoline (0.74 ppb). In another
study, the blood of rotogravure workers was tested before and after the use of toluene to clean containers
for the primary printing colors. The concentration of toluene in their blood was found to increase from
0.87 to 4.9 mg/L (Muttray et al. 1999). The average levels of toluene measured in personal air samples of

these workers ranged from 1,115 to 1,358 mg/m? (296-361 ppmv).

Toluene concentrations in the blood after rotogravure industry workers shifts were measured in a study
conducted by Neubert et al. (2001). Concentrations were the highest from printing and assistance

(266.3 pg/L or 266.3 ppb), followed by preparation of printing forms (67.7 ug/L or 67.7 ppb), processing
of printed materials (67.7 pg/L for men, 53.2 pg/L for women or 67.7 ppb, 53.2 ppb), and other areas
(78.1 pg/L or 78.1 ppb for men, 28.0 pg/L or 28.0 ppb for women).

Cigarette smoking may also significantly increase exposure. In a NHANES 2003-2004 study, levels of
toluene among daily smokers were higher than levels of toluene among smokers who smoked less than
daily. The levels were 0.327 ng/mL (0.3227 ppb) for daily smokers and 0.082 ng/mL (0.082 ppb) for
nondaily smokers (Chambers et al. 2011). Assuming inhalation of about 80-100 pg of toluene per
cigarette and 50% absorption (EPA 1983b; Grob 1965), smoking one pack per day would contribute an
absorbed dose of about 1,000 pg/day.
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Toluene is a volatile component of wood smoke. Emission rates of toluene during wood combustion in
home heating units have been reported in the range of 0.15—1 g/kg of wood (Larson and Koenig 1994).
Exposure to toluene can also occur from the combustion of solid biomass fuels. The fuels are used as a
source of domestic energy in developing countries for cooking, etc. Toluene concentrations were much
higher from dung (1.4 pg/m? or 0.37 ppbv) than from mixed fuel (0.5 pg/m? or 0.1 ppbv) (Sinha et al.
2006).

Based on average values of toluene in water, exposure by ingestion of contaminated drinking water is
likely to be relatively small compared to inhalation. In a survey of bottled drinking water sold in Canada,
only 20 (or 11%) of 182 samples analyzed contained measurable amounts of toluene, with an average
concentration of 6.92 ppb and a range of 0.5-63 ppb (Page et al. 1993). Toluene is also known to
volatilize from various household sources of water such as the kitchen sink, dishwashers, washing
machines, and showers; thus, its presence in tap water may ultimately result in inhalation exposure

(Howard and Corsi 1996, 1998; Howard-Reed et al. 1999; Moya et al. 1999).

Exposure to gasoline (which contains toluene) has been estimated for a household using gasoline-
contaminated water (Beavers et al. 1996). In this house, 694 ng/L of toluene was found in the water,
which resulted in a level of 664 ppbv in shower air, and 14.9 ppbv in non-shower air. The total daily dose
for the exposed subject in this household was estimated as 2,273 pg. Approximately 61% of the dose was
due to ingestion and 39% resulted from inhalation from showering and non-showering activities.
Personnel working with various types of fuel may be at a risk of toluene exposure. A Finnish study
determined the mean exposure of gasoline tanker drivers to toluene during loading and delivery to be
0.63—1.9 mg/m? (2.4-7.1 ppmv) (Saarinen et al. 1998). The exposure level of aircraft maintenance
personnel to toluene in raw JP-8 jet fuel vapor was found to be 6.1+1.5 ppmv (6,100+1,560 ppbv) (Smith
et al. 1997).

A number of studies have indicated significant accumulations of toluene in products for human
consumption. For example, escaping gasoline vapors from internal combustion engines used or stored
near olives during the growing, harvesting, storage, and processing steps in the production of virgin olive
oil can cause significant contamination of the product with toluene and other hydrocarbons (Biedermann
et al. 1996). Significant concentrations of toluene have also been measured in 8 of 10 species of fruit
tested in a European study, which showed higher concentrations of toluene in the peel than in the pulp of
the fruit (Goérna-Binkul et al. 1996). Dermal absorption of toluene is not a significant route of exposure.

Uptake of toluene via skin has been estimated to contribute 1-2% of the body burden received following
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whole body (including inhalation) exposure (Brooke et al. 1998). Combinations of solvents, however,
can enhance the dermal penetration of toluene. Methanol enhances the skin absorption of toluene.
Special precautions need to be taken against the skin absorption of toluene when handling paint thinners

that contain methanol (Tsuruta 1996).

Although toluene has been found to be a common contaminant at hazardous waste sites, it is not possible
to estimate human exposure levels that might occur near waste sites without detailed site-specific
information on concentration values in air, water, and soil, and on human intake of these media.
Pathways that might be of significance include inhalation of toluene vapors, ingestion of toluene-
contaminated water (surface water and/or groundwater), volatilization and inhalation from contaminated

water, and dermal contact with toluene-contaminated soil.

6.6 EXPOSURES OF CHILDREN

This section focuses on exposures from conception to maturity at 18 years in humans. Differences from

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility.

Children are not small adults. A child’s exposure may differ from an adult’s exposure in many ways.
Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a
larger skin surface in proportion to their body volume than adults. A child’s diet often differs from that of
adults. The developing human’s source of nutrition changes with age: from placental nourishment to
breast milk or formula to the diet of older children who eat more of certain types of foods than adults. A
child’s behavior and lifestyle also influence exposure. Children crawl on the floor, put things in their
mouths, sometimes eat inappropriate things (such as dirt or paint chips), and may spend more time
outdoors. Children also are generally closer to the ground and have not yet developed the adult capacity

to judge and take actions to avoid hazards (NRC 1993).

Exposures of the embryo or fetus to volatile organic compounds such as toluene may occur if the
expectant mother is exposed to high levels that overwhelm maternal protective mechanisms including
metabolic detoxification and disposition of toluene and possible preferential distribution of toluene to
maternal adipose tissues (see Chapter 2 and Section 3.3). A newborn infant may be exposed by breathing
contaminated air and through ingestion of mother’s milk that can contain small amounts of toluene.
Children may be exposed through accidental ingestion of products containing toluene. Older children and

adolescents may be exposed to toluene in their jobs or hobbies, or through deliberate inhalational solvent
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abuse using behaviors that may include “sniffing”, “bagging”, and/or “huffing” (NIDA 2012; Young
1987). Contact adhesives often contain toluene, heptane, and methyl ethyl ketone. Although toluene is
more toxic than the other ingredients, it evaporates more slowly. Thus, the vapors inhaled when
“sniffing” such adhesives will contain less toluene and should be less toxic than would be expected from

its liquid composition (Midford et al. 1993).

Human epidemiological studies and case reports discussing reproductive and/or developmental toxicity of
toluene in humans have been reviewed. Occupational exposures can occur when workers inhale materials
containing toluene such as paints, paint reducers, and paint thinners (Donald et al. 1991b). Inhalant abuse
during pregnancy poses significant risks to the pregnancy and endangers both the mother and the fetus.
Solvent abuse of toluene for euphoric effects results in exposure levels that equal or exceed those

producing adverse effects in animals.

Toluene was detected in breast milk samples obtained from three mothers residing in the Baltimore,
Maryland area at a median concentration of 0.46 ng/L (Kim et al. 2007). Transfer of toluene to nursing
infants from breast milk is a possible source of toluene exposure; however, since most toluene is rapidly
eliminated from the body (see Sections 3.4.4 and 3.7), this exposure route is expected to be low. Kim et
al. (2007) used indoor air concentrations of toluene and other volatile organic compounds (VOCs) to
estimate the relative exposure dose of these VOCs from inhalation of indoor air as compared to milk
ingestion. Infant exposure from inhalation of air was estimated as 4,550 ng/kg body weight/day, which
was 55 times greater than the estimated dose from milk ingestion (89 ng/kg body weight/day). A PBPK
model has been developed to estimate the amount of chemical that an infant ingests for a given nursing
schedule and daily maternal occupational exposure to 50 ppm toluene for 8 hours (Fisher et al. 1997).

This PBPK model predicted an ingestion rate of 0.460 mg/day for such an infant.

Young children often play close to the ground and frequently play in dirt, which increases their dermal
exposure to toxicants in dust and soil. They also tend to ingest soil and dusts, either intentionally through
pica or unintentionally through hand-to-mouth activity. Children may be orally and dermally exposed to
toluene present as a contaminant in soil and dust, but toluene is not expected to persist for long periods in
soil (in the absence of continuous release) due to its volatility, susceptibility to bacterial degradation, and
water solubility. It has been demonstrated that the toluene adsorbed on soil is absorbed by the body
(Turkall et al. 1991). Toluene in both aqueous solution and vapor phase has also been shown to be
absorbed through the human skin, albeit slowly (Brooke et al. 1998; Dutkiewicz and Tyras 1968; Tsuruta
1989). Toluene has a K, range of 37—178, indicating high mobility in soil (HSDB 2010; Wilson et al.



TOLUENE 341

6. POTENTIAL FOR HUMAN EXPOSURE

1981). Most of the toluene present in the upper layers of the soil is volatilized to air within 24 hours
(vapor pressure of 28.4 mmHg at 25°C) (Balfour et al. 1984; HSDB 2010; Thibodeaux and Hwang 1982).
Loss of toluene from the soil decreases the potential of dermal and oral exposure to children, but its rapid

volatilization results in inhalation being the most likely route of exposure.

Children breathe in more air per kilogram of body weight than an adult. Therefore, a child in the same
micro-environment as an adult may be exposed to more toluene from ambient air. Young children are
closer to the ground or floor because of their height, developmental stage (crawling, etc.), and/or play
behavior. The toluene vapors being heavier than air (vapor density=3.1 g/mL) tend to concentrate near
the ground. The children, therefore, may be at greater risk of exposure than adults during accidental spills

of toluene.

Children may also be exposed to toluene vapors and other hydrocarbons by working with or playing near
sources of gasoline. Children’s exposure also occurs through accidental ingestion and inspiration of the
chemicals into the lungs. Most accident victims are 1- and 2-year-old children and are about evenly
divided between males and females. Most incidents occur in the children’s homes when products are in
their normal storage areas. Child-resistant packaging is recommended (Journal of Environmental Health
1997). Children are also exposed to higher concentrations of toluene in central urban areas with high
traffic density, where children's blood toluene concentrations are, on average, 56% higher than those of

children living in rural areas (Jermann et al. 1989; Raaschou-Nielsen et al. 1997).

Children are also exposed through hobbies and art activities involving glues, adhesives, and paints
(McCann 1992). Abuse of toluene-containing products among young people by intentional inhalation
(e.g., “sniffing”, “huffing”, etc.) is a social and clinical concern (NIDA 2012; Young 1987). Inhalation
exposure via “vaping” of e-cigarettes is also possible, and ongoing research may clarify the extent to

which toluene exposure may occur by this route (CDC 2015; Chatam-Stephens et al. 2014)

6.7 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

In addition to individuals who are occupationally exposed to toluene (see Section 6.5), there are several
groups within the general population that have potentially high exposures (higher than background levels)
to toluene. These populations include individuals living in proximity to sites where toluene was produced
or sites where toluene was disposed, and individuals living near one of the 1,012 NPL hazardous waste

sites where toluene has been detected in some environmental media (HazDat 2007).
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The population most likely to experience high levels of exposure to toluene includes workers in the
printing industry or other industries employing toluene as a solvent. In addition, workers exposed to
gasoline vapors are also likely to have higher than average exposure to toluene. Individuals may also be
exposed to high levels at home in association with the use of toluene-containing consumer products.

Smokers have a considerably higher exposure to toluene than nonsmokers.

Toluene has been frequently identified as a water contaminant in the proximity of hazardous waste sites.
Drinking water sources for populations living near a hazardous waste site containing toluene should be
evaluated for toluene. If groundwater wells are contaminated, exposure to toluene can occur when the
well-water is used for showering, cleaning, cooking, and drinking. Exposure can also occur through

contact with contaminated soil.

A troublesome route of exposure to toluene is through deliberate inhalation of fumes from paint thinners,
gasoline, glues contact adhesives, and aromatic solvents containing toluene. Inhalant abuse can affect
pregnancy outcome (Jones and Balster 1998). Inhalant abuse continues to be a health care problem
among young people (NIDA 2012; Young 1987). Toluene abuse can affect driving (Capron and Logan
2009) and inhibit gap junction currents in human embryonic kidney cells (Del Re and Woodward 2005).

6.8 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the
Administrator of EPA and agencies and programs of the Public Health Service) to assess whether
adequate information on the health effects of toluene is available. Where adequate information is not
available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research
designed to determine the health effects (and techniques for developing methods to determine such health

effects) of toluene.

The following categories of possible data needs have been identified by a joint team of scientists from
ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would
reduce the uncertainties of human health assessment. This definition should not be interpreted to mean
that all data needs discussed in this section must be filled. In the future, the identified data needs will be

evaluated and prioritized, and a substance-specific research agenda will be proposed.
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6.8.1 Identification of Data Needs

Physical and Chemical Properties. The physical and chemical properties of toluene that are
needed to evaluate its behavior in the environment are available (Table 4-2). It does not appear that

further research in this area is necessary.

Production, Import/Export, Use, Release, and Disposal. According to the Emergency
Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required
to submit substance release and off-site transfer information to the EPA. The TRI, which contains this
information for 2015, became available in 2016. This database is updated yearly and should provide a list

of industrial production facilities and emissions.

The available production data of toluene are up to date; however, it is essential that these data be updated

regularly to allow a more accurate determination of the potential for human exposure.

Environmental Fate. Existing information indicates that volatilization, followed by reaction with
hydroxyl radicals in air, is the principal fate process for toluene in the environment (Davis et al. 1979; EC
2003; Hoshino et al. 1978; Howard et al. 1991; Kenley et al. 1973). Although toluene is not a common
contaminant in water, it has been found to occur in both groundwater and surface water near waste sites
(HazDat 2007). Additional studies on the rate of volatilization, degradation, and transport of toluene in
groundwater, surface water, and soils would be useful for assessing potential human exposure near

hazardous waste sites.

Bioavailability from Environmental Media. On the basis of the available data, toluene appears to
be bioavailable when it is released to the environment. Inhalation, oral, and dermal absorption occur due
to toluene solubility in the lipid matrix of the cell membrane (Alcorn et al. 1991). Absorption is rapid and
virtually complete at low exposure concentrations when exposures are oral or respiratory (Alcorn et al.
1991; Carlsson and Ljungqvist 1982; Hjelm et al. 1988). Absorption also occurs through contact with the
skin (Dutkiewicz and Tyras 1968). Additional research on bioavailability of toluene from the

environment does not appear to be needed.

Food Chain Bioaccumulation. The bioconcentration factor for toluene is relatively low due to its

rapid metabolism to more polar molecules with a lower affinity for lipids, and it has little tendency to
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bind to biomolecules (EC 2003; Franke et al. 1994). Bioaccumulation in the food chain is expected to be

low. No data needs are identified.

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of toluene in
contaminated media at hazardous waste sites are needed so that the information obtained on levels of
toluene in the environment can be used in combination with the known body burden of toluene to assess

the potential risk of adverse health effects in populations living in the vicinity of hazardous waste sites.

Further studies on toluene levels in food and soil would be useful, since quantitative data for these media
are limited. The potential exists for toluene to be present in human and bovine milk. In view of the
observation that the highest levels of toluene likely to be encountered by an average citizen occur in the
home, studies that identify the sources of toluene in indoor air would be valuable in reducing or

eliminating this pathway of exposure.

Exposure Levels in Humans. Exposure of the general population to toluene in air has been
monitored for a variety of scenarios (Baltrenas et al. 2011; Bratveit et al. 2004; Ciarrocca et al. 2012;
Deole et al. 2004; EPA 2016; Hamidin et al. 2013; Iovino et al. 2009; Massolo et al. 2010). Amounts of
toluene volatilizing from the household sources such as the kitchen sink, dishwashers, washing machines,
and showers have also been estimated (Howard and Corsi 1996, 1998; Howard-Reed et al. 1999; Moya
1999). Combining these data with appropriate toxicokinetic models of toluene absorption, distribution,
and excretion in humans would allow for improved estimates of exposure levels in humans. Likewise,

more recent data on the ingestion of contaminated drinking water may be useful.

Toluene exposure levels in the workplace is well documented (Bieniek et al. 2004; Burstyn and Kromout
2002; Chen et al. 2002; Guldberg 1992; Hammer et al. 1998; Hiipakka and Samimi 1987; McCann 1992;
McDiarmid et al. 1991; Muijser et al. 1996; Muttray et al. 1999; NCI 1985; Neubert et al. 2001; Paulson

and Kilens 1996; Smith et al. 1997; Tan and Seow 1997; Vincent et al. 1994). Continued monitoring will

help to minimize exposure of workers.

This information is necessary for assessing the need to conduct health studies on these populations.

Exposures of Children. Children may be at a greater risk of inhalation exposure to toluene as they

breathe in more air per kilogram of body weight than an adult. They also spend more time closer to
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ground because of their height, developmental stage, and play behaviors. Toluene vapors, being heavier

than air, tend to concentrate closer to the ground, thereby increasing the risk of exposure for children.

Means of protecting young children from ingestion of home products containing toluene need study and
action. Child-proof containers and clearer warnings to parents should be considered to avoid unwanted
exposure. Studies of other possible sources and routes of exposure to toluene, such as e-cigarettes, may

help to better characterize exposures of children, as well as adults.

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data
Needs: Children’s Susceptibility.

Exposure Registries. The information amassed in the National Exposure Registry facilitates the
epidemiological research needed to assess adverse health outcomes that may be related to exposure to this
substance; however, no exposure registries for toluene were located. Toluene is not currently one of the
compounds for which a sub-registry has been established in the National Exposure Registry. Toluene

will be considered in the future when chemical selection is made for sub-registries to be established.

6.8.2 Ongoing Studies

As part of the Fourth National Health and Nutrition Evaluation Survey (NHANES IV), the Environmental
Health Laboratory Sciences Division of the National Center for Environmental Health, Centers for
Disease Control and Prevention, will be analyzing human blood samples for toluene and other volatile
organic compounds. These data will give an indication of the frequency of occurrence and background

levels of these compounds in the general population.
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7. ANALYTICAL METHODS

The purpose of this chapter is to describe the analytical methods that are available for detecting,
measuring, and/or monitoring toluene, its metabolites, and other biomarkers of exposure and effect to
toluene. The intent is not to provide an exhaustive list of analytical methods. Rather, the intention is to
identify well-established methods that are used as the standard methods of analysis. Many of the
analytical methods used for environmental samples are the methods approved by federal agencies and
organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH). Other
methods presented in this chapter are those that are approved by groups such as the Association of
Official Analytical Chemists (AOAC) and the American Public Health Association (APHA).
Additionally, analytical methods are included that modify previously used methods to obtain lower

detection limits and/or to improve accuracy and precision.

7.1 BIOLOGICAL MATERIALS

Toluene can be determined in biological fluids and tissues and exhaled breath using a variety of analytical
methods. Representative methods are summarized in Table 7-1. Most analytical methods for biological
fluids use headspace gas chromatographic (GC) techniques. Breath samples are usually collected on

adsorbent traps or in sampling bags or canisters, and then analyzed by GC.

Because of its volatility, toluene is lost from biological samples, such as plant and animal tissue and body
fluids, relatively easily. Therefore, samples must be collected and stored with care (e.g., at low
temperatures in sealed containers) to prevent analyte loss. While blood sample collection is more
invasive than breath or urine samples, maintaining the integrity of blood in the collection, transportation,
and storage of the samples is easier. Blood is relatively nonpolar, which results in less diffusion loss

(Chambers et al. 2006).

Headspace techniques are usually used to separate toluene from biological fluids such as blood and urine.
The headspace method involves equilibrium of volatile analytes such as toluene between a liquid and
solid sample phase and the gaseous phase. The gaseous phase is then analyzed by GC. There are two
main types of headspace methodology: static (equilibrium) headspace and dynamic headspace which is
usually called the "purge and trap" method (Seto 1994). The static headspace technique is relatively
simple, but may be less sensitive than the purge-and-trap method. The purge-and-trap method, while
providing increased sensitivity, requires more complex instrumentation and may result in artifact

formation (Seto 1994). Packed columns and capillary columns are used for chromatographic separation,
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Table 7-1. Analytical Methods for Determining Toluene in Biological Materials

Sample
Analytical detection Percent
Sample matrix Preparation method method limit recovery Reference
Blood Lyse; extraction with carbon GC/FID No data Nodata  Benignus et al.
disulfide 1981
Blood Purge and trap No data 7.5 ug/L Nodata  Cocheo et al. 1982
Whole blood Purge and trap GC/MS 0.088 ug/L  91-147 Ashley et al. 1992
Blood Purge and trap capillary 50 ng/L 50 Fustinoni 1996
GCI/FID
Blood Headspace extraction capillary 0.04 ymol/L No data Schuberth 1994
GC/ITD
Blood Headspace SPME GC/MS 24 pg/mL  Nodata  Chambers et al.
2006
Mother’s milk Purge and trap capillary No data 63 (chloro- Michael et al. 1991
GC/FID benzene) Pellizzari et al. 1982
Urine Purge and trap capillary 50 ng/L 59 Fustinoni 1996
GCI/FID
Urine Heated headspace capillary 1 ng/mL 42.3 Lee et al. 1998b
extraction GC/FID
Urine Headspace (Purge and GC/PID 15 ng/L No data Skender et al. 2004
Trap)
Biofluids Headspace extraction GC/FID No data No data  Suitheimer et al.
1982
Adipose tissue Evaporation at 150°C into  GC/FID No data 88-112 Carlsson and
nitrogen, direct gas injection Ljungquist 1982
Brain tissue Extraction with carbon GC/FID No data No data Benignus et al.
disulfide; homogenization; 1981
centrifugation
Breath Collection in modified capillary 1 nmole No data Dyne et al. 1997
Haldane-Priestly tube; GC/MS
transfer to adsorption tube;
thermal desorption
Breath Collection via spirometer capillary low ug/m3  80-136 Thomas et al. 1991
into passivated canisters GC/MS
Breath Collection via spirometer capillary ~2 ug/m3 91-104 Thomas et al. 1992
into 1.8°L passivated GC/MS
canisters
Breath Collection via spirometer capillary 3 pg/m3 Nodata  Riedel et al. 1996
onto charcoal traps; GC/MS-
microwave desorption SIM

FID = flame ionization detector; GC = gas chromatography; ITD = ion trap detection; MS = mass spectrometry;
SIM = selected ion monitoring
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followed by identification and quantitation using various detectors; flame ionization detection (FID),
photoionization detection (PID), and mass spectrometry (MS) are used most often. Other sample
preparation methods have been used, but less frequently. Solvent extraction permits concentration,
thereby increasing sensitivity, but the extraction solvent can interfere with analysis. Direct aqueous

injection is a very rapid method, but sensitivity is low and matrix effects can be a serious problem.

In addition, the dynamic headspace purge-and-trap GC method with PID was utilized for the
determination of toluene in urine samples obtained from participants of Zagreb, Croatia. The detection

limit was 15 ng/L (Skender et al. 2004).

Headspace solid phase microextraction (SPME) is a relatively new alternative method to detect nonpolar
species in the blood. Chambers et al. (2006) utilized this method, along with GC/MS to detect BTEX in
the blood. The authors also improved the technique by minimizing contamination from the vacutainers,

disposable syringes and vial septa. The limit of detection for toluene was 25 pg/mL (Chambers et al.

2006).

A sensitive and reliable method for identification and quantitation of toluene in samples of whole blood
taken from humans following exposure to volatile organic compounds has been developed by researchers
at the Centers for Disease Control and Prevention (Ashley et al. 1992, 1996). The method involves
purge-and-trap of a 10 mL blood sample with analysis by capillary GC/MS. Anti-foam procedures were
used, as well as special efforts to remove background levels of volatile organic compounds from reagents
and equipment (Ashley et al. 1992). The method is sensitive enough (ppt levels) to determine background
levels of volatile organic compounds in the population and provides adequate accuracy (91-147%
recovery) and precision (12% relative standard deviation [RSD]) for monitoring toluene in the population.
Most modern purge and trap methods provide detection limits in the ppt range for toluene in both blood

and urine (Ashley et al. 1992; Fustinoni et al. 1996).

Few methods are available for the determination of toluene in other body fluids and tissues. Toluene may
be extracted from biological materials using solvents such as carbon disulfide (Benignus et al. 1981);
homogenization of tissue with the extractant and lysing of cells improves extraction efficiency. Care
must be taken to avoid loss of low-boiling compounds. Highly purified solvents may be used to minimize
problems with solvent impurities. A modified dynamic headspace method for urine, mother’s milk, and
adipose tissue has been reported (Michael et al. 1980). Volatiles swept from the sample are analyzed by

capillary GC/FID. Acceptable recovery was reported for model compounds, but detection limits were not
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reported (Michael et al. 1980). Supercritical fluid extraction using pure carbon dioxide or carbon dioxide
with additives has good potential for the extraction of organic analytes such as toluene from biological

samples.

Sensitive, reliable methods are available for measuring toluene in breath. Exhaled breath is collected in
modified Haldane-Priestly tubes (Dyne et al. 1997), into passivated canisters (Thomas et al. 1992), or
directly onto adsorbent traps (Riedel et al. 1996). The detection limits are in the low pg/m?® range (Riedel
et al. 1996; Thomas et al. 1991, 1992); accuracy, where reported, is good (=80%) (Riedel et al. 1996;
Thomas et al. 1991, 1992).

Representative methods for determination of biomarkers of exposure to toluene are shown in Table 7-2.
Measurement of toluene in blood (Kawai et al. 1993), urine (Kawai et al. 1996) and exhaled air (Lapare et
al. 1993) provide reliable markers of exposure to toluene. Measurement of toluene metabolites is also
utilized for monitoring toluene exposure in humans. Hippuric acid is formed in the body by the

metabolism of toluene, and it is the glycine conjugate of benzoic acid.

High performance liquid chromatography (HPLC) with ultraviolet (UV) detection is usually used for
determination of metabolites in urine. Currently, ACGIH (2010, 2013) recommends measuring ortho-
cresol levels in the urine at the end of the workshift to assess toluene levels in exposed workers (along
with toluene levels in urine at the end of a workshift and toluene levels in blood immediately prior to the
last shift of a workweek). Previously, the level of hippuric acid in urine at the end of a workshift was
recommended as a biomarker of exposure, but this recommendation was withdrawn because background
urinary hippuric acid from consumption of benzoate in foods and beverages is expected to mask
contributions from workplace exposure to toluene, especially at concentrations below 50 ppm (ACGIH
2001, 2010). Other metabolites such as benzylmercapturic acid (BMA) (Inoue et al. 2002, 2004; Maestri
et al. 1997) or S-p-toluylmercapturic acid (Angerer et al. 1998a, 1998b) may also be measured; however,
their usefulness may be limited by variability among individuals. See Section 3.8 (Biomarkers of

Exposure and Effect) for more information.

Detection of hippuric acid was done by 'H NMR Spectroscopy after the samples were prepared by adding
deuterium oxide (D,0) and sodium trimethylsilyl [2,2,3,3-2H4] propionate (TSP) to urine samples of glue
abusers (glue sniffers). Toluene is reported as the main component in glue. Hippuric acid levels were the

highest after glue sniffing (Kwon et al. 2011).
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Table 7-2. Analytical Methods for Determining Biomarkers of Toluene in
Biological Samples

Sample Analytical Sample Percent

matrix Preparation method method detection limit recovery Reference
Blood Headspace GC No data No data Kawai et al. 1993
(toluene)

Urine Headspace GC/FID 2 ug/L No data Kawai et al. 1996
(toluene)

Urine (HA) Extraction with ethyl HPLC/UV 30 mg/L No data NIOSH 1984b

acetate; evaporation;
redissolve in water

Urine Extraction with MTBE, HPLC 0.1 mmol 101 Tardif et al. 1989
elution with phosphate
buffer/methanol/
formaldehyde
Urine Hydrolysis; solvent HPLC/UV 0.5 mg/L 952 Kawai et al. 1996
(o-cresol) extraction
Urine Addition of deuterium oxide "H NMR No data No data Kwon et al. 2011
and TSP to samples
Urine Adsorbent column cleanup; HPLC/FI 0.5 pg/L No data Maestri et al. 1997
(BMA) derivatization
Breath Collection in Tedlar bags GC/FID No data No data Lapare et al. 1993

aExtraction efficiency.

BMA = benzylmercapturic acid; FID = flame ionization detector; Fl = fluorescence detector; GC = gas
chromatography; HA = hippuric acid; HPLC = high performance liquid chromatography; MTBE = methyl tertiary butyl
ether; UV = ultraviolet detection
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7.2 ENVIRONMENTAL SAMPLES

Methods are available for determining toluene in a variety of environmental matrices. A summary of
representative methods is shown in Table 7-3. Validated methods, approved by agencies and
organizations such as EPA, ASTM, APHA, and NIOSH, are available for air, water, and solid waste
matrices. GC is the most widely used analytical technique for quantifying concentrations of toluene in
environmental matrices. Various detection devices used for GC include FID, MS, and PID. Because of
the complexity of the sample matrix and the usually low concentrations of volatile organic compounds in
environmental media, sample preconcentration is generally required prior to GC analysis. Air samples
may be collected and concentrated on adsorbent or in canisters for subsequent analysis. Methods suitable
for determining trace amounts of toluene in aqueous and other environmental media include three basic
approaches to the pretreatment of the sample: gas purge-and-trap technique, headspace gas analysis, and
extraction with organic solvent. Purge-and-trap is the most widely used method for the isolation and
concentration of volatile organic compounds in environmental samples (Lesage et al. 1993). The purge
and trap technique offers advantages over other techniques in that it allows facile isolation and

concentration of target compounds, thereby improving overall limits of detection and recovery of sample.

Sampling techniques for air include collection in sample loops, on adsorbent, in canisters, and by
cryogenic trapping. The analysis is normally performed by GC/FID, GC/PID, or GC/MS. Detection
limits depend on the amount of air sampled, but values in the ppt range have been reported (Dewulf and

Van Langenhover 1997).

BTEX was monitored in the urban air of nine sites by use of GC/MS. Toluene concentrations were the
highest among the compounds. The limit of detection was also highest for toluene at 1 ug/m* (Nicoara et

al. 2009).

Toluene may be determined in occupational air using collection on adsorbent tubes, solvent desorption
and GC/FID analysis (NIOSH 1994). Detection limits depend upon the amount of air sampled; accuracy
is very good (11.4% bias) (NIOSH 1994).

Campos-Candel et al. (2009) compared HPLC-fluorescence (HPLC-FL) to GC/MS measurements of
toluene in air samples. The limit of detection for the samples in HPLC-FL method was 0.5 mg/L or
5 pg/sample and the limit of detection for GC/MS was 0.6 pg/s or 0.08 pg/sample. The GC/MS was

deemed to be more sensitive.
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Table 7-3. Analytical Methods for Determining Toluene in Environmental

Samples
Sample
Sample Analytical detection  Percent
matrix Preparation method method  limit recovery Reference
Workplace air Sorption on activated carbon; GC/FID 0.01 mg +11.42 NIOSH 1994
extraction with carbon Method 1501
disulfide
Workplace air Sorption on activated charcoal HPLC 0.5mg/L or5 Nodata Campos-Candel et
or Radiello diffusive samplers Mg/sample al. 2009

Workplace air Sorption on activated charcoal GC/MS 0.6 pg/sor Nodata Campos-Candel et

or Radiello diffusive samplers 0.08 al. 2009
Mg/sample
Indoor air Solid phase microextraction  GC/MS 0.004 mg/m3 No data Gorlo et al. 1999
(SPME)
Air Sorption onto Tenax®; solvent GC/MS <0.88 ppbv  111-163 Crist and Mitchell
extraction; thermal desorption 1986
Air Sorption onto Tenax®; thermal GC/MS No data 93-94 EPA 1988a
desorption Method TO-1
Krost et al. 1982
Air Collection in passivated GC/MS low ppb No data EPA 1988b
canisters Method TO-14
Air Collection on multisorbent GC/MS No data No data EPA 1997a
tubes; thermal desorption Method TO-17
Air Collection in sorbent sampler GC/FID 0.01 mg/ 94 USEPA, EMMI 1997
tubes sample NIOSH 1500
Air Sorption on activated GC/FID 0.01 No data USEPA, EMMI 1997
charcoal; extraction with mg/sample NIOSH 4000
carbon disulfide
Air Solid phase membrane GC/MS 0.0001 No data Esteve-Turrillas et
samplers (SPMS) pg/sampler al.2009
Air Preconcentration in SKS glass GC/MS 1 ug/m3 No data Nicoara et al. 2009
tube with charcoal, desorption
Stack gas Sorption onto Tenax®; thermal GC/MS No data 50-150 USEPA, EMMI 1997
effluents desorption OSW 5041A
Vehicle Direct GC/FID 0.5 ppb No data Dearth et al. 1992
exhaust
Drinking water Purge and trap capillary  0.01- 98-99 DeMarini et al. 1991
GC/PID 0.02 ppb EPA 1991a
Method 502.2
Drinking water Purge and trap GC/PID 0.02 ppb 94 EPA 1991b
Method 503.1
Drinking water Purge and trap capillary  0.08- 100-126 EPA 1992a
GC/MS 0.11 ppb Method 524.2
Water/ Purge and trap GC/PID 0.2 ppb 77 EPA 1982a

waste water Method 602
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Table 7-3. Analytical Methods for Determining Toluene in Environmental

Samples
Sample
Sample Analytical detection  Percent
matrix Preparation method method  limit recovery Reference
Water/ Purge and trap GC/MS 6.0 ppb 98-101 EPA 1982b
waste water Method 624
Water/ Addition of isotopically labeled GC/MS 10 ppb No data EPA 1984
waste water  analog; purge and trap Method 1624
Industrial Purged with inert gas onto GC/IDMS 20 ppb No data Colby et al. 1980
effluents Tenax®; thermally desorbed
Drinking Purged with inert gas onto GC/MS 1 ppb 74-107 Michael et al. 1988
water, waste Tenax®; thermally desorbed,
water cryofocused
Groundwater Solid-phase microextraction = GC/FID 2 ppb No data Arthur et al. 1992
Water Purge and trap GC/MS 0.047 ppb 106 USEPA, EMMI 1997
APHA 6210-B
Water Direct aqueous injection GC 1.0 ppm No data USEPA, EMMI 1997
ASTM D3695
Water Purge and trap GC 0.5 ppb 80-120 USEPA, EMMI 1997
APHA 6220-B
Water Dilution in appropriate solvent FS 2.1 ppm No data USEPA, EMMI 1997
ASTM D4763
Water Static mode sampling IMS No data No data Wan etal. 1998
Groundwater, Purge and trap GC/MS 5 ppb 47-150 USEPA, EMMI 1997
aqueous OoSw8240B-W
sludges,
waste
solvents, acid
and caustic
liquors, soils,
sediments
Groundwater, Purge and trap or direct GC/EC or 0.01 ppb 99 USEPA, EMMI 1997
aqueous injection GC/PID OSW 8021B-PID
sludges,
waste
solvents, acid
and caustic
liquors, soils,
sediments
Solid waste Purge-and-trap capillary ~ 0.01 ppb 99 EPA 1996a
GC/PID Method 8021B
Solid waste  Purge-and-trap GC/PID 0.08- 100-102 EPA 1996b
0.11 ppb Method 8260B
Solid waste  Static Headspace sampling GC/MS 0.72 ng/L 101 Bernado et al. 2009

(HS)
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Table 7-3. Analytical Methods for Determining Toluene in Environmental
Samples
Sample
Sample Analytical detection  Percent
matrix Preparation method method  limit recovery Reference
Soil Methanol extraction; SPE capillary  sub-ppm >90 Meney et al. 1998
GC
Sail Filter immunoas 7 ppm No data EPA 1996¢
(screening) say Method 4030
Soils and Headspace extraction GC/PID 0.2 ppb 46-148 USEPA, EMMI 1997
sediments OSW 8020A
Soils and Headspace extraction GC/FID No data No data USEPA, EMMI 1997
other solid GC/PID/ OSW 5021
matrices ELCD
Solid waste  Purge and trap or direct GC/MS 0.11 ppb 102 USEPA, EMMI 1997
matrices aqueous injection or OSW 8260B
concentration by azeotropic
distillation or automated static
headspace
Plant cuticle = Headspace extraction GC/FID No data No data Keymeulen et al.
1997
Food Headspace extraction, 1 hour GC No data No data Walters 1986
at 90°C
Foods Purge and trap capillary 8 ppb 54-76° Heikes et al. 1995
GC/MS
Bottled water Headspace extraction GC/MS 0.5-1 ppb No data Page et al. 1993
Olive oll Homogenization; headspace capillary = No data No data Biedermann et al.
GC/MS 1995

@Reported accuracy.
bIntralaboratory accuracy. Single lab accuracy is reported as 100-106% recovery.

ELCD = electrolytic conductivity detector; FID = flame ionization detector; FS = fluorescence spectroscopy; GC =
gas chromatography; IDMS = isotope dilution mass spectrometry; MS = mass spectrometry; PID = photoionization
detector; SPE = solid-phase extraction
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Esteve-Turrillas et al. (2009) developed a versatile, easy, and rapid atmosphere monitor (V-E-R-A-M) for
the detection of BTEX in the air. Solid-phase membrane samplers (SPMS) and HS-GC-MS were utilized
for the study. The limit of detection was determined to be 0.001 pg/sampler.

Older studies have suggested that passive samplers were utilized in the detection of toluene, but
performance data on those samplers were unavailable (Ballesta et al. 1992; Periago et al. 1997). Newer
studies demonstrate the efficacy of these samplers. SPME, a passive sampling method, was utilized to
detect toluene in the indoor air in freshly renovated flats. The detection limit was 0.004 mg/m? (Gorlo et

al. 1999).

Gas purge and trap is the most widely used method for the isolation and concentration of volatile organic
compounds in environmental samples (Lesage et al. 1993). The purge and trap technique offers
advantages over other techniques in that it allows facile isolation and concentration of target compounds,
thereby improving overall limits of detection and recovery of sample. Detection limits of less than 1 pg
of toluene per liter of sample have been achieved. Very low detection limits for drinking water are
reported for the purge and trap method with GC/PID (0.01-0.02 ppb) (DeMarini et al. 1991, EPA 1991a).
Accuracy is very good (94-99% recovery) (DeMarini et al. 1991, EPA 1991a). While the analytical
method is selective, confirmation using a second column or GC/MS is recommended (EPA 1992a). Good
sensitivity (0.08-0.11 ppb) and accuracy (100—126% recovery) can also be obtained using capillary
GC/MS detection (EPA 1992a). Purge-and-trap methodology may be applied to waste water as well
(EPA 1982a, 1982b, 1984). Sensitivity is in the low ppb range and recovery is good (77-101%) (EPA
1982a, 1982b, 1984).

Ion mobility spectrometry (IMS) was used in the detection of BTEX compounds in water. Static mode
sampling determined the toluene concentration of 0.101 mg/L in purified water, which resulted in a

headspace concentration of 2.75 pg/m?® (Wan et al. 1998).

Soil, sediment, and solid waste are more difficult to analyze. Volatilization during sample handling and
homogenization can result in analyte loss. Purge-and-trap methods with capillary GC/PID or GC/MS
analysis provide detection limits of approximately 0.5 ppm for wastes and 5 pg/g for soil and sediment
(EPA 1982a, 1982b, 1984). Static headspace sampling (HS), along with GC-MS, was utilized in a study
conducted by Bernardo et al. (2009) to effectively detect toluene in solid residues (waste) produced from

the co-pyrolysis of plastics and pine biomass. The detection limit was 0.72 ng/L.
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No methods were found for the determination of toluene in fish and biota. Few methods are available for
the determination of toluene in food. A purge and trap extraction method is available for determining
toluene in a variety of foods. The quantitation limit is 8 ppb; single lab recovery is very good (100—
106%) and precision is good (9.8-25% RSD). Both intra- and inter-laboratory studies were conducted,
and precision was found to be <25% RSD (Heikes et al. 1995).

7.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the
Administrator of EPA and agencies and programs of the Public Health Service) to assess whether
adequate information on the health effects of toluene is available. Where adequate information is not
available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research
designed to determine the health effects (and techniques for developing methods to determine such health

effects) of toluene.

The following categories of possible data needs have been identified by a joint team of scientists from
ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would
reduce the uncertainties of human health assessment. This definition should not be interpreted to mean
that all data needs discussed in this section must be filled. In the future, the identified data needs will be

evaluated and prioritized, and a substance-specific research agenda will be proposed.

7.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect. Although toluene and its
metabolites can be measured in body fluids using a number of techniques (Kawai et al. 1993, 1996;
NIOSH 1984a), some of the metabolites have limited value as biomarkers. A number of common food
materials produce the same metabolites; thus, measurement of toluene metabolites can be used to confirm
a known exposure but cannot be used to determine whether or not exposure occurred in a poorly defined
situation. It is also very difficult to quantify the magnitude of exposure from levels of either toluene or its
metabolites in biological samples. Currently, ACGIH (2010, 2013) recommends using a combination of
three biological exposure indices (BEIs®) to assess exposure of workers to toluene in the workplace:

(1) ortho-cresol levels in the urine at the end of the workshift; (2) toluene levels in urine at the end of a
workshift; and (3) toluene levels in blood immediately prior to the last shift of a workweek). The specific
values for these BEIs® correspond to concentrations likely to be observed in individuals exposed by

inhalation to 20 ppm, the current ACGIH 8-hour TWA Threshold Limit Value (TWA-TLV®) for
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occupational exposure to toluene (ACGIH 2010). A technique that could more accurately quantify

exposure to toluene in biological fluids may be useful.

Exposure. Additional research to develop more sensitive methods for analysis of toluene and metabolites

may be useful to increase sensitivity of exposure assessment.

Effect. It is difficult to monitor the effects of toluene exposure. MRI and BAER evaluations of the brain
have some value in determining the neurological damage resulting from long-term exposures to high
levels of toluene, but have no known value for determining the effects of low-level and/or short-term

exposures.

Methods for Determining Parent Compounds and Degradation Products in Environmental
Media. There are methods available for the determination of toluene and its metabolites in
environmental samples. Sensitive techniques for air, drinking water, and waste water allow detection of
toluene at low levels (Bernado et al. 2009; Campos-Candel et al. 2009; Wan et al. 1998). These
techniques are adequate to measure both background toluene levels and the levels of toluene in
environmental media that could cause health effects. However, when toluene is present in combination
with other volatile materials, interference from the companion volatiles often raises the detection limit
and decreases the accuracy and precision of the technique. Improved methods for separation of toluene

from other volatiles would be useful.

Research on measuring the levels of metabolites in soil and water would be valuable especially in
studying the end products of microbial degradation. Few methods are available for monitoring toluene in
foods; reliable methods are needed for evaluating the potential for human exposure that might result from

toluene ingestion.

7.3.2 Ongoing Studies

The Environmental Health Laboratory Sciences Division of the National Center for Environmental
Health, Centers for Disease Control and Prevention, is developing methods for the analysis of toluene and
other phenolic compounds in urine. These methods use high-resolution gas chromatography and

magnetic sector mass spectrometry, which give detection limits in the low parts per trillion (ppt) range.
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MRLs are substance-specific estimates that are intended to serve as screening levels. They are used by
ATSDR health assessors and other responders to identify contaminants and potential health effects that

may be of concern at hazardous waste sites.

ATSDR has derived an acute-duration inhalation MRL of 2 ppm (7.6 mg/m?) for toluene based on a

LOAEL for minimally adverse neurological effects in a susceptible human population (Little et al. 1999).

ATSDR has derived a chronic-duration inhalation MRL of 1 ppm (3.8 mg/m?®) for toluene based on a
NOAEL for neurological effects in humans in series of studies by the same group of investigators

(Schéper et al. 2003, 2004, 2008; Seeber et al. 2004, 2005; Zupanic et al. 2002)

ATSDR has derived an acute-duration oral MRL of 0.8 mg/kg/day for toluene based on a LOAEL for
neurological effects in rats (Dyer et al. 1988).

ATSDR has derived an intermediate-duration oral MRL of 0.2 mg/kg/day for toluene based on a NOAEL
for immune depression in mice (Hsieh et al. 1989, 1990a, 1991).

The International Agency for Research on Cancer (IARC) has classified toluene as a Group 3 carcinogen
(not classifiable as to its carcinogenicity to humans) based on the evidence of carcinogenicity is
inadequate in humans and inadequate or limited in experimental animals (IARC 2013). The World
Health Organization (WHO) has not established any air quality guidelines but have concluded that further
investigation would be needed before it was clear whether there was sufficient evidence to warrant their
inclusion in the guidelines at present (WHO 2010). WHO has established a health-based drinking water
guideline for toluene at 0.7 mg/L (WHO 2011).

The EPA and ACGIH also state that there are inadequate data on which to classify toluene in terms of its
carcinogenicity in humans or animals (ACGIH 2013; IRIS 2007). Therefore, toluene is assigned the
cancer category A4 (not classifiable as a human carcinogen) by ACGIH and Group D (not classifiable as
to human carcinogenicity) by EPA (ACGIH 2013; IRIS 2007). The National Toxicology Program (NTP)

has not classified toluene as a carcinogen (NTP 2016).
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The EPA's reference concentration (RfC) for toluene is 5 mg/m® and the EPA's reference dose (RfD) is
0.08 mg/kg/day (IRIS 2007).

OSHA sets permissible exposure limits (PELSs) to protect workers against adverse health effects resulting
from exposure to hazardous substances. The PELs determined for hazardous substances are enforceable,
regulatory limits on allowable air concentrations in the workplace. OSHA requires employers of workers
who are occupationally exposed to these hazardous substances to institute engineering controls and work
practices to reduce and maintain employee exposure at or below the PEL. An employer must ensure that
an employee’s exposure to toluene in any 8-hour work shift of a 40-hour week does not exceed the 8-hour
TWA of 200 ppm (OSHA 2013b). The acceptable ceiling concentration for toluene that shall not be
exceeded at any time during an 8-hour shift is 300 ppm (OSHA 2013b). The acceptable maximum peak
above the ceiling for an 8-hour shift is 500 ppm for 10 minutes (OSHA 2013b).

The ACGIH (2013) recommends an 8-hour TWA Threshold Limit Value (TLV) of 20 ppm toluene to
protect against visual impairment and female reproductive effects including pregnancy loss. NIOSH has
established a recommended exposure limit (REL) of 100 ppm that should not be exceeded at any time
(NIOSH 2011). NIOSH has also established a short-term exposure limit (STEL) of 150 ppm and an
immediately dangerous to life or health (IDLH) value of 500 ppm (NIOSH 2011).

Toluene is regulated as a hazardous air pollutant (EPA 2014a) and is subject to the emission limitations

for various processes and operations in the synthetic organic chemicals manufacturing industry.

The American Industrial Hygiene Association (AIHA) and the Department of Energy (DOE) have
established values for responding to potential releases of airborne toluene for use in community
emergency planning. The values established by AIHA (2013) and the DOE (2012) are the Emergency
Response Planning Guidelines (ERPGs-1, -2, -3) and Protective Active Criteria (PAC-1, -2, and -3),
respectively. The ERPG-1, -2, and -3 values are 50, 300, and 1,000 ppm, respectively, and the PAC-1, -2,
and -3 values are 200, 1,200, and 4,500 ppm, respectively, represent increasing severity of effects (mild,

irreversible, and life threatening, respectively) for a 1-hour exposure (AIHA 2013; DOE 2012).

Toluene is listed as a chemical that must meet the requirements of Section 313 of Title III of the
Superfund Amendments and Reauthorization Act (SARA) (EPA 1996a). Title III of SARA, also known
as “The Emergency Planning and Community Right-to-Know Act of 1986,” requires owners and

operators of certain facilities that manufacture, import, process, or otherwise use the chemicals on this list
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to report annually any release of those chemicals to any environmental media over a specified threshold

level (EPA 20139).

Toluene has been designated as a hazardous substance pursuant to the Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA) of 1980 (EPA 1995). The statutory source for
this designation is Section 311(b)(4) of the Clean Water Act (CWA), Section 307 (a) of the CWA,
Section 112 of the Clean Air Act (CAA), and Section 300 of the Resource Conservation and Recovery
Act (RCRA) (EPA 2013f). The owner and operator of any facility that produces, uses, or stores a
CERCLA hazardous substance is required to immediately report releases to any environmental media, if
the amount released is equal to or exceeds the specified “reportable quantity” assigned to the substance.

The reportable quantity for toluene is 1,000 pounds (454 kg) (EPA 2013g).

Because of its potential to cause adverse health effects in exposed people, toluene is also regulated by the
drinking water standards set by the EPA. Toluene generally gets into drinking water by improper waste
disposal or leaking underground storage tanks. In order to protect humans from the risk of developing
adverse health effects from exposure to toluene through drinking water, the EPA Drinking Water
Regulations and Health Advisories (EPA 2012) lists the maximum contaminant level (MCL) and the
maximum contaminant level goal (MCLGQG) for toluene as 1 mg/L. The FDA set a limit of 1 mg/L in

bottled water (FDA 2013).

Under the Toxic Substances Control Act (TSCA), toluene is on the list of chemicals that manufacturers
and importers must report for each plant site at which they manufactured or imported toluene during the
reporting period specified (EPA 20131). In accordance with the Federal Hazardous Substances Act
(FHSA), manufacturers are required to include special warning labels on some products containing
toluene (CPSC). If a product contains >5% toluene by weight, labels of “Danger”, “Vapor harmful”, and
“Poison” with a skull and crossbones must be used. If a product contains >10% toluene by weight, labels

must also include “Harmful or fatal if swallowed” and “Call physician immediately”.

The international and national regulations, advisories, and guidelines regarding toluene in air, water, and

other media are summarized in Table 8-1.
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Toluene

Agency Description Information Reference
INTERNATIONAL
Guidelines:
IARC Carcinogenicity classification Group 32 IARC 2013
WHO Air quality guidelines Group 2P WHO 2010
Drinking water quality guidelines 0.7 mg/Le WHO 2011
NATIONAL
Regulations and
Guidelines:
a. Air
ACGIH TLV-TWA 20 ppm ACGIH 2013
AlHA ERPG-1de 50 ppm AIHA 2013
ERPG-2 300 ppm
ERPG-3 1,000 ppm
DOE PAC-1f 200 ppm DOE 2012
PAC-2 1,200 ppm
PAC-3 4,500 ppm
EPA AEGL-19 EPA 2013c
10-minutes 200 ppm
30-minutes 200 ppm
60-minutes 200 ppm
4-hours 200 ppm
8-hours 200 ppm
AEGL-29
10-minutes 3,1000 ppm"
30-minutes 1,600 ppmbh
60-minutes 1,200 ppm
4-hours 790 ppm
8-hours 650 ppm
AEGL-39
10-minutes 13,000 ppmi
30-minutes 6,100 ppm"
60-minutes 4,500 ppmh
4-hours 3,000 ppm"
8-hours 2,500 ppm"
Hazardous air pollutant Yes EPA 2014a
42 USC 7412
NAAQS No data EPA 2014d
NIOSH REL 100 ppm NIOSH 2011
STEL 150 ppm
IDLH 500 ppm
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Toluene

Agency Description Information Reference
NATIONAL (cont.)
OSHA PEL (8-hour TWA) for general industry 200 ppm OSHA 2013b
Acceptable ceiling concentration 300 ppm _2|_9 CIFE ;910-100(1
Acceptable maximum peak above the 500 ppm for able Z-
acceptable ceiling concentration for an 10 minutes
8-hour shift
Highly hazardous chemicals No data OSHA 2013a
29 CFR 1910.119,
Appendix A
b. Water
EPA Designated as hazardous substances Yes EPA 2013d
in accordance with Section 311(b)(2)(A) 40 CFR 116.4
of the Clean Water Act
Drinking water contaminant candidate No data EPA 2009a
list 74 FR 51850
Drinking water standards and health EPA 2012
advisories
MCL 1 mg/L
MCLG 1 mg/L
Health advisory for 1 day for 10-kg 20 mg/L

child

Health advisory for 10 days for 10-kg 2 mg/L

child
DWEL

National primary drinking water
standards

MCL

Potential health effects from long-
term exposure above the MCL

Common sources of contaminant in
drinking water

Public Health Goal

National recommended water quality
criteria: human health for the
consumption of (at 104 risk)

Water + organism

Organism only
Reportable quantities of hazardous

substances designated pursuant to
Section 311 of the Clean Water Act

3 mg/L
EPA 2009b

1 mg/L

Nervous system,
kidney, or liver
problems

Discharge from
petroleum
factories

1 mg/L
EPA 2014e

1.3 mg/L
15 mg/L

1,000 pounds EPA 2013f
40 CFR 117.3
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Toluene

Agency Description Information Reference
NATIONAL (cont.)
c. Food
FDA Bottled water 1 mg/L FDA 2013
21 CFR 165.110
EAFUSI No data FDA 2014
d. Other
ACGIH Carcinogenicity classification A4k ACGIH 2013
BEI
Toluene in blood; prior to last shift of 0.02 mg/L
workweek
Toluene in urine; end of shift 0.03 mg/L
o-Cresol in urine; end of shift 0.3 mg/g
creatinine
CPSC Federal Hazardous Substances Act CPSC 2017
Labels of “Danger”, “Vapor harmful’, =5% toluene (by
and “Poison” with a skull and weight)
crossbones must be used
Above labels plus “Harmful or fatal if =210% toluene (by
swallowed” and “Call physician weight)
immediately” must be used
EPA Carcinogenicity classification Group D! IRIS 2007
RfC 5 mg/m?
RfD 0.08 mg/kg/day
Identification and listing of hazardous U220 EPA 2013e

waste

Inert pesticide ingredients in pesticide Yes
products approved for nonfood use only

Master Testing List Yesm

RCRA waste minimization PBT priority No data
chemical list

Standards for owners and operators of Yes
hazardous waste TSD facilities;
groundwater monitoring list

Superfund, emergency planning, and
community right-to-know

Designated CERCLA hazardous 1,000 pounds
substance and reportable quantity

pursuant to Section 311(b)(2) of the

Clean Water Act, Section 307(a) of

the Clean Water Act, Section 112 of

the Clean Air Act, and Section 3001

of RCRA

40 CFR 261, Appendix
VI

EPA 2014b

EPA 2014c

EPA 1998
63 FR 60332

EPA 2013j
40 CFR 264, Appendix IX

EPA 2013g
40 CFR 302.4



TOLUENE 365

8. REGULATIONS, ADVISORIES, AND GUIDELINES

Table 8-1. Regulations, Advisories, and Guidelines Applicable to Toluene

Agency Description Information Reference
NATIONAL (cont.)
EPA Effective date of toxic chemical 01/01/1987 EPA 2013h
release reporting 40 CFR 372.65
Extremely hazardous substances No data EPA 2013i
and its threshold planning quantity 40 CFR 355, Appendix A
TSCA chemical lists and reporting No data EPA 2013k
periods 40 CFR 712.30
TSCA health and safety data reporting EPA 2013l
Effective date 10/04/1982 40 CFR716.120
Reporting date 10/04/1992
NTP Carcinogenicity classification No data NTP 2016

aGroup 3: not classifiable as to its carcinogenicity to humans.

bGroup 2 includes pollutants of potential interest, but WHO concluded further investigation would be needed before it
was clear whether there was sufficient evidence to warrant their inclusion in the guidelines at present (WHO 2010).
¢Concentrations of the substance at or below the health-based guideline value may affect the appearance, taste, or
odor of the water, leading to consumer complaints (WHO 2011).

dERPG-1: maximum airborne concentration below which it is believed that nearly all individuals could be exposed
for up to 1 hour without experiencing other than mild transient adverse health effects or perceiving a clearly defined,
objectionable odor; ERPG-2: maximum airborne concentration below which it is believed that nearly all individuals
could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or
symptoms which could impair an individual's ability to take protective action; ERPG-3: maximum airborne
concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without
experiencing or developing life-threatening health effects (AIHA 2013).

¢Odor should be detectable near ERPG-1.

fPAC-1: mild, transient health effects; PAC-2: irreversible or other serious health effects that could impair the ability
to take protective action; PAC-3: life-threatening health effects (DOE 2012).

9Lower Explosive Limit (LEL) = 14,000 ppm.

hFor values denoted as safety considerations against the hazard(s) of explosion(s) must be taken into account;
210% LEL.

iFor values denoted as extreme safety considerations against the hazard(s) of explosion(s) must be taken into
account; 250% LEL.

IThe EAFUS list of substances contains ingredients added directly to food that FDA has either approved as food
additives or listed or affirmed as GRAS.

kA4: not classifiable as a human carcinogen.

'Group D: not classifiable as to human carcinogenicity.

mVoluntary chemical testing program underway for SIDS including pharmacokinetic and immunological health effects
(EPA 2014c).

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute exposure guideline levels;
AIHA = American Industrial Hygiene Association; BEI = biological exposure indices; CERCLA = Comprehensive
Environmental Response, Compensation, and Liability Act; CFR = Code of Federal Regulations; DOE = Department
of Energy; DWEL = drinking water equivalent level; EAFUS = Everything Added to Food in the United States;

EPA = Environmental Protection Agency; ERPG = emergency response planning guidelines; FDA = Food and Drug
Administration; FR = Federal Register; GRAS = generally recognized as safe; IARC = International Agency for
Research on Cancer; IDLH = immediately dangerous to life or health; IRIS = Integrated Risk Information System;
LEL = lower explosive limit; MCL = maximum contaminat level; MCLG = maximum contaminant level goal;

NAAQS = National Ambient Air Quality Standards; NIOSH = National Institute for Occupational Safety and Health;
NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; PAC = protective
action criteria; PBT = persistent, bioaccumulative, and toxic; PEL = permissible exposure limit; RCRA = Resource
Conservation and Recovery Act; REL = recommended exposure limit; RfC = inhalation reference concentration;
RfD = oral reference dose; SIDS = Screening Information Data Set; STEL = short-term exposure limit;

TLV = threshold limit values; TSCA = Toxic Substances Control Act; TSD = treatment, storage, and disposal;

TWA = time-weighted average; USC = United States Code; WHO = World Health Organization
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Absorption—The taking up of liquids by solids, or of gases by solids or liquids.

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the
surfaces of solid bodies or liquids with which they are in contact.

Adsorption Coefficient (Ko)—The ratio of the amount of a chemical adsorbed per unit weight of
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase)
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a
fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per gram of soil or
sediment.

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a
specified magnitude of changes in a specified adverse response. For example, a BMDo would be the
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be
10%. The BMD is determined by modeling the dose response curve in the region of the dose response
relationship where biologically observable data are feasible.

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological
or epidemiological data to calculate a BMD.

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms
at a specific time or during a discrete time period of exposure divided by the concentration in the
surrounding water at the same time or during the same period.

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have
been classified as markers of exposure, markers of effect, and markers of susceptibility.

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces
significant increases in the incidence of cancer (or tumors) between the exposed population and its
appropriate control.

Carcinogen—A chemical capable of inducing cancer.

Case-Control Study— A type of epidemiological study that examines the relationship between a
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic
chemicals). In a case-control study, a group of people with a specified and well-defined outcome is
identified and compared to a similar group of people without the outcome.

Case Report—Describes a single individual with a particular disease or exposure. These may suggest
some potential topics for scientific research, but are not actual research studies.

Case Series—Describes the experience of a small number of individuals with the same disease or
exposure. These may suggest potential topics for scientific research, but are not actual research studies.
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Ceiling Value—A concentration that must not be exceeded.

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are
followed forward from exposure to outcome. At least one exposed group is compared to one unexposed

group.

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines
the relationship between exposure and outcome to a chemical or to chemicals at one point in time.

Data Needs—Substance-specific informational needs that, if met, would reduce the uncertainties of
human health risk assessment.

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result
from exposure to a chemical prior to conception (either parent), during prenatal development, or
postnatally to the time of sexual maturation. Adverse developmental effects may be detected at any point
in the life span of the organism.

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a
toxicant and the incidence of the adverse effects.

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to
a chemical; the distinguishing feature between the two terms is the stage of development during which the
insult occurs. The terms, as used here, include malformations and variations, altered growth, and in utero
death.

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water
levels for a chemical substance based on health effects information. A health advisory is not a legally
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials.

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of
disease or other health-related conditions within a defined human population during a specified period.

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific
alteration of the molecular structure of the genome.

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from
the body or environmental media.

Immediately Dangerous to Life or Health (IDLH)—A condition that poses a threat of life or health, or
conditions that pose an immediate threat of severe exposure to contaminants that are likely to have
adverse cumulative or delayed effects on health.

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from
exposure to environmental agents such as chemicals.
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Immunological Effects—Functional changes in the immune response.

Incidence—The ratio of new cases of individuals in a population who develop a specified condition to
the total number of individuals in that population who could have developed that condition in a specified
time period.

Intermediate Exposure—Exposure to a chemical for a duration of 15-364 days, as specified in the
Toxicological Profiles.

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube.
In Vivo—Occurring within the living organism.

Lethal Concentrationgo) (LCrLo)—The lowest concentration of a chemical in air that has been reported
to have caused death in humans or animals.

Lethal Concentrationsg (LCso)—A calculated concentration of a chemical in air to which exposure for
a specific length of time is expected to cause death in 50% of a defined experimental animal population.

Lethal Doseq.0) (LD1,)—The lowest dose of a chemical introduced by a route other than inhalation that
has been reported to have caused death in humans or animals.

Lethal Doseso) (LDso)—The dose of a chemical that has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Timesoy (L Ts0)—A calculated period of time within which a specific concentration of a chemical
is expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study,
or group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the
lymph nodes, spleen, and thymus.

Malformations—Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and
duration of exposure.

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty
factors. The default value for a MF is 1.

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific
population.

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified
interval of time.



TOLUENE 440

10. GLOSSARY

Mutagen—A substance that causes mutations. A mutation is a change in the DNA sequence of a cell’s
DNA. Mutations can lead to birth defects, miscarriages, or cancer.

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of
death or pathological conditions.

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a
hazardous substance.

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen between
the exposed population and its appropriate control. Effects may be produced at this dose, but they are not
considered to be adverse.

Octanol-Water Partition Coefficient (K,+)—The equilibrium ratio of the concentrations of a chemical
in N-octanol and water, in dilute solution.

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not
exposed to the risk factor). An OR of greater than 1 is considered to indicate greater risk of disease in the
exposed group compared to the unexposed group.

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound
and especially a pesticide that acts by inhibiting cholinesterase.

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA)
regulatory limit on the amount or concentration of a substance not to be exceeded in workplace air
averaged over any 8-hour work shift of a 40-hour workweek.

Pesticide—General classification of chemicals specifically developed and produced for use in the control
of agricultural and public health pests (insects or other organisms harmful to cultivated plants or animals).

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate
(disposition) of an exogenous substance in an organism. Utilizing computational techniques, it provides
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body.

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent
chemical or metabolite in an animal system. There are two types of pharmacokinetic models: data-based
and physiologically-based. A data-based model divides the animal system into a series of compartments,
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the
physiologically-based model compartments represent real anatomic regions of the body.

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end
points. These models advance the importance of physiologically based models in that they clearly
describe the biological effect (response) produced by the system following exposure to an exogenous
substance.
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Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments
representing organs or tissue groups with realistic weights and blood flows. These models require a
variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar
ventilation rates, and possibly membrane permeabilities. The models also utilize biochemical
information, such as blood:air partition coefficients, and metabolic parameters. PBPK models are also
called biologically based tissue dosimetry models.

Prevalence—The number of cases of a disease or condition in a population at one point in time.

Prospective Study—A type of cohort study in which the pertinent observations are made on events
occurring after the start of the study. A group is followed over time.

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the
multistage procedure. The q;* can be used to calculate an estimate of carcinogenic potency, the
incremental excess cancer risk per unit of exposure (usually ug/L for water, mg/kg/day for food, and
ug/m? for air).

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour
workweek.

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups)
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime.
The inhalation reference concentration is for continuous inhalation exposures and is appropriately
expressed in units of mg/m? or ppm.

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious
effects during a lifetime. The RfD is operationally derived from the no-observed-adverse-effect level
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect
various types of data used to estimate RfDs and an additional modifying factor, which is based on a
professional judgment of the entire database on the chemical. The RfDs are not applicable to
nonthreshold effects such as cancer.

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Reportable
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation
either under CERCLA or under Section 311 of the Clean Water Act. Quantities are measured over a
24-hour period.

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result
from exposure to a hazardous substance. The toxicity may be directed to the reproductive organs and/or
the related endocrine system. The manifestation of such toxicity may be noted as alterations in sexual
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the
integrity of this system.

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed
at some time in the past. Data are collected from routinely recorded events, up to the time the study is
undertaken. Retrospective studies are limited to causal factors that can be ascertained from existing
records and/or examining survivors of the cohort.
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Risk—The possibility or chance that some adverse effect will result from a given exposure to a hazardous
substance.

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, existing health
condition, or an inborn or inherited characteristic that is associated with an increased occurrence of
disease or other health-related event or condition.

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among
persons without risk factors. A risk ratio greater than 1 indicates greater risk of disease in the exposed
group compared to the unexposed group.

Short-Term Exposure Limit (STEL)—A STEL is a 15-minute TWA exposure that should not be
exceeded at any time during a workday.

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected
number of deaths in a specific standard population.

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen—A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists
(ACGIH) concentration of a substance to which it is believed that nearly all workers may be repeatedly
exposed, day after day, for a working lifetime without adverse effect. The TLV may be expressed as a
Time Weighted Average (TLV-TWA), as a Short-Term Exposure Limit (TLV-STEL), or as a ceiling
limit (TLV-C).

Time-Weighted Average (TWA)—An average exposure within a given time period.

Toxic Doseso (TDso)—A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism.

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data. UFs are intended to
account for (1) the variation in sensitivity among the members of the human population, (2) the
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data.
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used;
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic
average of 10 and 1.

Xenobiotic—Any substance that is foreign to the biological system.
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The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C.
9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99—
499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with
the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most
commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological
profiles for each substance included on the priority list of hazardous substances; and assure the initiation

of a research program to fill identified data needs associated with the substances.

The toxicological profiles include an examination, summary, and interpretation of available toxicological
information and epidemiologic evaluations of a hazardous substance. During the development of
toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to
identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a
given route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance
that is likely to be without appreciable risk of adverse noncancer health effects over a specified route and
duration of exposure. MRLs are based on noncancer health effects only and are not based on a
consideration of cancer effects. These substance-specific estimates, which are intended to serve as
screening levels, are used by ATSDR health assessors to identify contaminants and potential health
effects that may be of concern at hazardous waste sites. It is important to note that MRLs are not

intended to define clean-up or action levels.

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor
approach. They are below levels that might cause adverse health effects in the people most sensitive to
such chemical-induced effects. MRLs are derived for acute (1-14 days), intermediate (15-364 days), and
chronic (365 days and longer) durations and for the oral and inhalation routes of exposure. Currently,
MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method
suitable for this route of exposure. MRLs are generally based on the most sensitive substance-induced
endpoint considered to be of relevance to humans. Serious health effects (such as irreparable damage to
the liver or kidneys, or birth defects) are not used as a basis for establishing MRLs. Exposure to a level

above the MRL does not mean that adverse health effects will occur.

MRLs are intended only to serve as a screening tool to help public health professionals decide where to

look more closely. They may also be viewed as a mechanism to identify those hazardous waste sites that
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are not expected to cause adverse health effects. Most MRLs contain a degree of uncertainty because of
the lack of precise toxicological information on the people who might be most sensitive (e.g., infants,
elderly, nutritionally or immunologically compromised) to the effects of hazardous substances. ATSDR
uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health
principle of prevention. Although human data are preferred, MRLs often must be based on animal studies
because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes
that humans are more sensitive to the effects of hazardous substance than animals and that certain persons
may be particularly sensitive. Thus, the resulting MRL may be as much as 100-fold below levels that

have been shown to be nontoxic in laboratory animals.

Proposed MRLs undergo a rigorous review process: Health EffectsyMRL Workgroup reviews within the
Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL
Workgroup reviews, with participation from other federal agencies and comments from the public. They
are subject to change as new information becomes available concomitant with updating the toxicological
profiles. Thus, MRLs in the most recent toxicological profiles supersede previously published levels.
For additional information regarding MRLs, please contact the Division of Toxicology and Human
Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop
F-57, Atlanta, Georgia 30329-4027.
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MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name:  Toluene
CAS Numbers: 108-88-3

Date: June 2017

Profile Status: Final

Route: [X] Inhalation [ ] Oral

Duration: [X] Acute [ ] Intermediate [ ] Chronic
Graph Key: 37

Species: Human

Minimal Risk Level: 2 [ ] mg/kg/day [X]ppm

Reference: Little CH, Georgiou GM, Shelton MJ, et al. 1999. Clinical and immunological responses in
subjects sensitive to solvents. Arch Environ Health 54(1):6-14.

Experimental design: Twenty subjects (9 males, 11 females, average age 39.5 years) with a history of
solvent exposure and adverse reactions to toluene (i.e., clinically sensitive to toluene) were assessed in a
battery of neuropsychological tests prior to and after a 20-minute exposure to 15 ppm toluene. Methods
of identification/recruitment of subjects were not reported, and a separate control group was not utilized
for neuropsychological testing. The battery of tests included immediate and delayed prose memory,
reaction time, letter cancellations, digit symbol, focal length, and STROOP color and color-word tasks.

Effect noted in study and corresponding doses: Statistically significant (p<0.05) impairments were
measured in immediate and delayed prose memory (number of items recalled decreased 31%), the digit
symbol test (number of correct items decreased 11%), and the letter cancellation test (percent correct
decreased 5%) following a 20-minute exposure to 15 ppm toluene, compared with pre-exposure scores.
A near-significant 15% increase in reaction time was also observed (p=0.06). No significant difference
between pre- and post-exposure values was found for focal length or the STROOP tests.

Although this study is considered adequate for hazard identification and MRL derivation, the following
study limitations are acknowledged: potential selection bias, lack of a separate control group for
neuropsychological testing, lack of “blinding” subjects to toluene exposure, and lack of data regarding
covariates/comorbid conditions. One or more of these limitations were observed in all available studies
evaluating acute controlled toluene exposure in humans.

Dose and end point used for MRL derivation: 15 ppm for minimally adverse neurological effects in a
susceptible population.

[ ]NOAEL [X]LOAEL

Uncertainty Factors used in MRL derivation:

[11 [X]3 []10 (for use of a LOAEL)
An uncertainty factor of 3 was used to extrapolate from a LOAEL to a NOAEL, because
the observed effects at 15 ppm are minimally adverse and expected to be reversible.

[11 []13 []10 (for extrapolation from animals to humans)

[11 [X]3 []10 (for human variability)
The observed effects were noted in a susceptible/sensitive group of individuals; therefore, a
full uncertainty factor of 10 for human toxicokinetic and toxicodynamic variability is not
necessary. Using a population-based PBPK model for toluene, Mork et al. (2014)
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calculated distributions for an internal dose of toluene (Cmax in blood) for various
subpopulations under various exposure and physical activity conditions, and used the ratio
between the 50" percentile values and higher percentile (90, 95, or 99) values to indicate
human variability in toxicokinetic disposition of toluene (Mork et al. 2014). The ratios
were 1.2—1.8 for the general population, 1.4-2.1 for chronically-exposed workers (under
various exposure scenarios), and 1.4-3.9 for acutely-exposed workers (under various
exposure scenarios). This analysis indicates that the applied uncertainty factor of 3
provides adequate protection for human variability in toxicokinetic disposition of toluene,
assuming equal portioning between toxicokinetic (3.3) and toxicodynamic (3.3) in the full
human variability uncertainty factor.

Total uncertainty factor=3x3 =9
MRL = 15 ppm + 9 = 2 ppm (7.6 mg/m°)

Was a conversion factor used from ppm in food or water to a mg/body weight dose? No.

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not
applicable.

Was a conversion used from intermittent to continuous exposure? No. Application of concentration

x time (Cxt) adjustments (Haber’s Rule) for acute exposure scenarios to volatile organic solvents like
toluene has been questioned (Oshiro et al. 2011; ten Berge et al. 1986). An example of the basis of this
questioning is provided by the results from studies of neurobehavior in animals acutely exposed to
trichloroethylene (Bushnell 1997; Crofton and Zhao 1997). Cxt adjustments were shown to
underestimate toxic effects when adjusting from relatively long acute durations to shorter durations, and
to overestimate toxic effects when adjusting from relatively short acute durations to long acute durations.

Haber’s Rule has been modified to reflect observations that concentration often exerts a stronger
influence on acute toxicity than does time (ten Berge et al. 1986). The modification raises the
concentration term to a power, (n), which is determined empirically with appropriate data (C"xt; ten
Berge et al. 1986). However, determination of the exponent (n) requires adequate concentration-duration-
response data, and results from animal studies indicate that the exponent (n) can vary across
neurobehavioral end points (e.g., Bushnell 1997).

No duration adjustments were made to exposure concentrations in the available neurobehavioral studies
of humans exposed to controlled concentrations of toluene for times varying from 15 minutes to 8 hours,
because the available data are for a variety of neurological effects (see further discussion in the next
section of this worksheet), and duration adjustment by Haber’s rule is likely to overestimate toxic effects
when adjusting from short-term (e.g., 15-minute) to longer-term (e.g., 8-hour) exposure durations.

Estimates of brain concentration at the time of testing have been shown in animals to provide a better
dose-metric for predicting acute behavioral effects of toluene than cumulative measures of exposure or
Cxt adjustments. For rats exposed to varying toluene concentrations in air (1,200-2,400 ppm) and
durations (22—70 minutes) and examined for signal detection behavior, effects on accuracy and response-
time variables were increased with both increasing concentration and increasing duration (Bushnell et al.
2007). The use of a rat PBPK model to predict internal blood and brain concentrations of toluene as a
function of time showed that estimated brain concentration at the time of testing provided a much better
explanation of these performance variables than did cumulative measures of dose (AUCs for inhaled dose
[ppm-hour] or brain concentration [mg-hour/L]) (Bushnell et al. 2007). Oshiro et al. (2011) tested rats in
a signal detection task at various times during exposure to 0, 1,125, 1,450, or 1,660 ppm for up to
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24 hours, and reported that brain toluene concentration (estimated using a rat PBPK model) at the time of
testing was a better predictor of performance than Cxt adjustment. Analysis of the data also showed that
the brain dose-response relationship for the response time variable at 24 hours of exposure was shifted to
the right on the dose axis, compared with the relationship determined at 1 hour of exposure. This
duration-induced shift of the dose response relationship indicates that extrapolation from 1- to 24-hour
exposure would be confounded by an apparent development of tolerance to toluene within this acute time
frame.

As discussed in Section 3.4.5, none of the available human PBPK models for toluene contain a brain
compartment or have the ability to estimate brain concentrations of toluene. The lack of human data for
kinetics of toluene in brain tissue impedes the development of such a model. Such a model could be used
to compare results across available acute exposure studies of human neurobehavior, based on estimates of
brain concentrations at the time of testing.

Other additional studies or pertinent information that lend support to this MRL: The critical effect of
acute inhalation exposure to toluene is on the central nervous system. Multiple studies report subtle
neurological effects in healthy individuals following acute exposure to concentrations in the 75-300 ppm
range with durations ranging from 20 minutes to 8 hours (Andersen et al. 1983; Baelum et al. 1985; Dick
et al. 1984; Echeverria et al. 1991; Gamberale and Hultengren 1972; Kobald et al. 2015; Rahill et al.
1996; von Oettingen et al. 1942). Effects include increased subjective complaints (e.g., headache,
sleepiness, dizziness) following exposure to 100 ppm for 6 or 6.5 hours (Andersen et al. 1983; Baelum et
al. 1985) or 200 ppm for 3 or 8 hours (von Oettingen et al. 1942), and impairments in psychomotor tests
following exposure to 75 or 150 ppm toluene for 7 hours (Echeverria et al. 1991), 100 ppm for 6—8 hours
(Dick et al. 1984; Rahill et al. 1996), 200 ppm for 40 minutes (Kobald et al. 2015), and 300 ppm for

20 minutes (Gamberale and Hultengren 1972).

No adverse, dose-related effects have been observed in healthy individuals acutely exposed to 40—50 ppm
toluene for 2—6 hours (Andersen et al. 1983; Lammers et al. 2005a; Muttray et al. 2005; Osterberg et al.
2000, 2003). Therefore, a NOAEL of 40 ppm from Anderson et al. (1983) was considered as the basis for
the acute MRL, and previously was used as the point of departure (POD) for the acute inhalation MRL
(ATSDR, 2000).

However, recent studies indicate that individuals clinically sensitive to toluene experienced subtle
neurological effects at lower concentrations in the 15—48 ppm range (Little et al. 1999; Orback et al.
1998; Osterberg et al. 2003). In addition to the altered performance in psychomotor tasks observed in
individuals clinically sensitive to toluene reported by Little et al. (1999), individuals with multiple
chemical sensitivity (MCS) or toxic encephalopathy had significantly higher self-reported scores of
fatigue (headache, drowsiness, decreased concentration) during exposure to increasing toluene
concentrations over 2 hours (0 ppm [20 minutes], 3 ppm [10 minutes], 6 ppm [10 minutes], 12 ppm

[20 minutes], 24 ppm [10 minutes], 48 ppm [20 minutes], and 0 ppm [10 minutes]), compared with
healthy referents (Orbaek et al. 1998; Osterberg et al. 2003). During these studies, psychomotor tests
were performed before exposure and during the 12- and 48-ppm exposure periods. Both healthy referents
and individuals with multiple chemical sensitivity showed increased response time in the reaction-time
test (visual stimuli) following exposure, compared with pre-exposure scores (Osterberg et al. 2003).
However, the increase was not dose-related in healthy individuals, and exposure-related impairments
were not observed in the reaction time-inhibition test (with auditory alarm) or digit symbol test in either
group (Osterberg et al. 2003). In a separate study, there were no observed psychomotor impairments in
exposed individuals with toxic encephalopathy or healthy referents using the same protocol (Osterberg et
al. 2000). A LOAEL of 48 ppm for the studies conducted by Orbacek et al. (1998) and Osterberg et al.
(2003) was determined for susceptible individuals based on increased self-reported fatigue. A NOAEL
could not be determined, as fatigue scores were not reported at individual exposure concentrations.
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Rationale for Selection of Key Study: Both the previously used study in healthy subjects by Andersen et
al. (1983) and the study in subjects with MCS by Little et al. (1999) were considered as key studies for
the derivation of the acute inhalation MRL. The previous ATSDR profile (ATSDR 2000) derived an
acute inhalation MRL of 1 ppm based on the NOAEL of 40 ppm in healthy individuals; however, that
derivation utilized a CxT adjustment. As discussed above, this adjustment for continuous exposure is no
longer considered appropriate for acute toluene exposure. Thus, use of a POD of 40 ppm (NOAEL for
neurological effects in healthy individuals) and an uncertainty factor of 10 (to protect for susceptible
populations, which may differ from healthy populations due to toxicodynamic or toxicokinetic variability)
would result in an acute inhalation MRL of 4 ppm. However, ATSDR prefers to use data from a
susceptible population to better estimate the risk of acute toluene exposure, rather than using a default
uncertainty factor of 10 with data from healthy individuals to account for susceptible populations.
Therefore, the Little et al. (1999) study in subjects with MCS was selected as the key study and
considered the most health-protective option based on the available data.

There is some controversy in the medical community regarding the underlying etiology of the symptoms
observed in MSC patients. Reviews published in the last decade show varied findings, concluding that:
(1) MCS is predominantly a physiological condition (CHRC 2007; De Luca et al. 2011; Genuis 2010,
2013); (2) available data are inadequate to determine the relative contributions of physiological and
psychological factors (NICNAS 2010; Spencer and Shur, 2008); or (3) MCS is primarily psychological or
a sociological belief system (Boyd et al. 2012; Das-Munshi et al. 2006; Hetherington and Battershill
2013). Proposed etiologies include the initiation of a hypersensitive immune state by exposure to
exogenous toxic exposures (toxicant-induced loss of tolerance); respiratory/neurogenic inflammation;
neurochemical, endocrine, or receptor-mediated sensitization; altered metabolic capacity; behavioral
conditioning; psychological conditions; or some combination thereof (CHRC 2007; De Luca et al. 2010,
2011; Genuis 2013; NICNAS 2010). While the etiological basis of MCS is still unknown, the exclusion
of studies evaluating MCS subjects (who are extensively recognized and discussed in the literature) would
be dismissing a potentially sensitive subgroup during the human health risk analysis for toluene.
Therefore, despite a lack of understanding of the mechanistic underpinnings of MCS, ATSDR considers
the MCS test subjects in Little et al. (1999) as a group of individuals with potentially increased sensitivity
to chemical exposures, including exposure to toluene. It is important to note that the test subjects with
MCS are not experiencing unique effects not observed in the healthy population; rather, they are
experiencing neurological deficits commonly associated with toluene exposure in healthy individuals, but
at lower exposure levels. Therefore, the study by Little et al. (1999) was selected as the key study in
order to protect this sensitive subpopulation. Since data are inadequate to determine if subjects with MCS
are the most sensitive subpopulation, a partial uncertainty factor of 3 was used to account for other
potentially susceptible populations, as well as human variability in toxicokinetic disposition of toluene.

Agency Contacts (Chemical Manager): Jessilyn Taylor
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MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name:  Toluene
CAS Numbers: 108-88-3

Date: June 2017

Profile Status: Final

Route: [X] Inhalation [ ] Oral

Duration: [ ] Acute [ ]Intermediate [X] Chronic
Graph Key: 229-230, 238

Species: Human

Minimal Risk Level: 1[]mgkg/day [X]ppm

References: Schiper M, Demes P, Zupanic M, et al. 2003. Occupational toluene exposure and auditory
function: results from a follow-up study. Ann Occup Hygiene 47(6):493-502.

Schiper M, Demes P, Kiesswetter E, et al. 2004. Colour vision and occupational toluene exposure:
results of repeated examinations. Toxicol Lett 151(1):193-202.

Schaper M, Seeber A, van Thriel, C. 2008. The effects of toluene plus noise on hearing thresholds: an
evaluation based on repeated measurements in the German printing industry. Int J Occup Med Environ
Health 21(3):191-200.

Seeber A, Schiper M, Zupanic M, et al. 2004. Toluene exposure below 50 ppm and cognitive function: a
follow-up study with four repeated measurements in rotogravure printing plants. Int Arch Occup Environ
Health 77(1):1-9.

Seeber A, Demes P, Kiesswetter E, et al. 2005. Changes of neurobehavioral and sensory functions due to
toluene exposure below 50 ppm? Environ Toxicol Pharmacol 19(3):635-643.

Zupanic M, Demes P, Seeber A. 2002. Psychomotor performance and subjective symptoms at low level
toluene exposure. Occup Environ Med 59(4):263-268.

Experimental design: A series of studies by the same group of investigators assessed subjective
neurological symptoms, performance on psychomotor tasks, color vision, and hearing in groups of
German photogravure printers employed for an average duration of 13.5 years (Schéper et al. 2003, 2004,
2008; Seeber et al. 2004, 2005; Zupanic et al. 2002). These studies compared neurological end points in
workers with high exposure to toluene (printers, n=106—181) with workers with low exposure to toluene
(end-processors, n=86—152). Current toluene air exposure levels for printers and end-processors were
24.6-26 and 3-3.5 ppm, respectively (measured twice yearly from 1996 to 2001). Historical exposure
levels for printers prior to 1995 and prior to 1975 were 40 and 140 ppm, respectively. Historical exposure
levels for end-processors prior to 1995 and prior to 1975 were 5 and 40 ppm, respectively. Using job
history and current exposure and historical exposure levels, individual TWA exposure levels were
calculated. The average TWA levels for printers and end-processors were calculated to be 45 and 10 ppm
for subjects included in analyses by Schiper et al. (2003, 2008), 45 and 9 ppm for subjects included in
analyses by Seeber et al. (2004, 2005) and Zupanic et al. (2002), and 43 and 9 ppm for subjects included
in analyses by Schéper et al. (2004).

Effect noted in study and corresponding doses: Schiper et al. (2003, 2008) did not find any statistically
significant differences in audiometric readings from four readings over 5 years in 181 printers, compared
with 152 end-processors. Schéper et al. (2004) did not find any differences in color vision assessed




TOLUENE A-8

APPENDIX A

4 times over 5 years in 154 printers, compared with 124 end-processors. Seeber et al. (2004, 2005) and
Zupanic et al. (2002) did not find any increase in subjective neurological complaints or decreased
performance in psychomotor tasks in 106—154 printers, compared with 86—124 end-processors.

Dose and end point used for MRL derivation: 45 ppm for neurological effects

[X] NOAEL []LOAEL

Uncertainty Factors used in MRL derivation:

[ 110 (for use of a LOAEL)

[ ] 10 (for extrapolation from animals to humans)

[X] 10 (for human variability). The analysis by (Mork et al. 2014) provides evidence
that the uncertainty factor of 10 for human toxicokinetic and toxicodynamic variability
provides adequate protection for human variability in toxicokinetic disposition of
toluene, assuming equal portioning between toxicokinetic variability (3.3) and
toxicodynamic variability (3.3) (see discussion in the acute inhalation MRL
worksheet).

[11[]3
[11[]13
[11[13

MRL =45 ppm x 5 days/7 days x 8 hours/24 hours + 10 = 1 ppm (3.8 mg/m’)

Was a conversion factor used from ppm in food or water to a mg/body weight dose? No.

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not
applicable.

Was a conversion used from intermittent to continuous exposure? The exposure concentration was
adjusted to continuous exposure basis as shown above.

Other additional studies or pertinent information that lend support to this MRL: Twenty-four human
occupational studies evaluating neurological end points following exposure predominately or exclusively
to toluene were considered for deriving the chronic inhalation MRL (see Table A-1). Numerous studies
identified subtle neurological effects following occupational exposure to toluene at concentration
estimates ranging from 50 to 140 ppm, including subjective neurological symptoms, altered performance
on neurobehavioral and psychomotor tasks, impaired color vision, and hearing loss (Abbate et al. 1993;
Boey et al. 1997; Foo et al. 1990; Kang et al. 2005; Matsushita et al. 1975; Murata et al. 1993; Neubert et
al. 2001; Nordling Nilson et al. 2010; Orbaek and Nise 1989; Ukai et al. 1993; Vrca 1995, 1996, 1997b;
Yin t al. 1987; Zavalic et al. 1998a, 1998b, 1998¢). Several occupational studies identify NOAELSs for
these effects in the range of 20—46 ppm toluene (Chouaniére et al. 2002; Gericke et al. 2001; Kang et al.
2005; Nakatsuka et al. 1992; Neubert et al. 2001; Schiper et al. 2003, 2004, 2008; Seeber et al. 2004,
2005; Ukai et al. 1993; Zavalic et al. 1998a, 1998c; Zupanic et al. 2002). One outlier study reported that
no increases in subjective symptoms or changed performance on psychomotor tasks were found in
printers exposed to 9-83 ppm and laboratory workers exposed to 184—467 ppm when analyzed together,
compared with unexposed referents (Deschamps et al. 2001). However, the findings for the two groups
were not reported separately. The NOAEL for this study was set at the average of the midpoints of the
exposure ranges for the two groups of workers (midpoint factory, 46 ppm; midpoint laboratory, 325.5;
average, 185.75 ppm). Studies that evaluated only subjective end points (Ukai et al. 1993; Yin et al.
1987) were not considered for deriving the chronic inhalation MRL.
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Table A-1. Chronic Occupational Studies Considered for Deriving the Chronic

Inhalation MRL

Neurological end point(s) evaluated (altered end points at

Study author/date  LOAEL are in bold) NOAEL LOAEL
Abbate et al. 1993 BAEPs 97
Boey et al. 1997 Logical memory, digit span, visual reproduction, Benton 90.9

Chouaniére et al.
2002

Deschamps et al.
2001

Foo et al. 1990

Gericke et al. 2001

Kang et al. 2005
Matsushita et al. 1975

Murata et al. 1993
Nakatsuka et al. 1992

Neubert et al. 2001

Orbaek and Nise
1989; Nordling Nilson
etal. 2010

Schaper et al. 2003,
2008°

Schaper et al. 2004

Seeber et al. 2004,
2005b

Vrca 1995, 1997°
Vrca et al. 1996

visual retention test, trail making test, symbol digit
modality test, grooved pegboard test, and finger tapping test

Subjective symptoms, simple reaction time, symbol digit 27
substitution, digit span forwards and backwards, pattern
memory test, associate learning and recall

Subjective symptoms, vocabulary test, simple reaction time, 1862
digit symbol, digit span forwards and backwards, continuous
tracking, color word vigilance, and switching attention test

Benton visual retention, visual reproduction, trail making, 88
grooved peg board, digit span, digit symbol, finger tapping,
and simple reaction time

Subjective symptoms, assessment of color vision (test used 24
was not specified), and a battery of psychomotor tests

(immediate visual memory, digit span forward and backward,

and digit symbol)

Finger tapping, selective attention, digit span forward and 20 75
backward, symbol digit, and simple reaction time tests

Subjective symptoms, tendon reflexes, grasping power, 84
and tapping tempo

Nerve conduction (EKG, median nerve) 83
Color vision (Lanthony's new color test and Ishihara's 46
color/vision test)

Subjective symptoms, digit span forward/backward, visuomotor 33 75

performance, visual memory, self-rating of feelings, bisensory

vigilance, flicker fusion frequency, and personality

dispositions

Initial: Subjective symptoms and psychometric tests including 140
verbal, logical inductive, spatial memory, perceptual, and

psychomotor tests

20-year follow-up: Subjective symptoms and psychometric

tests including verbal, logical inductive (reasoning), spatial

memory (associative learning), perceptual, psychomotor

tests, trail-making test, STROOP test, and memory tests

Audiometry (two reports of the same study) 45
Color vision (Lanthony desaturated panel D-15d, Ishihara 43
plates)

Subjective symptoms, symbol digit substitution, switching 45

attention, and memory span (initial study 2004; follow-up
analysis of the same data in 2005)

VEPs 50
BAEPs 50
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Table A-1. Chronic Occupational Studies Considered for Deriving the Chronic
Inhalation MRL

Neurological end point(s) evaluated (altered end points at

Study author/date  LOAEL are in bold) NOAEL LOAEL

Zavalic 1998a, 1998c Color vision (Lanthony D-15 desaturated test; Verriest's 35 156
classification of color vision loss)

Zavalic 1998b Color vision (Lanthony D-15 desaturated test; Verriest's 120
classification of color vision loss)

Zupanic et al. 2002  Subjective symptoms, manual dexterity: steadiness, line 45

tracing, aiming, tapping, and peg board

aTwo toluene-exposed groups were described by Deschamps et al. (2001): 36 factory workers (9-83 ppm) and

36 laboratory workers (184—467 ppm). No average exposure levels were reported, and the two groups were
analyzed together. Therefore, the NOAEL was set at the average of the midpoints of the exposed ranges (midpoint
factory, 46 ppm; midpoint laboratory, 325.5; average, 185.75 ppm).

bStudies selected for derivation of the chronic MRL.

BAEP = brainstem auditory evoked potential; LOAEL = lowest-observed-adverse-effect level; MRL = minimal risk
level; NOAEL = no-observed-adverse-effect level; VEP = visual-evoked potential

After reviewing all available studies, the series of six recent studies in German rotogravure printers
reporting NOAELSs of 43—45 ppm for hearing loss (Schéper et al. 2003, 2008), color vision (Schéper et al.
2004), and psychomotor function (Seeber et al. 2004, 2005; Zupanic et al. 2002) were selected to support
a POD of 45 ppm. This POD NOAEL value is lower than all LOAEL values in Table A-1 and is
consistent with the mean and median NOAEL values from all studies summarized in Table A-1 (50 and
43 ppm, respectively).

The previous draft used a POD based on a LOAEL of 35 ppm for color vision impairment in the studies
by Zavalic et al. (1998a, 1998c). The current evaluation of this study arrives at a different LOAEL
determination. In Zavalic et al. (1998a), the color confusion index (CCI) was statistically significantly
increased by 14% in 32 printers exposed to geometric mean toluene concentrations of 156 ppm,
respectively, when compared with 83 unexposed controls on Monday morning prior to their work shift.
However, the CCI in 41 shoemakers exposed to geometric mean toluene concentrations of 35 ppm were
not significantly elevated when compared with controls. When alcohol consumers were excluded, the
CCl in 27 shoemakers and 10 printers was significantly increased by 4 and 11%, respectively, compared
with 36 controls. When adjusted for age and alcohol consumption, CCIs were significantly higher in both
shoemakers and printers (adjusted mean CCI values were not reported). Individual adjusted CCls were
significantly correlated with individual exposure estimates (air, blood, or urine) in printers, but not
shoemakers. In Zavalic et al. (1998c), further analysis of color vision loss in these groups of workers
demonstrated that total dychromatopsia (combined incidence of blue-yellow and red-green color
confusion [dyschromatopsia type II] and just blue-yellow color confusion [dyschromatopsia III]) was
significantly increased in printers, but not shoemakers, compared with unexposed workers.
Dyschromatopsia type I (red-green color confusion only) was not observed in any exposed or unexposed
workers Zavalic et al. 1998c). Taken together, these studies indicate a clear LOAEL of 156 ppm for color
vision loss in printers, based on increased CCls significantly associated with individual estimates of
toluene exposure and increased prevalence of dyschromatopia. A NOAEL of 35 ppm was identified, as it
is unclear if the statistically significant findings for increased CCI in the small sample of non-alcohol
consuming workers or adjusted CCls in all workers represents an adverse effect, especially since the
magnitude of change was small and individual CClIs in this group were not associated with toluene
exposure estimates in the air, blood, or urine. This interpretation of findings is consistent with the
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interpretation in the most recent Integrated Risk Information System (IRIS) document (EPA 2005a),
which considers the lower exposure level to be a NOAEL for color vision impairment.

Agency Contacts (Chemical Manager): Jessilyn Taylor
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MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name:  Toluene
CAS Numbers: 108-88-3

Date: June 2017

Profile Status: Final

Route: [ ] Inhalation [X] Oral

Duration: [X] Acute [ ] Intermediate [ ] Chronic
Graph Key: 18

Species: Rat

Minimal Risk Level: 0.8 [X]mgkg [ ]ppm

Reference: Dyer RS, Bercegeay MS, Mayo LM. 1988. Acute exposures to p-xylene and toluene alter
visual information processing. Neurotoxicol Teratol 10:147-153.

Experimental design: Male Long-Evans rats (12/group) were administered doses of toluene in corn oil of
0, 250, 500, and 1,000 mg/kg by gavage. FEP tests were administered 45 minutes later as a test of the
ability of the nervous system to process visual information. In another study (time-course), toluene was
administered to male Long-Evans rats (16/group) at doses of 0 and 500 mg/kg by gavage, and FEP tests
were performed 4, 8, 16, and 30 hours later.

Effect noted in study and corresponding doses: The amplitude of the N3 peak of the FEP was
significantly decreased (p<0.05) by toluene exposure at all doses. The magnitude of this decrease in peak
amplitude was not dose-related. In the time course study, 500 mg/kg also decreased the amplitude of the
FEP; at this dose, little change in magnitude of peak N3 depression had occurred 8 hours post-treatment;
by 16 hours, recovery was complete.

Dose and end point used for MRL derivation: 250 mg/kg for neurological effects

[]NOAEL [X]LOAEL

Uncertainty Factors used in MRL derivation:

[11 [X]3 []10 (for use of a LOAEL)

[11 []3 [X] 10 (for extrapolation from animals to humans)
[11 []3 [X] 10 (for human variability)

MRL = 250 mg/kg/day + 300 = 0.8 mg/kg/day

Was a conversion factor used from ppm in food or water to a mg/body weight dose? No.

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not
applicable.

Was a conversion used from intermittent to continuous exposure? No.

Other additional studies or pertinent information that lend support to this MRL: Human data suitable for
deriving an acute oral MRL for toluene are not available.
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Only a limited number of acute-exposure rat studies have evaluated neurological end points in addition to
the study by Dyer et al. (1988) and all of them evaluated higher doses. These studies report transient
increases in motor activity following single oral doses of 650-5,220 mg/kg (Gordon et al. 2007, 2010;
MacPhail et al. 2012; Mehta et al. 1998), abnormal gait following single oral doses of 3,915-5,220 mg/kg
(Mehta et al. 1998), and ototoxicity following exposure to 780 mg/kg/day, 5 days/week for 2 weeks
(Gagnaire and Langlais 2005). Additionally, numerous acute-duration animal inhalation studies have
reported neurological effects from toluene (see Table 3-1 for complete list). Human inhalation studies
have focused on the central nervous system as the critical toxicity target for acute-duration toluene
exposure (Andersen et al. 1983; Baelum et al. 1985; Dick et al. 1984; Echeverria et al. 1989; Gamberale
and Hultengren 1972; Rahill et al. 1996; von Oettingen et al. 1942).

An additional study that lends support to the MRL is a developmental study that reported altered cortical
cell proliferation and migration in offspring following exposure of pregnant rats to gavage doses of 0 or
650 mg/kg/day toluene in corn oil on GDs 6—19 (Gospe and Zhou 2000). Cortical cell density was
significantly decreased by 12.5% in all layers of the cerebral cortex in toluene-exposed pups on PND 21,
compared with controls. The greatest decrease (26.8%) was observed in layer IV. Decreased density was
attributed to altered neurogenesis, as neurons labeled with BrdU from injections on GDs 13-21 were
decreased in numbers and exhibited altered migration patterns.

Agency Contacts (Chemical Manager): Jessilyn Taylor
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MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name:  Toluene
CAS Numbers: 108-88-3

Date: June 2017

Profile Status: Final

Route: [ ] Inhalation [X] Oral

Duration: [ ] Acute [X] Intermediate [ ] Chronic
Graph Key: 45-47

Species: Mouse

Minimal Risk Level: 0.2 [X]mg/kg/day []ppm

References: Hsieh GC, Sharma RP, Parker RD. 1989. Immunotoxicological evaluation of toluene
exposure via drinking water in mice. Environ Res 49:93-103.

Hsieh GC, Parker RD, Sharma RP, et al. 1990a. Subclinical effects of groundwater contaminants. III.
Effects of repeated oral exposure to combinations of benzene and toluene on immunologic responses in
mice. Arch Toxicol 64:320-328.

Hsieh GC, Sharma RP, Parker RD. 1991. Hypothalamic-pituitary-adrenocortical axis activity and
immune function after oral exposure to benzene and toluene. Immunopharmacol 21:23-31.

Experimental design: A series of studies evaluated immune end points in male CD-1 mice (5/group)
administered toluene in their drinking water for 28 days at concentrations of 0, 5, 22, or 105 mg/kg/day
(Hsieh et al. 1989, 1991) or 0, 22, or 84 mg/kg/day (Hsich et al. 1990a). In Hsieh et al. (1989, 1990a),
rats were weighed, sacrificed, and examined for gross pathological lesions at 28 days. Spleen and thymus
were weighed and hematology was performed. Spleens were assessed for cellularity, and splenocytes
were used in in vitro immune assays (mitogen-stimulated lymphocyte proliferation, mixed lymphocyte
reaction, IL-2 production assay, and antibody PFC response). Hsieh et al. (1990a) also measured the in
vitro cell-mediated cytolysis response. In Hsieh et al. (1991), immune function was only assessed using
the IL-2 assay in cultured splenocytes. A level of p<0.05 was considered statistically significant unless
otherwise stated.

Effect noted in study and corresponding doses: In Hsieh et al. (1989), significantly decreased thymus
weight and significantly depressed immune responses were observed in all in vitro immune assays at

105 mg/kg/day, compared with control. IL-2 production and mitogen-stimulated lymphocyte
proliferation were also significantly decreased at 22 mg/kg/day compared with control. In Hsieh et al.
(1990a), significantly depressed immune responses were observed in the PFC assay and mixed
lymphocyte reaction at 84 mg/kg/day. The mixed lymphocyte reaction was also significantly depressed at
22 mg/kg/day. In Hsieh et al. (1991), the IL-2 production assay was significantly depressed at

105 mg/kg/day. Taken together, these studies consistently reported diminished immune responses in
multiple in vitro immune assays following in vivo exposure to 84—105 mg/kg/day in drinking water for
28 days, compared with controls. A couple of immune assays were altered at 22 mg/kg/day, but findings
were not consistent between the three Hsieh studies. Additionally, the antibody PFC assay was
significantly altered at 84 and 105 mg/kg/day, but not at 22 mg/kg/day (Hsieh et al. 1989, 1990a). The
PFC in vitro assay is considered the most predictive assay of impaired immune function (Luster et al.
1992). Collectively, results from these studies support a NOAEL of 22 mg/kg/day for immune effects.
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Dose and end point used for MRL derivation: 22 mg/kg/day for immune depression

[X] NOAEL []LOAEL

Uncertainty Factors used in MRL derivation:

[11 [13 []10 (for use of a LOAEL)
[11 []3 [X] 10 (for extrapolation from animals to humans)
[11 []13 [X] 10 (for human variability)

MRL = 22 mg/kg/day + 100 = 0.2 mg/kg/day

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Yes. The study
authors calculated that exposure to 0, 17, 80, and 405 mg/L in drinking water for 28 days was equivalent
to toluene doses of 0, 5, 22, and 105 mg/kg/day, respectively, over this period based on water
consumption (Hsieh et al. 1989). These equivalent doses were used for the Hsieh et al. (1991) study.
Toluene concentration in Hsieh et al. (1990a) was reported to be 0, 80, or 325 mg/L in drinking water.
The equivalent dose for the 80 mg/L group from previous studies was adopted for the 1990a study

(22 mg/kg/day). Using the conversion factor from the high-dose group from Hsieh et al. (1989) (1 mg/L
= 0.259 mg/kg/day), the equivalent dose for the 325 mg/L. group was calculated to be 84 mg/kg/day.

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not
applicable.

Was a conversion used from intermittent to continuous exposure? No.

Other additional studies or pertinent information that lend support to this MRL: Human data suitable for
deriving an intermediate oral MRL for toluene are not available.

No other intermediate-duration oral studies evaluating immune function were located. In an acute oral
study, Burns et al. (1994) reported that exposure to 600 mg/kg/day via gavage for 14 days did not
diminish immune response in in vitro immune assays or decrease host resistance to Listeria
monocytogenes, S. pneumoniae, Plasmodium yoelii, BI6F10 melanoma, or PYB6 fibrosarcoma in female
mice, compared with controls. The EPA (2005) discounted immune effects as a critical effect for the
IRIS RfD due to the absence of immune effects in the Burns et al. (1994) study and apparent conflicting
evidence for toluene immunotoxicity in animals. However, exposure was under different conditions
(gavage versus drinking water) and for a shorter duration (14 days versus 28 days) in the Hseih et al.
studies than in the Burns et al. (1994) study. The sex and strain also differed between the studies
(B6C3F1 versus CD-1; females versus males). Therefore, the lack of observed effects in the Burns et al.
(1994) study may not represent conflicting evidence; rather, it may be due to the shorter duration,
different exposure conditions, and/or differences between sexes or strains.

In animal inhalation studies, evidence for toluene effects on the immune system include the finding of
decreased resistance to mortality from respiratory infection by S. zooepidemicus in a study of mice
exposed for 3 hours to toluene concentrations as low as 2.5 ppm, but not 1 ppm (Aranyi et al. 1985).

Hepatic, renal, and neurological effects were also considered as bases of the intermediate-duration oral
MRL. However, the PODs for hepatic, renal, and neurological effects (see Table A-2) are all higher than
the selected POD for immune effects. Additionally, findings for increased liver and kidney weight were
not consistent between studies, nor were they associated with histopathological changes.
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Table A-2. Animals Studies Considered for Deriving the Intermediate-Duration
Oral MRL

Study

End point(s) evaluated

Significant effects at

LOAEL NOAEL LOAEL

Immuno/lymphoreticular effects

NTP 1990; 13 weeks;
F344 rats

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

Hsieh et al. 19892,

28 days; CD-1 male mice
0, 5,22, and

105 mg/kg/day via
drinking water

Hsieh et al. 1990a2;

28 days; CD-1 male mice
0, 22, and 84 mg/kg/day
via drinking water

Hsieh et al. 19912,

28 days; CD-1 male mice
0,5, 22, and

105 mg/kg/day via
drinking water

NTP 1990; 13 weeks;
B6C3F1 mice

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

Hepatic effects

NTP 1990; 13 weeks;
F344 rats

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)
Wolf et al. 1956;

6 months; Wistar rats

0, 118, 354, and

590 mg/kg/day via gavage
(5 days/week)

Hsieh et al. 1989; 28 days;

CD-1 male mice
0,5, 22, and

105 mg/kg/day via
drinking water

Spleen and thymus
weight and histology (O,
2,500, and 5,000
mg/kg/day groups only)

Immune assays (PFC
assay, mixed lymphocyte
response, mitogen
stimulation, IL-2 immune
response); spleen and
thymus weight and gross
pathology

Immune assays (PFC
assay, mixed lymphocyte
culture, mitogen
stimulation, IL-2 immune
response, cell-mediated
cytotoxicity); spleen and
thymus weight and gross
pathology

IL-2 immune response
assay

Spleen and thymus
weight and histology (O,
2,500, and

5,000 mg/kg/day groups
only)

Liver weight, histology,
clinical chemistry

Liver weight, histology

Liver weight, gross
pathology

All 5,000 mg/kg/day mice died 2,500
within 1 week, so the NOAEL
was set at 2,500 mg/kg/day

Decreased thymus weight, 22 105
depressed immune response (males) (males)
in all assays (mitogen-

stimulated lymphocyte

proliferation and IL-2 immunity

were also depressed at

22 mg/kg/day)

Depressed immune response 22 84

in PFC assay and mixed (males) (males)
lymphocyte culture (mixed

lymphocyte culture was also

depressed at 22 mg/kg/day)

Depressed IL-2 immune 22 105
response (males) (males)
All 5000 mg/kg/day mice died 2,500 -
within 1 week, so the NOAEL

was set at 2,500 mg/kg/day

Increased absolute and 312M  625M
relative liver weight 625 1,250

(females) (females)

No adverse-effect level 590
determined for liver end points (females)

22
(males)

105
(males)

Increased liver weight
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Table A-2. Animals Studies Considered for Deriving the Intermediate-Duration
Oral MRL

Study

End point(s) evaluated

Significant effects at
LOAEL

NOAEL LOAEL

Hsieh et al. 1990a;

28 days; CD-1 male mice
0, 22, and 84 mg/kg/day
via drinking water

NTP 1990°; 13 weeks;
B6C3F1 mice

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

Renal effects

NTP 19902; 13 weeks;
F344 rats

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

Wolf et al. 1956;

6 months; Wistar rats

0, 118, 354, and

590 mg/kg/day via gavage
(5 days/week)

Hsieh et al. 1989; 28 days;
CD-1 male mice

0,5, 22, and

105 mg/kg/day via
drinking water

Hsieh et al. 1990a;

28 days; CD-1 male mice
0, 22, and 84 mg/kg/day
via drinking water

NTP 1990; 13 weeks;
B6C3F1 mice

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

Neurological effects

NTP 1990; 13 weeks;
F344 rats

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

NTP 1990; 13 weeks;
B6C3F1 mice

0, 312, 650, 1,250, 2,500,
and 5,000 mg/kg/day via
gavage (5 days/week)

Liver weight, gross
pathology

Liver weight, histology,
clinical chemistry

Kidney weight, histology,
clinical chemistry,
urinalysis

Kidney weight, gross
morphology

Kidney weight, gross
pathology

Kidney weight, gross
pathology

Kidney weight, histology,
clinical chemistry,
urinalysis

Brain weight, histology,
clinical signs

Brain weight, histology,
clinical signs

No adverse-effect level
determined for liver end points

Increased absolute (females)
and relative (males and
females) liver weight

Increased absolute and
relative kidney weight
(increased urinary bladder
hemorrhage at higher doses)

No adverse-effect level
determined for kidney effects

No adverse-effect level
determined for kidney effects

No adverse-effect level
determined for kidney effects

All 5000 mg/kg/day mice died
within 1 week, so the NOAEL
was set at 2,500 mg/kg/day

Brain necrosis in hippocampus 625

and cerebellum (increased
absolute brain weight and
clinical signs of neurotoxicity
at 2,500 mg/kg/day)

Increased absolute brain
weight (males); clinical signs
of neurotoxicity at

2,500 mg/kg/day (males and
females)

84 M

625 1,250
(males) (males)
- 312

(females) (females)

312 625
(males) (males)
625 1,250

(females) (females)

590
(females)

105
(males)

84
(males)

2,500

1,250

(males) (males)

625
(males)
1,250
(females)

1,250
(males)
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Table A-2. Animals Studies Considered for Deriving the Intermediate-Duration

Oral MRL
Significant effects at

Study End point(s) evaluated LOAEL NOAEL LOAEL
Developmental effects
Kostas and Hotchin 1981; Neonatal survival, growth Increased open-field activity = 21 106
GDs 0-21 and PNDs 0— and development; (lack of habituation)
55; Nya:NYLAR mice surface righting, startle
0, 4,21, and reflex, rotarod
106 mg/kg/day via performance, and open-
drinking water field activity

aStudies and end points selected for deriving the intermediate-duration oral MRL.

GD = gestation day; IL-2 = interleukin-2; LOAEL = lowest-observed-adverse-effect level; MRL = minimal risk level;
NOAEL = no-observed-adverse-effect level; NTP = National Toxicology Program; PFC = plaque-forming cell;
PND = postnatal day

Impaired neurodevelopment following pre- and postnatal exposure to toluene, as evidenced by altered
open-field behavior in offspring, was also considered as basis of the intermediate-duration oral MRL.
Pups exposed to 106 mg/kg/day, but not 4 or 21 mg/kg/day, on GDs 0-21 and PNDs 055 demonstrated
impaired habituation compared with controls (Kostas and Hotchin 1981). The POD of 21 mg/kg/day is
comparable to the immune effects POD of 22 mg/kg/day. However, no other neurodevelopmental oral
studies were located to support this finding. Therefore, the series of three studies by Hsieh et al. (1989,
1990b, 1991) demonstrating that consistent immune suppression was determined to be a better selection
for a critical effect. While not selected as the basis of the MRL, this study does support the use of a
NOAEL of 22 mg/kg/day as the POD.

In the previous draft (ATSDR, 2000), the basis of the intermediate-duration oral MRL was a minimally
adverse LOAEL of 5 mg/kg/day for increased brain levels of norepinephrine, dopamine, and serotonin
(Hsieh et al. 1990b). As mentioned in the 2000 draft, it is unclear how (or if) these effects relate to
neurobehavioral changes. Additionally, alterations in neurotransmitters, and their precursors, are
inconsistent between brain regions and do not increase with increasing dose. For the majority of findings,
increased neurotransmitter levels in mice exposed to 5, 22, or 105 mg/kg/day for 28 days were the highest
in the 22 mg/kg/day group. Since neurotransmitter levels were only evaluated at one time point, it is also
unknown if these changes are transient. Due to the lack of dose response, lack of information on
persistence of changes, and unclear association with neurobehavior, it cannot be determined if these
changes are adverse. Therefore, a NOAEL/LOAEL call was not made for the neurological effects in this
study. This interpretation is consistent with the interpretation by EPA (2005): “the changes in
neurotransmitter levels have not been correlated with behavioral, neuropsychological, or neuroanatomical
changes and were not considered further [for deriving RfD]”.

Agency Contacts (Chemical Manager): Jessilyn Taylor
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Chapter 1
Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended
audience is the general public, especially people living in the vicinity of a hazardous waste site or
chemical release. If the Public Health Statement were removed from the rest of the document, it would
still communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The
topics are written in a question and answer format. The answer to each question includes a sentence that
will direct the reader to chapters in the profile that will provide more information on the given topic.

Chapter 2
Relevance to Public Health

This chapter provides a health effects summary based on evaluations of existing toxicologic,
epidemiologic, and toxicokinetic information. This summary is designed to present interpretive, weight-
of-evidence discussions for human health end points by addressing the following questions:

1. What effects are known to occur in humans?
2. What effects observed in animals are likely to be of concern to humans?

3. What exposure conditions are likely to be of concern to humans, especially around hazardous
waste sites?

The chapter covers end points in the same order that they appear within the Discussion of Health Effects
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect. Human
data are presented first, then animal data. Both are organized by duration (acute, intermediate, chronic).
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also
considered in this chapter.

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer
potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if
derived) and the end points from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public
health are identified in the Chapter 3 Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral
routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not
meant to support regulatory action, but to acquaint health professionals with exposure levels at which
adverse health effects are not expected to occur in humans.
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MRLs should help physicians and public health officials determine the safety of a community living near
a hazardous substance emission, given the concentration of a contaminant in air or the estimated daily
dose in water. MRLs are based largely on toxicological studies in animals and on reports of human
occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based. Chapter 2,
"Relevance to Public Health," contains basic information known about the substance. Other sections such
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are
Unusually Susceptible" provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA)
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement,
represents the most sensitive human health effect for a given exposure route and duration. ATSDR
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available
for all potential systemic, neurological, and developmental effects. If this information and reliable
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive
species (when information from multiple species is available) with the highest no-observed-adverse-effect
level (NOAEL) that does not exceed any adverse effect levels. When a NOAEL is not available, a
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor
(UF) of 10 must be employed. Additional uncertainty factors of 10 must be used both for human
variability to protect sensitive subpopulations (people who are most susceptible to the health effects
caused by the substance) and for interspecies variability (extrapolation from animals to humans). In
deriving an MRL, these individual uncertainty factors are multiplied together. The product is then
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used

in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure
(LSE) tables.

Chapter 3
Health Effects
Tables and Figures for Levels of Significant Exposure (LSE)

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure
associated with those effects. These levels cover health effects observed at increasing dose
concentrations and durations, differences in response by species, MRLs to humans for noncancer end
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in
10,000 to 1 in 10,000,000. Use the LSE tables and figures for a quick review of the health effects and to
locate data for a specific exposure scenario. The LSE tables and figures should always be used in
conjunction with the text. All entries in these tables and figures represent studies that provide reliable,
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs).

The legends presented below demonstrate the application of these tables and figures. Representative
examples of LSE Table 3-1 and Figure 3-1 are shown. The numbers in the left column of the legends
correspond to the numbers in the example table and figure.



TOLUENE B-3

APPENDIX B

LEGEND

(1

2

3)

4)

)

(6)

(7

®)

See Sample LSE Table 3-1 (page B-6)

Route of Exposure. One of the first considerations when reviewing the toxicity of a substance
using these tables and figures should be the relevant and appropriate route of exposure. Typically
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral,
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively). LSE figures are limited to the inhalation
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes. Not all substances will have data on each
route of exposure and will not, therefore, have all five of the tables and figures.

Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15—

364 days), and chronic (365 days or more)—are presented within each relevant route of exposure.
In this example, an inhalation study of intermediate exposure duration is reported. For quick
reference to health effects occurring from a known length of exposure, locate the applicable
exposure period within the LSE table and figure.

Health Effect. The major categories of health effects included in LSE tables and figures include
death, systemic, immunological, neurological, developmental, reproductive, and cancer.
NOAELSs and LOAELSs can be reported in the tables and figures for all effects but cancer.
Systemic effects are further defined in the "System" column of the LSE table (see key number
18).

Key to Figure. Each key number in the LSE table links study information to one or more data
points using the same key number in the corresponding LSE figure. In this example, the study
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL
(also see the two "18r" data points in sample Figure 3-1).

Species. The test species, whether animal or human, are identified in this column. Chapter 2,
"Relevance to Public Health," covers the relevance of animal data to human toxicity and

Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.
Although NOAELs and LOAELSs are species specific, the levels are extrapolated to equivalent
human doses to derive an MRL.

Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure
regimens are provided in this column. This permits comparison of NOAELs and LOAELs from
different studies. In this case (key number 18), rats were exposed to “Chemical x via inhalation
for 6 hours/day, 5 days/week, for 13 weeks. For a more complete review of the dosing regimen,
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al.
1981).

System. This column further defines the systemic effects. These systems include respiratory,
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and
dermal/ocular. "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered
in these systems. In the example of key number 18, one systemic effect (respiratory) was
investigated.

NOAEL. A NOAEL is the highest exposure level at which no adverse effects were seen in the
organ system studied. Key number 18 reports a NOAEL of 3 ppm for the respiratory system,
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see
footnote "b").
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9 LOAEL. A LOAEL is the lowest dose used in the study that caused an adverse health effect.
LOAELSs have been classified into "Less Serious" and "Serious" effects. These distinctions help
readers identify the levels of exposure at which adverse health effects first appear and the
gradation of effects with increasing dose. A brief description of the specific end point used to
quantify the adverse effect accompanies the LOAEL. The respiratory effect reported in key
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm. MRLs are not derived from
Serious LOAELSs.

(10)  Reference. The complete reference citation is given in Chapter 9 of the profile.

(11)  CEL. A CEL is the lowest exposure level associated with the onset of carcinogenesis in
experimental or epidemiologic studies. CELs are always considered serious effects. The LSE
tables and figures do not contain NOAELSs for cancer, but the text may report doses not causing
measurable cancer increases.

(12)  Footnotes. Explanations of abbreviations or reference notes for data in the LSE tables are found
in the footnotes. Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to
derive an MRL of 0.005 ppm.

LEGEND
See Sample Figure 3-1 (page B-7)

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the
reader quickly compare health effects according to exposure concentrations for particular exposure
periods.

(13)  Exposure Period. The same exposure periods appear as in the LSE table. In this example, health
effects observed within the acute and intermediate exposure periods are illustrated.

(14)  Health Effect. These are the categories of health effects for which reliable quantitative data
exists. The same health effects appear in the LSE table.

(15)  Levels of Exposure. Concentrations or doses for each health effect in the LSE tables are
graphically displayed in the LSE figures. Exposure concentration or dose is measured on the log
scale "y" axis. Inhalation exposure is reported in mg/m* or ppm and oral exposure is reported in
mg/kg/day.

(16) NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in
the rat upon which an intermediate inhalation exposure MRL is based. The key number 18
corresponds to the entry in the LSE table. The dashed descending arrow indicates the
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of
0.005 ppm (see footnote "b" in the LSE table).

(17)  CEL. Key number 38m is one of three studies for which CELs were derived. The diamond
symbol refers to a CEL for the test species-mouse. The number 38 corresponds to the entry in the
LSE table.
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(18)  Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are derived
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the
cancer dose response curve at low dose levels (q:*).

(19)  Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure.




SAMPLE

Table 3-1. Levels of Significant Exposure to [Chemical x] — Inhalation

LOAEL (effect)

Exposure
Key to frequency/ NOAEL Less serious Serious (ppm)
figure? Species duration System (ppm) (ppm) Reference
2 INTERMEDIATE EXPOSURE
5 6 8 9 10
3 Systemic J \2
18 Rat 13 wk Resp 3b 10 (hyperplasia)
4 5 d/wk Nitschke et al. 1981
6 hr/d
CHRONIC EXPOSURE
Cancer 11
\
38 Rat 18 mo 20  (CEL, multiple Wong et al. 1982
5 d/wk organs)
7 hr/d
39 Rat 89-104 wk 10  (CEL, lung tumors,  NTP 1982
5 d/wk nasal tumors)
6 hr/d
40 Mouse 79-103 wk 10  (CEL, lung tumors,  NTP 1982
5 d/wk hemangiosarcomas)
6 hr/d
12 2 The number corresponds to entries in Figure 3-1.

b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10-® ppm; dose adjusted for intermittent exposure and divided
by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability).
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APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACGIH American Conference of Governmental Industrial Hygienists
ACOEM American College of Occupational and Environmental Medicine
ADI acceptable daily intake

ADME absorption, distribution, metabolism, and excretion

AED atomic emission detection

AFID alkali flame ionization detector

AFOSH Air Force Office of Safety and Health

ALT alanine aminotransferase

AML acute myeloid leukemia

AOAC Association of Official Analytical Chemists

AOEC Association of Occupational and Environmental Clinics

AP alkaline phosphatase

APHA American Public Health Association

AST aspartate aminotransferase

atm atmosphere

ATSDR Agency for Toxic Substances and Disease Registry

AWQC Ambient Water Quality Criteria

BAT best available technology

BCF bioconcentration factor

BEI Biological Exposure Index

BMD/C benchmark dose or benchmark concentration

BMDx dose that produces a X% change in response rate of an adverse effect
BMDLx 95% lower confidence limit on the BMDx

BMDS Benchmark Dose Software

BMR benchmark response

BSC Board of Scientific Counselors

C centigrade

CAA Clean Air Act

CAG Cancer Assessment Group of the U.S. Environmental Protection Agency
CAS Chemical Abstract Services

CDC Centers for Disease Control and Prevention

CEL cancer effect level

CELDS Computer-Environmental Legislative Data System
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
CFR Code of Federal Regulations

Ci curie

CI confidence interval

CLP Contract Laboratory Program

cm centimeter

CML chronic myeloid leukemia

CPSC Consumer Products Safety Commission

CWA Clean Water Act

DHEW Department of Health, Education, and Welfare

DHHS Department of Health and Human Services

DNA deoxyribonucleic acid

DOD Department of Defense

DOE Department of Energy

DOL Department of Labor

DOT Department of Transportation
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DOT/UN/
NA/IMDG
DWEL
ECD
ECG/EKG
EEG
EEGL
EPA
F
F
FAO
FDA
FEMA
FIFRA
FPD
fpm
FR
FSH
g
GC
ed
GLC
GPC
HPLC
HRGC
HSDB
IARC
IDLH
ILO
IRIS
Kd
kg
kkg
Koc
KOW
L
LC
LCso
LCLO
LDso
LDLo
LDH
LH
LOAEL
LSE
LTso

MA
MAL
mCi
MCL

APPENDIX C

Department of Transportation/United Nations/
North America/Intergovernmental Maritime Dangerous Goods Code

drinking water exposure level

electron capture detection

electrocardiogram

electroencephalogram

Emergency Exposure Guidance Level

Environmental Protection Agency

Fahrenheit

first-filial generation

Food and Agricultural Organization of the United Nations

Food and Drug Administration

Federal Emergency Management Agency

Federal Insecticide, Fungicide, and Rodenticide Act

flame photometric detection

feet per minute

Federal Register

follicle stimulating hormone

gram

gas chromatography

gestational day

gas liquid chromatography

gel permeation chromatography

high-performance liquid chromatography

high resolution gas chromatography

Hazardous Substance Data Bank

International Agency for Research on Cancer

immediately dangerous to life and health

International Labor Organization

Integrated Risk Information System

adsorption ratio

kilogram

kilokilogram; 1 kilokilogram is equivalent to 1,000 kilograms and 1 metric ton

organic carbon partition coefficient
octanol-water partition coefficient
liter

liquid chromatography

lethal concentration, 50% kill
lethal concentration, low

lethal dose, 50% kill

lethal dose, low

lactic dehydrogenase

luteinizing hormone
lowest-observed-adverse-effect level
Levels of Significant Exposure
lethal time, 50% kill

meter

trans,trans-muconic acid
maximum allowable level
millicurie

maximum contaminant level

C-2
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MCLG
MF
MFO
mg

mL

mm
mmHg
mmol
mppcf
MRL
MS

mt
NAAQS
NAS
NATICH
NATO
NCE
NCEH
NCI

ND
NFPA
ng
NHANES
NIEHS
NIOSH
NIOSHTIC
NLM
nm
nmol
NOAEL
NOES
NOHS
NPD
NPDES
NPL
NR
NRC
NS
NSPS
NTIS
NTP
ODW
OERR
OHM/TADS
OPP
OPPT
OPPTS
OR
OSHA
OSW
OTS

APPENDIX C

maximum contaminant level goal

modifying factor

mixed function oxidase

milligram

milliliter

millimeter

millimeters of mercury

millimole

millions of particles per cubic foot

Minimal Risk Level

mass spectrometry

metric ton

National Ambient Air Quality Standard

National Academy of Science

National Air Toxics Information Clearinghouse
North Atlantic Treaty Organization
normochromatic erythrocytes

National Center for Environmental Health

National Cancer Institute

not detected

National Fire Protection Association

nanogram

National Health and Nutrition Examination Survey
National Institute of Environmental Health Sciences
National Institute for Occupational Safety and Health
NIOSH's Computerized Information Retrieval System
National Library of Medicine

nanometer

nanomole

no-observed-adverse-effect level

National Occupational Exposure Survey

National Occupational Hazard Survey

nitrogen phosphorus detection

National Pollutant Discharge Elimination System
National Priorities List

not reported

National Research Council

not specified

New Source Performance Standards

National Technical Information Service

National Toxicology Program

Office of Drinking Water, EPA

Office of Emergency and Remedial Response, EPA
Oil and Hazardous Materials/Technical Assistance Data System
Office of Pesticide Programs, EPA

Office of Pollution Prevention and Toxics, EPA
Office of Prevention, Pesticides and Toxic Substances, EPA
odds ratio

Occupational Safety and Health Administration
Office of Solid Waste, EPA

Office of Toxic Substances

C-3
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ow Office of Water
OWRS Office of Water Regulations and Standards, EPA
PAH polycyclic aromatic hydrocarbon
PBPD physiologically based pharmacodynamic
PBPK physiologically based pharmacokinetic
PCE polychromatic erythrocytes
PEL permissible exposure limit
PEL-C permissible exposure limit-ceiling value
pg picogram
PHS Public Health Service
PID photo ionization detector
pmol picomole
PMR proportionate mortality ratio
ppb parts per billion
ppm parts per million
ppt parts per trillion
PSNS pretreatment standards for new sources
RBC red blood cell
REL recommended exposure level/limit
REL-C recommended exposure level-ceiling value
RfC reference concentration (inhalation)
RfD reference dose (oral)
RNA ribonucleic acid
RQ reportable quantity
RTECS Registry of Toxic Effects of Chemical Substances
SARA Superfund Amendments and Reauthorization Act
SCE sister chromatid exchange
SGOT serum glutamic oxaloacetic transaminase (same as aspartate aminotransferase or AST)
SGPT serum glutamic pyruvic transaminase (same as alanine aminotransferase or ALT)
SIC standard industrial classification
SIM selected ion monitoring
SMCL secondary maximum contaminant level
SMR standardized mortality ratio
SNARL suggested no adverse response level
SPEGL Short-Term Public Emergency Guidance Level
STEL short term exposure limit
STORET Storage and Retrieval
TDso toxic dose, 50% specific toxic effect
TLV threshold limit value
TLV-C threshold limit value-ceiling value
TOC total organic carbon
TPQ threshold planning quantity
TRI Toxics Release Inventory
TSCA Toxic Substances Control Act
TWA time-weighted average
UF uncertainty factor
U.S. United States
USDA United States Department of Agriculture
USGS United States Geological Survey
VOC volatile organic compound

WBC white blood cell
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WHO

v v

™R LIAA

pm
HE
qi

(+)
-)

World Health Organization

greater than

greater than or equal to
equal to

less than

less than or equal to
percent

alpha

beta

gamma

delta

micrometer
microgram

cancer slope factor
negative

positive

weakly positive result
weakly negative result
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